1
|
Hur MS, Lee S, Jung HS, Schneider RA. Crossing fibers may underlie the dynamic pulling forces of muscles that attach to cartilage at the tip of the nose. Sci Rep 2023; 13:18948. [PMID: 37919340 PMCID: PMC10622497 DOI: 10.1038/s41598-023-45781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
The present study used microdissection, histology, and microcomputed tomography (micro-CT) with the aims of determining the prevalence and patterns of the depressor septi nasi (DSN) and orbicularis oris (OOr) muscles attached to the footplate of the medial crus (fMC) of the major alar cartilage, focusing on their crossing fibers. The DSN and OOr attached to the fMC of the major alar cartilage were investigated in 76 samples from 38 embalmed Korean adult cadavers (20 males, 18 females; mean age 70 years). The DSN, OOr, or both were attached to the fMC. When the DSN ran unilaterally or was absent, some OOr fibers ascended to attach to the fMC instead of the DSN in 20.6% of the samples. Crossing fibers of the DSN or OOr attached to the fMC were found in 82.4% of the samples. Bilateral and unilateral crossing fibers were found in 32.4% and 50.0%, respectively, and no crossing fibers were found in 17.6%. The DSN and OOr that attached to the fMC could be categorized into six types according to presence of the DSN and the crossing patterns of the DSN and OOr. Anatomical findings of the DSN and OOr that attached to the fMC were confirmed in histology and micro-CT images. These findings offer insights on anatomical mechanisms that may underlie the dynamic pulling forces generated by muscles that attach to the fMCs and on evolutionary variation observed in human facial expressions. They can also provide useful information for guiding rhinoplasty of the nasal tip.
Collapse
Affiliation(s)
- Mi-Sun Hur
- Department of Anatomy, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Seunggyu Lee
- Division of Applied Mathematical Sciences, Korea University, Sejong, Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, BK21 FOUR Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea.
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA, 94143-0514, USA.
| |
Collapse
|
2
|
Qing G, Jia F, Liu J, Jiang X. Anatomical network modules of the human central nervous-craniofacial skeleton system. Front Neurol 2023; 14:1164283. [PMID: 37602256 PMCID: PMC10433180 DOI: 10.3389/fneur.2023.1164283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Anatomical network analysis (AnNA) is a systems biological framework based on network theory that enables anatomical structural analysis by incorporating modularity to model structural complexity. The human brain and facial structures exhibit close structural and functional relationships, suggestive of a co-evolved anatomical network. The present study aimed to analyze the human head as a modular entity that comprises the central nervous system, including the brain, spinal cord, and craniofacial skeleton. An AnNA model was built using 39 anatomical nodes from the brain, spinal cord, and craniofacial skeleton. The linkages were identified using peripheral nerve supply and direct contact between structures. The Spinglass algorithm in the igraph software was applied to construct a network and identify the modules of the central nervous system-craniofacial skeleton anatomical network. Two modules were identified. These comprised an anterior module, which included the forebrain, anterior cranial base, and upper-middle face, and a posterior module, which included the midbrain, hindbrain, mandible, and posterior cranium. These findings may reflect the genetic and signaling networks that drive the mosaic central nervous system and craniofacial development and offer important systems biology perspectives for developmental disorders of craniofacial structures.
Collapse
Affiliation(s)
- Gele Qing
- Affiliated Hospital of Chifeng University, Chifeng, China
| | - Fucang Jia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianwei Liu
- Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiling Jiang
- Affiliated Hospital of Chifeng University, Chifeng, China
| |
Collapse
|
3
|
Alicea B, Gordon R, Parent J. Embodied cognitive morphogenesis as a route to intelligent systems. Interface Focus 2023; 13:20220067. [PMID: 37065267 PMCID: PMC10102728 DOI: 10.1098/rsfs.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 04/18/2023] Open
Abstract
The embryological view of development is that coordinated gene expression, cellular physics and migration provides the basis for phenotypic complexity. This stands in contrast with the prevailing view of embodied cognition, which claims that informational feedback between organisms and their environment is key to the emergence of intelligent behaviours. We aim to unite these two perspectives as embodied cognitive morphogenesis, in which morphogenetic symmetry breaking produces specialized organismal subsystems which serve as a substrate for the emergence of autonomous behaviours. As embodied cognitive morphogenesis produces fluctuating phenotypic asymmetry and the emergence of information processing subsystems, we observe three distinct properties: acquisition, generativity and transformation. Using a generic organismal agent, such properties are captured through models such as tensegrity networks, differentiation trees and embodied hypernetworks, providing a means to identify the context of various symmetry-breaking events in developmental time. Related concepts that help us define this phenotype further include concepts such as modularity, homeostasis and 4E (embodied, enactive, embedded and extended) cognition. We conclude by considering these autonomous developmental systems as a process called connectogenesis, connecting various parts of the emerged phenotype into an approach useful for the analysis of organisms and the design of bioinspired computational agents.
Collapse
Affiliation(s)
- Bradly Alicea
- OpenWorm Foundation, Boston, MA, USA
- Orthogonal Research and Education Laboratory, Champaign-Urbana, IL, USA
| | - Richard Gordon
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Jesse Parent
- Orthogonal Research and Education Laboratory, Champaign-Urbana, IL, USA
| |
Collapse
|
4
|
Anatomical network analyses reveal evolutionary integration and modularity in the lizards skull. Sci Rep 2022; 12:14429. [PMID: 36064738 PMCID: PMC9445097 DOI: 10.1038/s41598-022-18222-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The morphology of lizard skulls is highly diverse, and it is crucial to understand the factors that constrain and promote their evolution to understand how lizards thrive. The results of interactions between cranial bones reflecting these factors can be detected as integration and modularity, and the analysis of integration and modularity allows us to explore the underlying factors. In this study, the integration and modularity of the skulls of lizards and the outgroup tuatara are analyzed using a new method, Anatomical Network Analysis (AnNA), and the factors causing lizards morphological diversity are investigated by comparing them. The comparison of modular structures shows that lizard skulls have high integration and anisomerism, some differences but basically common modular patterns. In contrast, the tuatara shows a different modular pattern from lizards. In addition, the presence of the postorbital bar by jugal and postorbital (postorbitofrontal) also reflect various functional factors by maintaining low integration. The maintenance of basic structures due to basic functional requirements and changes in integration within the modules play a significant role in increasing the morphological diversity of the lizard skull and in the prosperity of the lizards.
Collapse
|
5
|
Strong CRC, Scherz MD, Caldwell MW. Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes. Sci Rep 2022; 12:14469. [PMID: 36008512 PMCID: PMC9411180 DOI: 10.1038/s41598-022-18649-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Traditionally considered the earliest-diverging group of snakes, scolecophidians are central to major evolutionary paradigms regarding squamate feeding mechanisms and the ecological origins of snakes. However, quantitative analyses of these phenomena remain scarce. Herein, we therefore assess skull modularity in squamates via anatomical network analysis, focusing on the interplay between 'microstomy' (small-gaped feeding), fossoriality, and miniaturization in scolecophidians. Our analyses reveal distinctive patterns of jaw connectivity across purported 'microstomatans', thus supporting a more complex scenario of jaw evolution than traditionally portrayed. We also find that fossoriality and miniaturization each define a similar region of topospace (i.e., connectivity-based morphospace), with their combined influence imposing further evolutionary constraint on skull architecture. These results ultimately indicate convergence among scolecophidians, refuting widespread perspectives of these snakes as fundamentally plesiomorphic and morphologically homogeneous. This network-based examination of skull modularity-the first of its kind for snakes, and one of the first to analyze squamates-thus provides key insights into macroevolutionary trends among squamates, with particular implications for snake origins and evolution.
Collapse
Affiliation(s)
- Catherine R C Strong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
De Mendoza RS, Carril J, Degrange FJ, Demmel Ferreira MM, Nieto MN, Tambussi CP. Redefining the simplicity of the craniomandibular complex of nightjars: The case of Systellura longirostris (Aves: Caprimulgidae) by means of anatomical network analysis. J Morphol 2022; 283:945-955. [PMID: 35621367 DOI: 10.1002/jmor.21482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/09/2022]
Abstract
To study morphological evolution, it is necessary to combine information from multiple intersecting research fields. Here, we report on the structure of the bony and muscular elements of the craniomandibular complex of birds, highlighting its morphological architecture and complexity (or simplification) in the context of anatomical networks of the Band-winged Nightjar Systellura longirostris (Caprimulgiformes, Caprimulgidae). This species has skull osteology and jaw myology that departs from the general structural plan of the craniomandibular complex of Neornithes and is considered morphologically simple. Our goal is to test if its simplification is also reflected in its anatomical network, particularly in those parameters that measure complexity and to explore if the distribution of the networks in a phylomorphospace is conditioned by their evolutionary history or by convergence. Our results show that S. longirostris clusters with other Strisores and momotids and is segregated from the other bird species analyzed when plotted in the phylomorphospace, as a consequence of convergence in the network parameters. Systellura has a craniomandibular complex consisting of fewer muscles connecting more bones than the model species (e.g., the rock pigeon or the guira cuckoo). In this sense, Systellura is actually more complex regarding the number of integrative bony parts, while its craniomandibular complex is simpler. According to its anatomical network, Systellura also can be interpreted as less complex, particularly compared with other Strisores and taxa that reflect the general structure of the craniomandibular complex in Neornithes.
Collapse
Affiliation(s)
- Ricardo S De Mendoza
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Carril
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María M Demmel Ferreira
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mauro N Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
7
|
Connectivity Patterns of the Hindlimb Musculoskeletal System in Living and Fossil Diving Birds. Evol Biol 2022. [DOI: 10.1007/s11692-022-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Werneburg I, Abel P. Modeling Skull Network Integrity at the Dawn of Amniote Diversification With Considerations on Functional Morphology and Fossil Jaw Muscle Reconstructions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.799637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the major questions in evolutionary vertebrate morphology is the origin and meaning of temporal skull openings in land vertebrates. Partly or fully surrounded by bones, one, two, or even three openings may evolve behind the orbit, within the ancestrally fully roofed anapsid (scutal) skull. At least ten different morphotypes can be distinguished in tetrapods with many modifications and transitions in more crownward representatives. A number of potential factors driving the emergence and differentiation of temporal openings have been proposed in the literature, but only today are proper analytical tools available to conduct traceable tests for the functional morphology underlying temporal skull constructions. In the present study, we examined the anatomical network in the skull of one representative of early amniotes, †Captorhinus aguti, which ancestrally exhibits an anapsid skull. The resulting skull modularity revealed a complex partitioning of the temporal region indicating, in its intersections, the candidate positions for potential infratemporal openings. The framework of †C. aguti was then taken as a template to model a series of potential temporal skull morphotypes in order to understand how skull openings might influence the modular composition of the amniote skull in general. We show that the original pattern of skull modularity (†C. aguti) experiences comprehensive changes by introducing one or two temporal openings in different combinations and in different places. The resulting modules in each skull model are interpreted in regard to the feeding behavior of amniotes that exhibit(ed) the respective skull morphotypes. An important finding is the alternative incorporation of the jugal and palate to different modules enforcing the importance of an integrated view on skull evolution: the temporal region cannot be understood without considering palatal anatomy. Finally, we discuss how to better reconstruct relative jaw muscle compositions in fossils by considering the modularity of the skull network. These considerations might be relevant for future biomechanical studies on skull evolution.
Collapse
|
9
|
Networks behind the morphology and structural design of living systems. Phys Life Rev 2022; 41:1-21. [DOI: 10.1016/j.plrev.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 01/06/2023]
|
10
|
Kerkman JN, Zandvoort CS, Daffertshofer A, Dominici N. Body Weight Control Is a Key Element of Motor Control for Toddlers' Walking. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:844607. [PMID: 36926099 PMCID: PMC10013000 DOI: 10.3389/fnetp.2022.844607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/10/2022] [Indexed: 01/21/2023]
Abstract
New-borns can step when supported for about 70-80% of their own body weight. Gravity-related sensorimotor information might be an important factor in developing the ability to walk independently. We explored how body weight support alters motor control in toddlers during the first independent steps and in toddlers with about half a year of walking experience. Sixteen different typically developing children were assessed during (un)supported walking on a running treadmill. Electromyography of 18-24 bilateral leg and back muscles and vertical ground reaction forces were recorded. Strides were grouped into four levels of body weight support ranging from no (<10%), low (10-35%), medium (35-55%), and high (55-95%) support. We constructed muscle synergies and muscle networks and assessed differences between levels of support and between groups. In both groups, muscle activities could be described by four synergies. As expected, the mean activity decreased with body weight support around foot strikes. The younger first-steps group showed changes in the temporal pattern of the synergies when supported for more than 35% of their body weight. In this group, the muscle network was dense with several interlimb connections. Apparently, the ability to process gravity-related information is not fully developed at the onset of independent walking causing motor control to be fairly disperse. Synergy-specific sensitivity for unloading implies distinct neural mechanisms underlying (the emergence of) these synergies.
Collapse
Affiliation(s)
- Jennifer N Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Coen S Zandvoort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Arlegi M, Pantoja-Pérez A, Veschambre-Couture C, Gómez-Olivencia A. Covariation between the cranium and the cervical vertebrae in hominids. J Hum Evol 2021; 162:103112. [PMID: 34894608 DOI: 10.1016/j.jhevol.2021.103112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The analysis of patterns of integration is crucial for the reconstruction and understanding of how morphological changes occur in a taxonomic group throughout evolution. These patterns are relatively constant; however, both patterns and the magnitudes of integration may vary across species. These differences may indicate morphological diversification, in some cases related to functional adaptations to the biomechanics of organisms. In this study, we analyze patterns of integration between two functional and developmental structures, the cranium and the cervical spine in hominids, and we quantify the amount of divergence of each anatomical element through phylogeny. We applied these methods to three-dimensional data from 168 adult hominid individuals, summing a total of more than 1000 cervical vertebrae. We found the atlas (C1) and axis (C2) display the lowest covariation with the cranium in hominids (Homo sapiens, Pan troglodytes, Pan paniscus, Gorilla gorilla, Gorilla beringei, Pongo pygmaeus). H. sapiens show a relatively different pattern of craniocervical correlation compared with chimpanzees and gorillas, especially in variables implicated in maintaining the balance of the head. Finally, the atlas and axis show lower magnitude of shape change during evolution than the rest of the cervical vertebrae, especially those located in the middle of the subaxial cervical spine. Overall, results suggest that differences in the pattern of craniocervical correlation between humans and gorillas and chimpanzees could reflect the postural differences between these groups. Also, the stronger craniocervical integration and larger magnitude of shape change during evolution shown by the middle cervical vertebrae suggests that they have been selected to play an active role in maintaining head balance.
Collapse
Affiliation(s)
- Mikel Arlegi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain; Universitat Rovira i Virgili, Department d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain.
| | - Ana Pantoja-Pérez
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| | - Christine Veschambre-Couture
- UMR 5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Bâtiment B8, CS 50023, 33615, Pessac Cedex, France
| | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena S/n, 48940 Leioa, Spain; Sociedad de Ciencias Aranzadi, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain; Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| |
Collapse
|
12
|
Abstract
Understanding facial signals in humans and other species is crucial for understanding the evolution, complexity, and function of the face as a communication tool. The Facial Action Coding System (FACS) enables researchers to measure facial movements accurately, but we currently lack tools to reliably analyse data and efficiently communicate results. Network analysis can provide a way to use the information encoded in FACS datasets: by treating individual AUs (the smallest units of facial movements) as nodes in a network and their co-occurrence as connections, we can analyse and visualise differences in the use of combinations of AUs in different conditions. Here, we present ‘NetFACS’, a statistical package that uses occurrence probabilities and resampling methods to answer questions about the use of AUs, AU combinations, and the facial communication system as a whole in humans and non-human animals. Using highly stereotyped facial signals as an example, we illustrate some of the current functionalities of NetFACS. We show that very few AUs are specific to certain stereotypical contexts; that AUs are not used independently from each other; that graph-level properties of stereotypical signals differ; and that clusters of AUs allow us to reconstruct facial signals, even when blind to the underlying conditions. The flexibility and widespread use of network analysis allows us to move away from studying facial signals as stereotyped expressions, and towards a dynamic and differentiated approach to facial communication.
Collapse
|
13
|
Olowo A, Samuel M, Adetona MO. Discriminant evaluations on adolescent facial phenotypic morphological variations between two ethnic groups resident in Ibadan (Nigeria) metropolis – A regional baseline geometric pilot study. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2021. [DOI: 10.1016/j.fsir.2021.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Ziermann JM, Boughner JC, Esteve-Altava B, Diogo R. Anatomical comparison across heads, fore- and hindlimbs in mammals using network models. J Anat 2021; 239:12-31. [PMID: 33629373 DOI: 10.1111/joa.13409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Animal body parts evolve with variable degrees of integration that nonetheless yield functional adult phenotypes: but, how? The analysis of modularity with Anatomical Network Analysis (AnNA) is used to quantitatively determine phenotypic modules based on the physical connection among anatomical elements, an approach that is valuable to understand developmental and evolutionary constraints. We created anatomical network models of the head, forelimb, and hindlimb of two taxa considered to represent a 'generalized' eutherian (placental: mouse) and metatherian (marsupial: opossum) anatomical configuration and compared them with our species, which has a derived eutherian configuration. In these models, nodes represent anatomical units and links represent their physical connection. Here, we aimed to identify: (1) the commonalities and differences in modularity between species, (2) whether modules present a potential phylogenetic character, and (3) whether modules preferentially reflect either developmental or functional aspects of anatomy, or a mix of both. We predicted differences between networks of metatherian and eutherian mammals that would best be explained by functional constraints, versus by constraints of development and/or phylogeny. The topology of contacts between bones, muscles, and bones + muscles showed that, among all three species, skeletal networks were more similar than musculoskeletal networks. There was no clear indication that humans and mice are more alike when compared to the opossum overall, even though their musculoskeletal and skeletal networks of fore- and hindlimbs are slightly more similar. Differences were greatest among musculoskeletal networks of heads and next of forelimbs, which showed more variation than hindlimbs, supporting previous anatomical studies indicating that in general the configuration of the hindlimbs changes less across evolutionary history. Most observations regarding the anatomical networks seem to be best explained by function, but an exception is the adult opossum ear ossicles. These ear bones might form an independent module because the incus and malleus are involved in forming a functional primary jaw that enables the neonate to attach to the teat, where this newborn will complete its development. Additionally, the human data show a specialized digit 1 module (thumb/big toe) in both limb types, likely the result of functional and evolutionary pressures, as our ape ancestors had highly movable big toes and thumbs.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSI), Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
15
|
Werner HM, Miller CA, Tillman KK, Wang Y, Vorperian HK. Growth and sexual dimorphism of the hyoid bone and its relationship to the mandible from birth to 19 years: A three-dimensional computed tomography study. Anat Rec (Hoboken) 2021; 304:1901-1917. [PMID: 33580633 DOI: 10.1002/ar.24594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
The hyoid bone and the hyomandibular complex subserve the functions of respiration, deglutition, and speech. This study quantified the growth of the hyoid bone and the hyomandibular relationships in males and females from birth to 19 years. Using 97 computed tomography (CT) scans, from a previous study (Kelly et al., 2017) on mandibular growth from 49 individuals (16 with longitudinal scans), landmarks were placed on 3D CT models and used to calculate four distance, and three angular measurements. A general increase in growth trend was observed in hyoid bone linear measurements-length, width, and depth-as well as relational mandible-to-hyoid distance, throughout the developmental ages examined in both males and females, with most variables having larger measurements for females up to age 10 years. A general decrease in all three angular measurements was observed in both males and females up to approximately age 12 years, at which time male angular measurements gradually increased with significant sexual dimorphism emerging after age 15 years. As expected, postpubertal males had greater hyoid angle than females; they also had greater hyoid angle of inclination than mandible body inclination (with inclination relative to the anterior-posterior nasal plane), likely related to hyo-laryngeal descent. This study contributes to normative data on hyoid bone and hyomandibular relational growth in typically developing individuals and provides a baseline against which structural and functional influences on anatomic growth may be examined by clinical disciplines that address the aerodigestive and speech functions, as well as the fields of anatomy, forensics, and anthropology.
Collapse
Affiliation(s)
- Helen M Werner
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biology, Beloit College, Beloit, Wisconsin, USA
| | - Courtney A Miller
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katelyn K Tillman
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| | - Houri K Vorperian
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
The Network Ontogeny of the Parrot: Altriciality, Dynamic Skeletal Assemblages, and the Avian Body Plan. Evol Biol 2020. [DOI: 10.1007/s11692-020-09522-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Del Bove A, Profico A, Riga A, Bucchi A, Lorenzo C. A geometric morphometric approach to the study of sexual dimorphism in the modern human frontal bone. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:643-654. [PMID: 33025582 DOI: 10.1002/ajpa.24154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVES We analyzed the main anatomical traits found in the human frontal bone by using a geometric morphometric approach. The objectives of this study are to explore how the frontal bone morphology varies between the sexes and to detect which part of the frontal bone are sexually dimorphic. MATERIALS AND METHODS The sample is composed of 161 skulls of European and North American individuals of known sex. For each cranium, we collected 3D landmarks and semilandmarks on the frontal bone, to examine the entire morphology and separate modules (frontal squama, supraorbital ridges, glabellar region, temporal lines, and mid-sagittal profile). We used Procrustes ANOVAs and LDAs (linear discriminant analyses) to evaluate the relation between frontal bone morphology and sexual dimorphism and to calculate precision and accuracy in the classification of sex. RESULTS All the frontal bone traits are influenced by sexual dimorphism, though each in a different manner. Variation in shape and size differs between the sexes, and this study confirmed that the supraorbital ridges and glabella are the most important regions for sex determination, although there is no covariation between them. The variable size does not contribute significantly to the discrimination between sexes. Thanks to a geometric morphometric analysis, it was found that the size variable is not an important element for the determination of sex in the frontal bone. CONCLUSION The usage of geometric morphometrics in analyzing the frontal bone has led to new knowledge on the morphological variations due to sexual dimorphism. The proposed protocol permits to quantify morphological covariation between modules, to calculate the shape variations related to sexual dimorphism including or omitting the variable size.
Collapse
Affiliation(s)
- Antonietta Del Bove
- Àrea de Prehistòria, Facultat de Lletres, Universitat Rovira i Virgili, Tarragona, Spain.,Catalan Institute of Human Paleoecology and Social Evolution IPHES, Tarragona, Spain
| | - Antonio Profico
- PalaeoHub-Department of Archaeology, University of York, York, UK
| | - Alessandro Riga
- Department of Biology, University of Florence, Florence, Italy.,Laboratory of Archaeoanthropology, SABAP-FI, Scandicci, Italy
| | - Ana Bucchi
- Àrea de Prehistòria, Facultat de Lletres, Universitat Rovira i Virgili, Tarragona, Spain.,Catalan Institute of Human Paleoecology and Social Evolution IPHES, Tarragona, Spain
| | - Carlos Lorenzo
- Àrea de Prehistòria, Facultat de Lletres, Universitat Rovira i Virgili, Tarragona, Spain.,Catalan Institute of Human Paleoecology and Social Evolution IPHES, Tarragona, Spain
| |
Collapse
|
18
|
Fontanarrosa G, Fratani J, Vera MC. Delimiting the boundaries of sesamoid identities under the network theory framework. PeerJ 2020; 8:e9691. [PMID: 32874781 PMCID: PMC7439958 DOI: 10.7717/peerj.9691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Sesamoid identity has long been the focus of debate, and how they are linked to other elements of the skeleton has often been considered relevant to their definition. A driving hypothesis of our work was that sesamoids’ nature relies deeply on their connections, and thus we propose an explicit network framework to investigate this subject in Leptodactylus latinasus (Anura: Leptodactylidae). Through the dissection of L. latinasus’ skeleton, we modeled its anatomical network where skeletal elements were considered nodes while joints, muscles, tendons, and aponeurosis were considered links. The skeletal elements were categorized into canonical skeletal pieces, embedded sesamoids, and glide sesamoids. We inquired about the general network characterization and we have explored further into sesamoid connectivity behavior. We found that the network is structured in a modular hierarchical organization, with five modules on the first level and two modules on the second one. The modules reflect a functional, rather than a topological proximity clustering of the skeleton. The 25 sesamoid pieces are members of four of the first-level modules. Node parameters (centrality indicators) showed that: (i) sesamoids are, in general terms, peripheral elements of the skeleton, loosely connected to the canonical bone structures; (ii) embedded sesamoids are not significantly distinguishable from canonical skeletal elements; and (iii) glide sesamoids exhibit the lowest centrality values and strongly differ from both canonical skeletal elements and embedded sesamoids. The loose connectivity pattern of sesamoids, especially glides, could be related to their evolvability, which in turn seems to be reflected in their morphological variation and facultative expression. Based on the connectivity differences among skeletal categories found in our study, an open question remains: can embedded and glide sesamoids be defined under the same criteria? This study presents a new approach to the study of sesamoid identity and to the knowledge of their morphological evolution.
Collapse
Affiliation(s)
- Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
| | - Jessica Fratani
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel, Tucumán, Argentina
| | - Miriam C Vera
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS), CONICET-UNaM, Posadas, Misiones, Argentina
| |
Collapse
|
19
|
Measuring the evolution of facial ‘expression’ using multi-species FACS. Neurosci Biobehav Rev 2020; 113:1-11. [DOI: 10.1016/j.neubiorev.2020.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/30/2020] [Accepted: 02/23/2020] [Indexed: 11/24/2022]
|
20
|
Solé R, Valverde S. Evolving complexity: how tinkering shapes cells, software and ecological networks. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190325. [PMID: 32089118 PMCID: PMC7061959 DOI: 10.1098/rstb.2019.0325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 01/09/2023] Open
Abstract
A common trait of complex systems is that they can be represented by means of a network of interacting parts. It is, in fact, the network organization (more than the parts) that largely conditions most higher-level properties, which are not reducible to the properties of the individual parts. Can the topological organization of these webs provide some insight into their evolutionary origins? Both biological and artificial networks share some common architectural traits. They are often heterogeneous and sparse, and most exhibit different types of correlations, such as nestedness, modularity or hierarchical patterns. These properties have often been attributed to the selection of functionally meaningful traits. However, a proper formulation of generative network models suggests a rather different picture. Against the standard selection-optimization argument, some networks reveal the inevitable generation of complex patterns resulting from reuse and can be modelled using duplication-rewiring rules lacking functionality. These give rise to the observed heterogeneous, scale-free and modular architectures. Here, we examine the evidence for tinkering in cellular, technological and ecological webs and its impact in shaping their architecture. Our analysis suggests a serious consideration of the role played by selection as the origin of network topology. Instead, we suggest that the amplification processes associated with reuse might shape these graphs at the topological level. In biological systems, selection forces would take advantage of emergent patterns. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Pg. Maritim 37, Barcelona 08003, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- European Centre for Living Technology, S. Marco 2940, 30124 Venice, Italy
| | - Sergi Valverde
- European Centre for Living Technology, S. Marco 2940, 30124 Venice, Italy
- Evolution of Technology Lab, Institut de Biologia Evolutiva (UPF-CSIC), Pg. Maritim 37, Barcelona 08003, Spain
| |
Collapse
|
21
|
Gupta S, Kumar P. An overlapping community detection algorithm based on rough clustering of links. DATA KNOWL ENG 2020. [DOI: 10.1016/j.datak.2019.101777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Brachetta‐Aporta N, Gonzalez PN, Bernal V. Variation in facial bone growth remodeling in prehistoric populations from southern South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:422-434. [DOI: 10.1002/ajpa.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Brachetta‐Aporta
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
| | - Paula N. Gonzalez
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET‐HEC‐UNAJ) Buenos Aires Argentina
| | - Valeria Bernal
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
| |
Collapse
|
23
|
First use of anatomical networks to study modularity and integration of heads, forelimbs and hindlimbs in abnormal anencephalic and cyclopic vs normal human development. Sci Rep 2019; 9:7821. [PMID: 31127169 PMCID: PMC6534581 DOI: 10.1038/s41598-019-44314-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
The ill-named "logic of monsters" hypothesis of Pere Alberch - one of the founders of modern evo-devo - emphasized the importance of "internal rules" due to strong developmental constraints, linked teratologies to developmental processes and patterns, and contradicted hypotheses arguing that birth defects are related to a chaotic and random disarray of developmental mechanisms. We test these hypotheses using, for the first time, anatomical network analysis (AnNA) to study and compare the musculoskeletal modularity and integration of both the heads and the fore- and hindlimbs of abnormal cyclopic trisomy 18 and anencephalic human fetuses, and of normal fetal, newborn, and adult humans. Our previous works have shown that superficial gross anatomical analyses of these specimens strongly support the "logic of monsters" hypothesis, in the sense that there is an 'order' or 'logic' within the gross anatomical patterns observed in both the normal and abnormal individuals. Interestingly, the results of the AnNA done in the present work reveal a somewhat different pattern: at least concerning the musculoskeletal modules obtained in our AnNA, we observe a hybrid between the "logic of monsters" and the "lack of homeostasis" hypotheses. For instance, as predicted by the latter hypothesis, we found a high level of left-right asymmetry in the forelimbs and/or hindlimbs of the abnormal cyclopic trisomy 18 and anencephalic human fetuses. That is, a network analysis of the organization of/connection between the musculoskeletal structures of these fetuses reveals a more "chaotic" pattern than that detected by superficial gross anatomical comparisons. We discuss the broader developmental, evolutionary, and medical implications of these results.
Collapse
|
24
|
|
25
|
Ternifi R, Pouletaut P, Dakpé S, Testelin S, Devauchelle B, Charleux F, Constans JM, Bensamoun SF. Development of a new MR elastography protocol to measure the functional properties of facial muscles. Comput Methods Biomech Biomed Engin 2019. [DOI: 10.1080/10255842.2020.1714926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- R. Ternifi
- UMR CNRS 7338 Biomechanics and Bioengineering, Centre de Recherches de Royallieu, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | - P. Pouletaut
- UMR CNRS 7338 Biomechanics and Bioengineering, Centre de Recherches de Royallieu, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | - S. Dakpé
- Facing Faces Institute, Department of Maxillofacial Surgery, Amiens University Medical Center, Amiens, France
| | - S. Testelin
- Facing Faces Institute, Department of Maxillofacial Surgery, Amiens University Medical Center, Amiens, France
| | - B. Devauchelle
- Facing Faces Institute, Department of Maxillofacial Surgery, Amiens University Medical Center, Amiens, France
| | - F. Charleux
- ACRIM-Polyclinique Saint Côme, Radiologie Médicale, Compiègne, France
| | - J. M. Constans
- Facing Faces Institute, Department of Maxillofacial Surgery, Amiens University Medical Center, Amiens, France
- Imagerie et Radiologie Médicale, EA 7516 CHIMERE, Université de Picardie Jules Verne, CHU, Amiens, France
| | - S. F. Bensamoun
- UMR CNRS 7338 Biomechanics and Bioengineering, Centre de Recherches de Royallieu, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
26
|
Cell differentiation processes as spatial networks: Identifying four-dimensional structure in embryogenesis. Biosystems 2018; 173:235-246. [DOI: 10.1016/j.biosystems.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 11/24/2022]
|
27
|
Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW. Functional connectivity analysis of multiplex muscle network across frequencies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1567-1570. [PMID: 29060180 DOI: 10.1109/embc.2017.8037136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physiological networks reveal information about the interaction between subsystems of the human body. Here we investigated the interaction between the central nervous system and the musculoskeletal system by mapping functional muscle networks. Muscle networks were extracted using coherence analysis of muscle activity assessed using surface electromyography (EMG). Surface EMG was acquired from 36 muscles distributed throughout the body while participants were standing upright and performing a bimanual pointing task. Non-negative matrix factorization revealed functional connectivity in four frequency bands. The spatial arrangement differed considerably across frequencies supporting a multiplex network organisation. Graph-theory analysis of layer-specific network revealed a consistent fat-tail distribution of the edges weights, distinct efficiency values, and core-periphery properties. These frequency bands may be spectral fingerprints of different neural pathways that innervate the spinal motor neurons to control the musculoskeletal system.
Collapse
|
28
|
Kim HJ, Park KM, Tak HJ, Choi JW, Kang SH, Park W, Bertin H, Corre P, Lee SH. Skeletal unit construction of rat mandible based on the masticatory muscle anatomy and double microcomputed tomography. Anat Histol Embryol 2018; 47:417-427. [PMID: 29943437 DOI: 10.1111/ahe.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/31/2018] [Indexed: 11/26/2022]
Abstract
This study aimed to divide the mandible into skeletal units based on three-dimensional (3D) muscular anatomy with microcomputed tomography (micro-CT) of Sprague-Dawley rat. Five normal rats were micro-CT scanned at 12 weeks of age before and after contrast enhancements for the masticatory muscles. Three-dimensional reconstruction of the mandible was performed from the initial micro-CT images, followed by segmentation of the masticatory muscles using the second enhanced micro-CT data. Bone and muscle models were superimposed based on the teeth and bony structures to evaluate muscular orientation and attachment. The mandible was divided into skeletal units using the bony structures and muscle attachments. The mandibular foramen and mental foramen were adopted as the reference points based on their anatomical and developmental significance. The skeletal units consisted of the condylar, coronoid, angular, body and symphyseal units. Further evaluation of these units in relation to development, growth, and other biology and medicine will be helpful in elucidating their biological identities.
Collapse
Affiliation(s)
- Hak-Jin Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| | - Kyeong-Mee Park
- Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Ji Wook Choi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| | - Sang-Hoon Kang
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service, Ilsan Hospital, Goyang-si, Korea
| | - Wonse Park
- Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Helios Bertin
- Stomatology and Maxillo-facial Surgery Unit, Nantes University Hospital, Nantes Cedex 1, France
| | - Pierre Corre
- Stomatology and Maxillo-facial Surgery Unit, Nantes University Hospital, Nantes Cedex 1, France
| | - Sang-Hwy Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea.,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
29
|
Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW. Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. SCIENCE ADVANCES 2018; 4:eaat0497. [PMID: 29963631 PMCID: PMC6021138 DOI: 10.1126/sciadv.aat0497] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/22/2018] [Indexed: 06/02/2023]
Abstract
Human motor control requires the coordination of muscle activity under the anatomical constraints imposed by the musculoskeletal system. Interactions within the central nervous system are fundamental to motor coordination, but the principles governing functional integration remain poorly understood. We used network analysis to investigate the relationship between anatomical and functional connectivity among 36 muscles. Anatomical networks were defined by the physical connections between muscles, and functional networks were based on intermuscular coherence assessed during postural tasks. We found a modular structure of functional networks that was strongly shaped by the anatomical constraints of the musculoskeletal system. Changes in postural tasks were associated with a frequency-dependent reconfiguration of the coupling between functional modules. These findings reveal distinct patterns of functional interactions between muscles involved in flexibly organizing muscle activity during postural control. Our network approach to the motor system offers a unique window into the neural circuitry driving the musculoskeletal system.
Collapse
Affiliation(s)
- Jennifer N. Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences and Institute for Brain and Behavior, Amsterdam, Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences and Institute for Brain and Behavior, Amsterdam, Netherlands
| | - Leonardo L. Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- The University of Queensland, St. Lucia, Queensland 4072, Australia
- Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- National Institute for Dementia Research, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Metro North Mental Health Service, Brisbane, Queensland, Australia
| | - Tjeerd W. Boonstra
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Black Dog Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Diogo R, Molnar JL, Rolian C, Esteve-Altava B. First anatomical network analysis of fore- and hindlimb musculoskeletal modularity in bonobos, common chimpanzees, and humans. Sci Rep 2018; 8:6885. [PMID: 29720670 PMCID: PMC5931964 DOI: 10.1038/s41598-018-25262-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Studies of morphological integration and modularity, and of anatomical complexity in human evolution typically focus on skeletal tissues. Here we provide the first network analysis of the musculoskeletal anatomy of both the fore- and hindlimbs of the two species of chimpanzee and humans. Contra long-accepted ideas, network analysis reveals that the hindlimb displays a pattern opposite to that of the forelimb: Pan big toe is typically seen as more independently mobile, but humans are actually the ones that have a separate module exclusively related to its movements. Different fore- vs hindlimb patterns are also seen for anatomical network complexity (i.e., complexity in the arrangement of bones and muscles). For instance, the human hindlimb is as complex as that of chimpanzees but the human forelimb is less complex than in Pan. Importantly, in contrast to the analysis of morphological integration using morphometric approaches, network analyses do not support the prediction that forelimb and hindlimb are more dissimilar in species with functionally divergent limbs such as bipedal humans.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington DC, USA.
| | - Julia L Molnar
- Department of Anatomy, Howard University College of Medicine, Washington DC, USA
| | - Campbell Rolian
- Department of comparative biology and experimental medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Borja Esteve-Altava
- Department of Anatomy, Howard University College of Medicine, Washington DC, USA
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
31
|
Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system. Sci Rep 2018; 8:2341. [PMID: 29402975 PMCID: PMC5799162 DOI: 10.1038/s41598-018-20063-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/10/2018] [Indexed: 01/16/2023] Open
Abstract
Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans.
Collapse
|
32
|
Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, Bassett DS. Structure, function, and control of the human musculoskeletal network. PLoS Biol 2018; 16:e2002811. [PMID: 29346370 PMCID: PMC5773011 DOI: 10.1371/journal.pbio.2002811] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
The human body is a complex organism, the gross mechanical properties of which are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Here we address this gap in knowledge by utilizing medical databases and mathematical modeling to reveal the organizational structure, predicted function, and neural control of the musculoskeletal system. We constructed a highly simplified whole-body musculoskeletal network in which single muscles connect to multiple bones via both origin and insertion points. We demonstrated that, using this simplified model, a muscle's role in this network could offer a theoretical prediction of the susceptibility of surrounding components to secondary injury. Finally, we illustrated that sets of muscles cluster into network communities that mimic the organization of control modules in primary motor cortex. This novel formalism for describing interactions between the muscular and skeletal systems serves as a foundation to develop and test therapeutic responses to injury, inspiring future advances in clinical treatments.
Collapse
Affiliation(s)
- Andrew C. Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah F. Muldoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Mathematics, University of Buffalo, Buffalo, New York, United States of America
| | - David Baker
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam Lastowka
- Haverford College, Haverford, Pennsylvania, United States of America
| | - Brittany Bennett
- Haverford College, Haverford, Pennsylvania, United States of America
- Philadelphia Academy of Fine Arts, Philadelphia, Pennsylvania, United States of America
| | - Muzhi Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Applied Mathematical and Computational Science Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Quinto-Sánchez M, Muñoz-Muñoz F, Gomez-Valdes J, Cintas C, Navarro P, Cerqueira CCSD, Paschetta C, de Azevedo S, Ramallo V, Acuña-Alonzo V, Adhikari K, Fuentes-Guajardo M, Hünemeier T, Everardo P, de Avila F, Jaramillo C, Arias W, Gallo C, Poletti G, Bedoya G, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Rosique J, Ruiz-Linares A, Gonzalez-Jose R. Developmental pathways inferred from modularity, morphological integration and fluctuating asymmetry patterns in the human face. Sci Rep 2018; 8:963. [PMID: 29343858 PMCID: PMC5772513 DOI: 10.1038/s41598-018-19324-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 01/25/2023] Open
Abstract
Facial asymmetries are usually measured and interpreted as proxies to developmental noise. However, analyses focused on its developmental and genetic architecture are scarce. To advance on this topic, studies based on a comprehensive and simultaneous analysis of modularity, morphological integration and facial asymmetries including both phenotypic and genomic information are needed. Here we explore several modularity hypotheses on a sample of Latin American mestizos, in order to test if modularity and integration patterns differ across several genomic ancestry backgrounds. To do so, 4104 individuals were analyzed using 3D photogrammetry reconstructions and a set of 34 facial landmarks placed on each individual. We found a pattern of modularity and integration that is conserved across sub-samples differing in their genomic ancestry background. Specifically, a signal of modularity based on functional demands and organization of the face is regularly observed across the whole sample. Our results shed more light on previous evidence obtained from Genome Wide Association Studies performed on the same samples, indicating the action of different genomic regions contributing to the expression of the nose and mouth facial phenotypes. Our results also indicate that large samples including phenotypic and genomic metadata enable a better understanding of the developmental and genetic architecture of craniofacial phenotypes.
Collapse
Affiliation(s)
- Mirsha Quinto-Sánchez
- Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Avinguda de l'Eix Central, Edifici C, E-08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Jorge Gomez-Valdes
- Posgrado en Antropología Física, Escuela Nacional de Antropología e Historia, Ciudad de México, Mexico
| | - Celia Cintas
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Pablo Navarro
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Caio Cesar Silva de Cerqueira
- Superintendência da Polícia Técnico-Científica do Estado de São Paulo. Equipe de Perícias Criminalísticas de Ourinhos, São Paulo, Brazil
| | - Carolina Paschetta
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Soledad de Azevedo
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Virginia Ramallo
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Victor Acuña-Alonzo
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
- Licenciatura en Antropología Física, Escuela Nacional de Antropología e Historia, Ciudad de México, Mexico
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | - Macarena Fuentes-Guajardo
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Paola Everardo
- Licenciatura en Antropología Física, Escuela Nacional de Antropología e Historia, Ciudad de México, Mexico
- Posgrado en Antropología, Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco de Avila
- Licenciatura en Antropología Física, Escuela Nacional de Antropología e Historia, Ciudad de México, Mexico
| | | | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovani Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Francisco Rothhammer
- Facultad Instituto de Alta Investigación Universidad de Tarapacá, Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile y Centro de Investigaciones del Hombre en el Desierto, Arica, Chile
| | - Javier Rosique
- Departamento de Antropología, Facultad de Ciencias Sociales y Humanas. Universidad de Antioquia, Medellín, Colombia
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas. Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina.
| |
Collapse
|
34
|
Comparison of musculoskeletal networks of the primate forelimb. Sci Rep 2017; 7:10520. [PMID: 28874673 PMCID: PMC5585202 DOI: 10.1038/s41598-017-09566-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Anatomical network analysis is a framework for quantitatively characterizing the topological organization of anatomical structures, thus providing a way to compare structural integration and modularity among species. Here we apply this approach to study the macroevolution of the forelimb in primates, a structure whose proportions and functions vary widely within this group. We analyzed musculoskeletal network models in 22 genera, including members of all major extant primate groups and three outgroup taxa, after an extensive literature survey and dissections. The modules of the proximal limb are largely similar among taxa, but those of the distal limb show substantial variation. Some network parameters are similar within phylogenetic groups (e.g., non-primates, strepsirrhines, New World monkeys, and hominoids). Reorganization of the modules in the hominoid hand compared to other primates may relate to functional changes such as coordination of individual digit movements, increased pronation/supination, and knuckle-walking. Surprisingly, humans are one of the few taxa we studied in which the thumb musculoskeletal structures do not form an independent anatomical module. This difference may be caused by the loss in humans of some intrinsic muscles associated with the digits or the acquisition of additional muscles that integrate the thumb more closely with surrounding structures.
Collapse
|
35
|
Spassov A, Toro-Ibacache V, Krautwald M, Brinkmeier H, Kupczik K. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently. J Anat 2017; 231:736-748. [PMID: 28762259 DOI: 10.1111/joa.12664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation.
Collapse
Affiliation(s)
- Alexander Spassov
- Department of Orthodontics, University Medicine Greifswald, Greifswald, Germany.,Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Viviana Toro-Ibacache
- Facultad de Odontología, Universidad de Chile, Santiago de Chile, Chile.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mirjam Krautwald
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
36
|
Momota R, Ohtsuka A. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms. Anat Sci Int 2017; 93:149-153. [DOI: 10.1007/s12565-017-0410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
37
|
Network architecture associated with the highly specialized hindlimb of frogs. PLoS One 2017; 12:e0177819. [PMID: 28545115 PMCID: PMC5435314 DOI: 10.1371/journal.pone.0177819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/03/2017] [Indexed: 01/19/2023] Open
Abstract
Network analyses have been increasingly used in the context of comparative vertebrate morphology. The structural units of the vertebrate body are treated as discrete elements (nodes) of a network, whose interactions at their physical contacts (links) determine the phenotypic modules. Here, we use the network approach to study the organization of the locomotor system underlying the hindlimb of frogs. Nodes correspond to fibrous knots, skeletal and muscular units. Edges encode the ligamentous and monoaxial tendinous connections in addition to joints. Our main hypotheses are that: (1) the higher centrality scores (measured as betweenness) are recorded for fibrous elements belonging to the connective system, (2) the organization of the musculoskeletal network belongs to a non-trivial modular architecture and (3) the modules in the hindlimb reflect functional and/or developmental constraints. We confirm all our hypotheses except for the first one, since bones overpass the fibrous knots in terms of centrality. Functionally, there is a correlation between the proximal-to-distal succession of modules and the progressive recruitment of elements involved with the motion of joints during jumping. From a developmental perspective, there is a correspondence between the order of the betweenness scores and the ontogenetic chronology of hindlimbs in tetrapods. Modular architecture seems to be a successful organization, providing of the building blocks on which evolution forges the many different functional specializations that organisms exploit.
Collapse
|
38
|
Esteve-Altava B. Challenges in identifying and interpreting organizational modules in morphology. J Morphol 2017; 278:960-974. [DOI: 10.1002/jmor.20690] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Borja Esteve-Altava
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences; Royal Veterinary College; United Kingdom
- Department of Anatomy; Howard University College of Medicine; United States of America
| |
Collapse
|
39
|
Diogo R, Guinard G, Diaz RE. Dinosaurs, Chameleons, Humans, and Evo-Devo Path: Linking Étienne Geoffroy's Teratology, Waddington's Homeorhesis, Alberch's Logic of "Monsters," and Goldschmidt Hopeful "Monsters". JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:207-229. [PMID: 28422426 DOI: 10.1002/jez.b.22709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Since the rise of evo-devo (evolutionary developmental biology) in the 1980s, few authors have attempted to combine the increasing knowledge obtained from the study of model organisms and human medicine with data from comparative anatomy and evolutionary biology in order to investigate the links between development, pathology, and macroevolution. Fortunately, this situation is slowly changing, with a renewed interest in evolutionary developmental pathology (evo-devo-path) in the past decades, as evidenced by the idea to publish this special, and very timely, issue on "Developmental Evolution in Biomedical Research." As all of us have recently been involved, independently, in works related in some way or another with evolution and developmental anomalies, we decided to join our different perspectives and backgrounds in the present contribution for this special issue. Specifically, we provide a brief historical account on the study of the links between evolution, development, and pathologies, followed by a review of the recent work done by each of us, and then by a general discussion on the broader developmental and macroevolutionary implications of our studies and works recently done by other authors. Our primary aims are to highlight the strength of studying developmental anomalies within an evolutionary framework to understand morphological diversity and disease by connecting the recent work done by us and others with the research done and broader ideas proposed by authors such as Étienne Geoffroy Saint-Hilaire, Waddington, Goldschmidt, Gould, and Per Alberch, among many others to pave the way for further and much needed work regarding abnormal development and macroevolution.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| | - Geoffrey Guinard
- UMR CNRS 5561, Biogéosciences, Université de Bourgogne, Dijon, France
| | - Raul E Diaz
- Department of Biology, La Sierra University, Riverside, California.,Natural History Museum of Los Angeles County, Los Angeles, California
| |
Collapse
|
40
|
Diogo R, Bello‐Hellegouarch G, Kohlsdorf T, Esteve‐Altava B, Molnar JL. Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and “Scala Naturae”. Anat Rec (Hoboken) 2016; 299:1224-55. [DOI: 10.1002/ar.23390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Diogo
- Department of AnatomyHoward University College of MedicineWashington DC USA
| | | | - Tiana Kohlsdorf
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto SP Brazil
| | - Borja Esteve‐Altava
- Department of AnatomyHoward University College of MedicineWashington DC USA
- Structure and Motion Laboratory Department of Comparative Biomedical SciencesRoyal Veterinary College, Hawkshead Lane, HatfieldHertfordshireAL9 7TA UK
| | - Julia L. Molnar
- Department of AnatomyHoward University College of MedicineWashington DC USA
| |
Collapse
|
41
|
Esteve-Altava B. In search of morphological modules: a systematic review. Biol Rev Camb Philos Soc 2016; 92:1332-1347. [DOI: 10.1111/brv.12284] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Borja Esteve-Altava
- Department of Comparative Biomedical Sciences; Royal Veterinary College; Hawkshead Lane, North Mymms Hatfield Hertfordshire AL9 7TA UK
- Department of Anatomy; College of Medicine, Howard University; 520 W Street, NW, Numa Adams Building Washington DC 20059 USA
| |
Collapse
|
42
|
Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Camilo Chacón-Duque J, Acuña-Alonzo V, Jaramillo C, Arias W, Lozano RB, Pérez GM, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Cheeseman M, Rosique J, Bedoya G, Rothhammer F, Headon D, González-José R, Balding D, Ruiz-Linares A. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun 2016; 7:11616. [PMID: 27193062 PMCID: PMC4874031 DOI: 10.1038/ncomms11616] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10−8) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. Humans show great diversity in facial appearance and this variation is highly heritable. Here, Andres Ruiz-Linares and colleagues examined facial features in admixed Latin Americans and identify genome-wide associations for 14 facial traits, including four gene loci (RUNX2, GLI3, DCHS2 and PAX1) influencing nose morphology.
Collapse
Affiliation(s)
- Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Macarena Fuentes-Guajardo
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000009, Chile
| | - Mirsha Quinto-Sánchez
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina
| | - Javier Mendoza-Revilla
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Juan Camilo Chacón-Duque
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Victor Acuña-Alonzo
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Gastón Macín Pérez
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City 14030, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Jorge Gómez-Valdés
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510, México
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Tábita Hunemeier
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Virginia Ramallo
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Caio C Silva de Cerqueira
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina.,Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Lavinia Schuler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Francisco M Salzano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brasil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City 4510, México
| | - Michael Cheeseman
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Javier Rosique
- Departamento de Antropología, Universidad de Antioquia, Medellín 5001000, Colombia
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | | | - Denis Headon
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Rolando González-José
- Centro Nacional Patagónico, CONICET, Unidad de Diversidad, Sistematica y Evolucion, Puerto Madryn U912OACD, Argentina
| | - David Balding
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Schools of BioSciences and Mathematics and Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
43
|
Gondré-Lewis MC, Gboluaje T, Reid SN, Lin S, Wang P, Green W, Diogo R, Fidélia-Lambert MN, Herman MM. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18. J Anat 2016; 227:255-67. [PMID: 26278930 DOI: 10.1111/joa.12343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 01/19/2023] Open
Abstract
The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain, face and their skeletal support.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Temitayo Gboluaje
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Shaina N Reid
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Stephen Lin
- Department of Radiology, Howard University College of Medicine, Washington, DC, USA
| | - Paul Wang
- Department of Radiology, Howard University College of Medicine, Washington, DC, USA
| | - William Green
- Laboratory for Evolutionary Biology, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Rui Diogo
- Laboratory for Evolutionary Biology, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | | | - Mary M Herman
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Diogo R, Esteve-Altava B, Smith C, Boughner JC, Rasskin-Gutman D. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy. PLoS One 2015; 10:e0140030. [PMID: 26452269 PMCID: PMC4599883 DOI: 10.1371/journal.pone.0140030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States of America
| | - Borja Esteve-Altava
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States of America
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- Theoretical Biology Research Group, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Christopher Smith
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States of America
| | - Julia C. Boughner
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Diego Rasskin-Gutman
- Theoretical Biology Research Group, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
45
|
Diogo R, Smith CM, Ziermann JM. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn 2015; 244:1357-74. [DOI: 10.1002/dvdy.24336] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC
| | | | - Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC
| |
Collapse
|
46
|
Esteve-Altava B, Boughner JC, Diogo R, Villmoare BA, Rasskin-Gutman D. Anatomical network analysis shows decoupling of modular lability and complexity in the evolution of the primate skull. PLoS One 2015; 10:e0127653. [PMID: 25992690 PMCID: PMC4438065 DOI: 10.1371/journal.pone.0127653] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates.
Collapse
Affiliation(s)
- Borja Esteve-Altava
- Theoretical Biology Research Group, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46071, Valencia, Spain
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States of America
| | - Julia C. Boughner
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States of America
| | - Brian A. Villmoare
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV, United States of America
- Department of Anthropology, University College London, London, United Kingdom
| | - Diego Rasskin-Gutman
- Theoretical Biology Research Group, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46071, Valencia, Spain
- * E-mail:
| |
Collapse
|