1
|
Sghayar S, Debez A, Lucchini G, Abruzzese A, Zorrig W, Negrini N, Morgutti S, Abdelly C, Sacchi GA, Pecchioni N, Vaccino P. Seed priming mitigates high salinity impact on germination of bread wheat ( Triticum aestivum L.) by improving carbohydrate and protein mobilization. PLANT DIRECT 2023; 7:e497. [PMID: 37284466 PMCID: PMC10239762 DOI: 10.1002/pld3.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Salinity is increasingly considered as a major environmental issue, which threatens agricultural production by decreasing yield traits of crops. Seed priming is a useful and cost-effective technique to alleviate the negative effects of salinity and to enable a fast and uniform germination. In this context, we quantified the effects of priming with gibberellic acid (GP), calcium chloride (CP), and mannitol (MP) on seed germination of three bread wheat cultivars and investigated their response when grown at high salinity conditions (200 mM NaCl). Salt exposure strongly repressed seed imbibition and germination potential and extended germination time, whereas priming enhanced uniformity and seed vigor. Seed preconditioning alleviated the germination disruption caused by salt stress to varying degrees. Priming mitigating effect was agent-dependent with regard to water status (CP and MP), ionic imbalance (CP), and seed reserve mobilization (GP). Na+ accumulation in seedling tissues significantly impaired carbohydrate and protein mobilization by inhibiting amylase and proteases activities but had lesser effects on primed seeds. CP attenuated ionic imbalance by limiting sodium accumulation. Gibberellic acid was the most effective priming treatment for promoting the germination of wheat seeds under salt stress. Moreover, genotypic differences in wheat response to salinity stress were observed between varieties used in this study. Ardito, the oldest variety, seems to tolerate better salinity in priming-free conditions; Aubusson resulted the most salt-sensitive cultivar but showed a high germination recovery under priming conditions; Bologna showed an intermediate behavior.
Collapse
Affiliation(s)
- Souhir Sghayar
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Ahmed Debez
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Alessandro Abruzzese
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Walid Zorrig
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Noemi Negrini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Silvia Morgutti
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Gian Attilio Sacchi
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Nicola Pecchioni
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
| | - Patrizia Vaccino
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
| |
Collapse
|
2
|
Hartung J, Laidig F, Piepho HP. Effects of systematic data reduction on trend estimation from German registration trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:21. [PMID: 36688966 PMCID: PMC9870826 DOI: 10.1007/s00122-023-04266-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
VCU trials can provide unbiased estimates of post-breeding trends given that all data is used. Dropping data of genotypes tested for up to two years may result in biased post-breeding trend estimates. Increasing yield trends are seen on-farm in Germany. The increase is based on genetic trend in registered genotypes and changes in agronomic practices and climate. To estimate both genetic and non-genetic trends, historical wheat data from variety trials evaluating a varieties' value for cultivation und use (VCU) were analyzed. VCU datasets include information on varieties as well as on genotypes that were submitted by breeders and tested in trials but could not make it to registration. Therefore, the population of registered varieties (post-registration population) is a subset of the population of genotypes tested in VCU trials (post-breeding population). To assess post-registration genetic trend, historical VCU trial datasets are often reduced, e.g. to registered varieties only. This kind of drop-out mechanism is statistically informative which affects variance component estimates and which can affect trend estimates. To investigate the effect of this informative drop-out on trend estimates, a simulation study was conducted mimicking the structure of German winter wheat VCU trials. Zero post-breeding trends were simulated. Results showed unbiased estimates of post-breeding trends when using all data. When restricting data to genotypes tested for at least three years, a positive genetic trend of 0.11 dt ha-1 year-1 and a negative non-genetic trend (- 0.11 dt ha-1 year-1) were observed. Bias increased with increasing genotype-by-year variance and disappeared with random selection. We simulated single-trait selection, whereas decisions in VCU trials consider multiple traits, so selection intensity per trait is considerably lower. Hence, our results provide an upper bound for the bias expected in practice.
Collapse
Affiliation(s)
- Jens Hartung
- Institut for Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany.
| | - Friedrich Laidig
- Institut for Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans-Peter Piepho
- Institut for Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Hsu H, Salamatian S, Calmon FP. Generalizing Correspondence Analysis for Applications in Machine Learning. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:9347-9362. [PMID: 34767505 DOI: 10.1109/tpami.2021.3127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Correspondence analysis (CA) is a multivariate statistical tool used to visualize and interpret data dependencies by finding maximally correlated embeddings of pairs of random variables. CA has found applications in fields ranging from epidemiology to social sciences. However, current methods for CA do not scale to large, high-dimensional datasets. In this paper, we provide a novel interpretation of CA in terms of an information-theoretic quantity called the principal inertia components. We show that estimating the principal inertia components, which consists in solving a functional optimization problem over the space of finite variance functions of two random variable, is equivalent to performing CA. We then leverage this insight to design algorithms to perform CA at scale. Specifically, we demonstrate how the principal inertia components can be reliably approximated from data using deep neural networks. Finally, we show how the maximally correlated embeddings of pairs of random variables in CA further play a central role in several learning problems including multi-view and multi-modal learning methods and visualization of classification boundaries.
Collapse
|
4
|
Fiore MC, Blangiforti S, Preiti G, Spina A, Bosi S, Marotti I, Mauceri A, Puccio G, Sunseri F, Mercati F. Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping. Int J Mol Sci 2022; 23:13378. [PMID: 36362168 PMCID: PMC9694989 DOI: 10.3390/ijms232113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Several Triticum species spread in cultivation in Sicily and neighboring regions over the centuries, which led to the establishment of a large genetic diversity. Many ancient varieties were widely cultivated until the beginning of the last century before being replaced by modern varieties. Recently, they have been reintroduced in cultivation in Sicily. Here, the genetic diversity of 115 and 11 accessions from Sicily and Calabria, respectively, belonging to Triticum species was evaluated using a high-density SNP array. Einkorn, emmer, and spelta wheat genotypes were used as outgroups for species and subspecies; five modern varieties of durum and bread wheat were used as references. A principal coordinates analysis (PCoA) and an unweighted pair group method with arithmetic mean (UPGMA) showed four distinct groups among Triticum species and T. turgidum subspecies. The population structure analysis distinguished five gene pools, among which three appeared private to the T. aestivum, T. turgidum subsp. Turgidum, and 'Timilia' group. The principal component analysis (PCA) displayed a bio-morphological trait relationship of a subset (110) of ancient wheat varieties and their wide variability within the T. turgidum subsp. durum subgroups. A discriminant analysis of principal components (DAPC) and phylogenetic analyses applied to the four durum wheat subgroups revealed that the improved varieties harbored a different gene pool compared to the most ancient varieties. The 'Russello' and 'Russello Ibleo' groups were distinguished; both displayed higher genetic variability compared to the 'Timilia' group accessions. This research represents a comprehensive approach to fingerprinting the old wheat Sicilian germplasm, which is useful in avoiding commercial fraud and sustaining the cultivation of landraces and ancient varieties.
Collapse
Affiliation(s)
- Maria Carola Fiore
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 90011 Bagheria, Italy
| | - Sebastiano Blangiforti
- Stazione Consorziale Sperimentale di Granicoltura per la Sicilia, Santo Pietro, 95041 Caltagirone, Italy
| | - Giovanni Preiti
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Alfio Spina
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, 190, 95024 Acireale, Italy
| | - Sara Bosi
- Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Viale Fanin, 40127 Bologna, Italy
| | - Ilaria Marotti
- Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Viale Fanin, 40127 Bologna, Italy
| | - Antonio Mauceri
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council (CNR) of Italy, Institute of Biosciences and Bioresources (IBBR), 90129 Palermo, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Francesco Mercati
- National Research Council (CNR) of Italy, Institute of Biosciences and Bioresources (IBBR), 90129 Palermo, Italy
| |
Collapse
|
5
|
Du M, Li X, Cai D, Zhao Y, Li Q, Wang J, Gu W, Li Y. In-silico study of reducing human health risk of POP residues' direct (from tea) or indirect exposure (from tea garden soil): Improved rhizosphere microbial degradation, toxicity control, and mechanism analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113910. [PMID: 35917712 DOI: 10.1016/j.ecoenv.2022.113910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The accumulation of potentially harmful substances in tea garden soils and tea leaves, especially persistent organic pollutants (POPs), is a special concern for tea consumers worldwide. However, their potential health and ecological risks in tea gardens have rarely been investigated. This study proposed measures to improve the degradation ability of POPs by the tea rhizosphere and to reduce the human health risks caused by POPs after tea consumption. In this study, the binding energy values of six types of POPs and the degraded protein were used to reflect the degradation ability and calculated using molecular dynamic simulations. The main root secretions (i.e., catechin, glucose, arginine, and oxalic acid) were selected and applied with a combination of tea fertilizer and trace element combination (i.e., urea, straw, and copper element), leading to an improved degradation ability (49.59 %) of POPs. To investigate the mechanisms of the factors that affect the degradation ability, molecular docking, tensor singular value decomposition methods, multivariate correlation analysis and 2D-QSAR model were used. The results showed that the solvation energy and solvent accessible surface area are the main forces, and the molecular weight, boiling point, and topological radius of the POPs were the key molecular features affecting their degradation ability. Based on the three key characteristics, a diet avoidance scheme (i.e., avoiding lysine, maslinic acid, ethanol, perfluorocaproic acid, and cholesterol with tea), which can reduce the binding ability of POP residues to aromatic hydrocarbon receptors by 506.13 %. This work will provide theoretical strategies to improve the quality and safety of tea production and reduce the potential risks of harmful substance residues in tea garden soils and tea leaves.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Dongshu Cai
- Institute of Information Engineering, CAS, Beijing 100093, China
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
6
|
Bloom AJ, Plant RE. Wheat grain yield decreased over the past 35 years, but protein content did not change. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6811-6821. [PMID: 34318881 DOI: 10.1093/jxb/erab343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The extent to which rising atmospheric CO2 concentration has already influenced food production and quality is uncertain. Here, we analyzed annual field trials of autumn-planted common wheat in California from 1985 to 2019, a period during which the global atmospheric CO2 concentration increased 19%. Even after accounting for other major factors (cultivar, location, degree-days, soil temperature, total water applied, nitrogen fertilization, and pathogen infestation), wheat grain yield and protein yield declined 13% over this period, but grain protein content did not change. These results suggest that exposure to gradual CO2 enrichment over the past 35 years has adversely affected wheat grain and protein yield, but not grain protein content.
Collapse
Affiliation(s)
- Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - Richard E Plant
- Department of Plant Sciences and Biological and Agricultural Engineering, University of California at Davis, Davis, CA, USA
| |
Collapse
|
7
|
Islam M, Abdullah, Zubaida B, Amin N, Khan RI, Shafqat N, Masood R, Waseem S, Tahir J, Ahmed I, Naeem M, Ahmad H. Agro-Morphological, Yield, and Genotyping-by-Sequencing Data of Selected Wheat ( Triticum aestivum) Germplasm From Pakistan. Front Genet 2021; 12:617772. [PMID: 34163518 PMCID: PMC8216712 DOI: 10.3389/fgene.2021.617772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Madiha Islam
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Abdullah
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bibi Zubaida
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Nageena Amin
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Noshin Shafqat
- Department of Agriculture, Hazara University, Mansehra, Pakistan
| | - Rabia Masood
- Department of Botany, Hazara University, Mansehra, Pakistan
| | | | - Jibran Tahir
- Terrestrial Bioscience New Zealand Limited, Auckland, New Zealand
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
| | - Muhammad Naeem
- Federal Seed Certification and Registration Department, Islamabad, Pakistan
| | - Habib Ahmad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| |
Collapse
|
8
|
Takač V, Tóth V, Rakszegi M, Mikić S, Mirosavljević M, Kondić-Špika A. Differences in Processing Quality Traits, Protein Content and Composition between Spelt and Bread Wheat Genotypes Grown under Conventional and Organic Production. Foods 2021; 10:156. [PMID: 33450999 PMCID: PMC7828489 DOI: 10.3390/foods10010156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023] Open
Abstract
The unique rheological properties of bread wheat dough and the breadmaking quality of its flour are the main factors responsible for the global distribution and utilization of wheat. Recently, interest in the production and expansion of spelt wheat has been boosted due to its significance in the production of healthy food, mostly originated from organic production. The aim of this study was to examine and compare quality parameters (gluten content, Zeleny sedimentation volume, farinograph dough properties), protein content and composition (by the Dumas method, Size Exclusion (SE) and Reversed Phase (RP) High Performance Liquid Chromatography (HPLC) analyses) of five bread and five spelt wheat varieties grown under conventional and organic production in Hungary and under conventional production in Serbia. Most of the analyzed traits showed significant differences between varieties, wheat species and growing sites. Total protein content was significantly higher in spelt than in bread wheat and under conventional than under organic production. In comparison to spelt, bread wheat showed better breadmaking quality, characterized by a higher amount of glutenins (in particular high molecular weight glutenin subunits) and unextractable polymeric proteins. The proportion of the gliadins was also found to be different under conventional and organic systems. Spelt Ostro and Oberkulmer-Rotkorn and bread wheat varieties Balkan, Estevan and Pobeda proved suitable for low input and organic systems.
Collapse
Affiliation(s)
- Verica Takač
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| | - Viola Tóth
- Centre for Agricultural Research, Agricultural Institute, Brunszvik u. 2, 2462 Martonvásár, Hungary; (V.T.); (M.R.)
| | - Marianna Rakszegi
- Centre for Agricultural Research, Agricultural Institute, Brunszvik u. 2, 2462 Martonvásár, Hungary; (V.T.); (M.R.)
| | - Sanja Mikić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| | - Milan Mirosavljević
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (S.M.); (M.M.); (A.K.-Š.)
| |
Collapse
|
9
|
Wang Z, Zhang R, Cheng Y, Lei P, Song W, Zheng W, Nie X. Genome-Wide Identification, Evolution, and Expression Analysis of LBD Transcription Factor Family in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:721253. [PMID: 34539714 PMCID: PMC8446603 DOI: 10.3389/fpls.2021.721253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/09/2021] [Indexed: 05/04/2023]
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. Although it has been thoroughly characterized in many species, the LBD family was not well studied in wheat. Here, the wheat LBD family was systematically investigated through an in silico genome-wide search method. A total of 90 wheat LBD genes (TaLBDs) were identified, which were classified into class I containing seven subfamilies, and class II containing two subfamilies. Exon-intron structure, conserved protein motif, and cis-regulatory elements analysis showed that the members in the same subfamily shared similar gene structure organizations, supporting the classification. Furthermore, the expression patterns of these TaLBDs in different types of tissues and under diverse stresses were identified through public RNA-seq data analysis, and the regulation networks of TaLBDs involved were predicted. Finally, the expression levels of 12 TaLBDs were validated by quantitative PCR (qPCR) analysis and the homoeologous genes showed differential expression. Additionally, the genetic diversity of TaLBDs in the landrace population showed slightly higher than that of the genetically improved germplasm population while obvious asymmetry at the subgenome level. This study not only provided the potential targets for further functional analysis but also contributed to better understand the roles of LBD genes in regulating development and stress tolerance in wheat and beyond.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Ruoyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Yue Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Pengzheng Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
- *Correspondence: Weijun Zheng
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, China
- Xiaojun Nie
| |
Collapse
|
10
|
Di Stasio L, Picascia S, Auricchio R, Vitale S, Gazza L, Picariello G, Gianfrani C, Mamone G. Comparative Analysis of in vitro Digestibility and Immunogenicity of Gliadin Proteins From Durum and Einkorn Wheat. Front Nutr 2020; 7:56. [PMID: 32671087 PMCID: PMC7326042 DOI: 10.3389/fnut.2020.00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies suggested that gliadin proteins from the ancient diploid einkorn wheat Triticum monococcum retained a reduced number of immunogenic peptides for celiac disease patients because of a high in vitro digestibility with respect to hexaploid common wheat. In this study, we compared the immunological properties of gliadins from two Triticum monococcum cultivars (Hammurabi and Norberto-ID331) with those of a Triticum durum cultivar (Adamello). Gliadins were digested by mimicking the in vitro gastrointestinal digestion process that includes the brush border membrane peptidases. Competitive ELISA, based on R5 monoclonal antibody, showed that gastrointestinal digestion reduced the immunogenicity of Triticum monococcum gliadins; conversely, the immunogenic potential of Triticum durum gliadins remained almost unchanged by the in vitro digestion. The immune stimulatory activity was also evaluated by detecting the IFN-γ production in gliadin-reactive T-cell lines obtained from the small intestinal mucosa of HLA-DQ2+ celiac disease patients. Interestingly, gastrointestinal digestion markedly reduced the capability of Triticum monococcum gliadins (p <0.05) of both cultivars to activate T cells, while it slightly affected the activity of Triticum durum. In conclusion, our results showed that Triticum durum was almost unaffected by the in vitro gastrointestinal digestion, while Triticum monococcum had a marked sensibility to digestion, thus determining a lower toxicity for celiac disease patients.
Collapse
Affiliation(s)
- Luigia Di Stasio
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, Section of Paediatrics, European Laboratory for the Investigation of Food-Induced Diseases, University "Federico II", Naples, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Laura Gazza
- CREA-Research Centre for Engineering and Agro-Food Processing, Rome, Italy
| | | | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
11
|
Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) promote crop growth and yield by increasing N and P uptake and disease resistance, but the role of field AMF inoculation on the uptake of micronutrients, such as Fe and Zn, and accumulation in plant edible portions is still not clarified. Therefore, we studied the effect of field inoculation with Rhizophagus irregularis in an organic system on 11 old genotypes and a modern variety of bread wheat. Inoculation increased root colonization, root biomass and shoot Zn concentration at early stage and grain Fe concentration at harvest, while it did not modify yield. Genotypes widely varied for shoot Zn concentration at early stage, and for plant height, grain yield, Zn and protein concentration at harvest. Inoculation differentially modified root AMF community of the genotypes Autonomia B, Frassineto and Bologna. A higher abundance of Rhizophagus sp., putatively corresponding to the inoculated isolate, was only proved in Frassineto. The increase of plant growth and grain Zn content in Frassineto is likely linked to the higher R. irregularis abundance. The AMF role in increasing micronutrient uptake in grain was proved. This supports the introduction of inoculation in cereal farming, if the variable response of wheat genotypes to inoculation is considered.
Collapse
|
12
|
Boukid F, Gentilucci V, Vittadini E, De Montis A, Rosta R, Bosi S, Dinelli G, Carini E. Rediscovering bread quality of “old” Italian wheat (Triticum aestivum L. ssp. aestivum.) through an integrated approach: Physicochemical evaluation and consumers’ perception. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kavamura VN, Robinson RJ, Hughes D, Clark I, Rossmann M, Melo ISD, Hirsch PR, Mendes R, Mauchline TH. Wheat dwarfing influences selection of the rhizosphere microbiome. Sci Rep 2020; 10:1452. [PMID: 31996781 PMCID: PMC6989667 DOI: 10.1038/s41598-020-58402-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The development of dwarf wheat cultivars combined with high levels of agrochemical inputs during the green revolution resulted in high yielding cropping systems. However, changes in wheat cultivars were made without considering impacts on plant and soil microbe interactions. We studied the effect of these changes on root traits and on the assembly of rhizosphere bacterial communities by comparing eight wheat cultivars ranging from tall to semi-dwarf plants grown under field conditions. Wheat breeding influenced root diameter and specific root length (SRL). Rhizosphere bacterial communities from tall cultivars were distinct from those associated with semi-dwarf cultivars, with higher differential abundance of Actinobacteria, Bacteroidetes and Proteobacteria in tall cultivars, compared with a higher differential abundance of Verrucomicrobia, Planctomycetes and Acidobacteria in semi-dwarf cultivars. Predicted microbial functions were also impacted and network analysis revealed a greater level of connectedness between microbial communities in the tall cultivars relative to semi-dwarf cultivars. Taken together, results suggest that the development of semi-dwarf plants might have affected the ability of plants to recruit and sustain a complex bacterial community network in the rhizosphere.
Collapse
Affiliation(s)
- Vanessa N Kavamura
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Rebekah J Robinson
- Plant Pathology Laboratory, Royal Horticultural Society, RHS Garden Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - David Hughes
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Ian Clark
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Maike Rossmann
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna-SP, Brazil
| | - Itamar Soares de Melo
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna-SP, Brazil
| | - Penny R Hirsch
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna-SP, Brazil
| | - Tim H Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.
| |
Collapse
|
14
|
Cheng H, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, Cui L, Liu Z, Bian J, Wang Z, Xu S, Yang Q, Appels R, Han D, Song W, Sun Q, Jiang Y. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol 2019; 20:136. [PMID: 31300020 PMCID: PMC6624984 DOI: 10.1186/s13059-019-1744-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/22/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bread wheat is one of the most important and broadly studied crops. However, due to the complexity of its genome and incomplete genome collection of wild populations, the bread wheat genome landscape and domestication history remain elusive. RESULTS By investigating the whole-genome resequencing data of 93 accessions from worldwide populations of bread wheat and its diploid and tetraploid progenitors, together with 90 published exome-capture data, we find that the B subgenome has more variations than A and D subgenomes, including SNPs and deletions. Population genetics analyses support a monophyletic origin of domesticated wheat from wild emmer in northern Levant, with substantial introgressed genomic fragments from southern Levant. Southern Levant contributes more than 676 Mb in AB subgenomes and enriched in the pericentromeric regions. The AB subgenome introgression happens at the early stage of wheat speciation and partially contributes to their greater genetic diversity. Furthermore, we detect massive alien introgressions that originated from distant species through natural and artificial hybridizations, resulting in the reintroduction of ~ 709 Mb and ~ 1577 Mb sequences into bread wheat landraces and varieties, respectively. A large fraction of these intra- and inter-introgression fragments are associated with quantitative trait loci of important traits, and selection events are also identified. CONCLUSION We reveal the significance of multiple introgressions from distant wild populations and alien species in shaping the genetic components of bread wheat, and provide important resources and new perspectives for future wheat breeding.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Jia Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Luohao Xu
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Ming Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Zihua Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, La Trobe University, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Qixin Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
15
|
Evolutionary trends and phylogenetic association of key morphological traits in the Italian rice varietal landscape. Sci Rep 2018; 8:13612. [PMID: 30206275 PMCID: PMC6134150 DOI: 10.1038/s41598-018-31909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/28/2018] [Indexed: 11/08/2022] Open
Abstract
Efficient germplasm exploitation in crop breeding requires comprehensive knowledge of the available genetic diversity. Linking molecular data to phenotypic expression is fundamental for the profitable utilisation of genetic resources. Italian rice germplasm is an invaluable source of genes, being characterised by marked heterogeneity. A phenotypic characterisation is presented in this paper, with a focus on the evolutionary trends, and on the comparison with available molecular studies. A panel of 351 Italian rice varieties was analysed using seven key morphological traits, employing univariate and multivariate analyses. Considerable variability was found, with clear morphological trends towards reduced plant height, earliness, and spindle-shaped caryopses. Previous findings indicating that genetic diversity was maintained throughout time could not be confirmed, as small phenotypic variability was found in the most recent rice varieties. Consistency with phylogenetic data from previous studies was partial: one phylogenetic subgroup was phenotypically well distinct, while the others had overlapping characteristics and encompassed a wide range of phenotypic variation. Our study provides a quantitative ready-to-use set of information to support new breeding programs, as well as the basis to develop variety-specific calibrations of eco-physiological models, to identify promising traits in light of climate change conditions and alternative management scenarios.
Collapse
|
16
|
Comparison between fatty acid profiles of old and modern varieties of T. turgidum and T. aestivum: A case study in central Italy. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Hellemans T, Landschoot S, Dewitte K, Van Bockstaele F, Vermeir P, Eeckhout M, Haesaert G. Impact of Crop Husbandry Practices and Environmental Conditions on Wheat Composition and Quality: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2491-2509. [PMID: 29488761 DOI: 10.1021/acs.jafc.7b05450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The increasing interest in the production of bread wheat ( Triticum aestivum L.) with specific quality traits requires a shift from the current breeding goal, being yield, to improved compositional and, consequently, functional traits. Since wheat is a key food crop, this must be attained while maintaining or even further increasing yield. Furthermore, as compositional requirements for specific applications are not well-defined, both protein and gluten content as well as the enzymatic activity remain most important. Given that these traits are majorly impacted by both genotype and environment, it is very complex to predict and ultimately control them. Different strategies, such as applying optimized agronomic practices, can temper these uncontrollable determinants which are equally important to steer wheat quality. As current research on their contribution to specific traits is highly fragmented, this report provides a comprehensive review of the influence of crop husbandry and environmental conditions on wheat yield and composition.
Collapse
Affiliation(s)
- T Hellemans
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering , Ghent University , Valentin Vaerwyckweg 1 , BE-9000 Ghent , Belgium
| | - S Landschoot
- Department of Data-Analysis and Mathematical Modelling, Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , BE-9000 Ghent , Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering , Ghent University , Diepestraat 1 , BE-9820 Bottelare , Merelbeke , Belgium
| | - K Dewitte
- Department of Plants and Crops, Faculty of Bioscience Engineering , Ghent University , Diepestraat 1 , BE-9820 Bottelare , Merelbeke , Belgium
| | - F Van Bockstaele
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering , Ghent University , Valentin Vaerwyckweg 1 , BE-9000 Ghent , Belgium
| | - P Vermeir
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering , Ghent University , Valentin Vaerwyckweg 1 , BE-9000 Ghent , Belgium
| | - M Eeckhout
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering , Ghent University , Valentin Vaerwyckweg 1 , BE-9000 Ghent , Belgium
| | - G Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering , Ghent University , Diepestraat 1 , BE-9820 Bottelare , Merelbeke , Belgium
| |
Collapse
|
18
|
Ficco DBM, Saia S, Beleggia R, Fragasso M, Giovanniello V, De Vita P. Milling overrides cultivar, leavening agent and baking mode on chemical and rheological traits and sensory perception of durum wheat breads. Sci Rep 2017; 7:13632. [PMID: 29051605 PMCID: PMC5648824 DOI: 10.1038/s41598-017-14113-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022] Open
Abstract
Smell and aroma are important determinants of consumer acceptance, so gaining deeper insight into bread smell and aroma perception is a research goal. Sixteen combinations of four variables were investigated, to evaluate the contributions of bread chemical and rheological properties and volatile organic compounds (VOCs) towards sensory acceptability of breads: genotypes (landrace vs. modern); types of flour (wholemeal vs. semolina); leavening agents (brewing yeast vs. sourdough starter); and baking modes (gas-fired vs. wood-fired). Milling had the greatest impact over the other treatments for the rheological and chemical properties, including for VOCs, with great impact on the sensory traits of the flours and breads. The processing phases had great impact on smell and aroma, as defined through formation of alcohols, aldehydes, terpenes, and other compounds (e.g., ethylbenzene, 2-pentylfuran, methoxyphenyl oxime). Leavening agent had great impact on sensory perception, although breads from the sourdough starter were perceived as with lower taste and colour than the brewing yeast. Baking mode had no relevant role on sensory perception. These data strongly undermine the belief of a 'better product' that is frequently attributed to old genotypes versus modern cultivars, and indicate that the milling and the bread-making processes determine the quality of the end product.
Collapse
Affiliation(s)
- Donatella Bianca Maria Ficco
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy.
| | - Sergio Saia
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Valentina Giovanniello
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| |
Collapse
|
19
|
Alvisi P, De Fazio L, Valerii MC, Cavazza E, Salerno A, Lacorte D, Dinelli G, Spisni E. Responses of blood mononucleated cells and clinical outcome of non-celiac gluten sensitive pediatric patients to various cereal sources: a pilot study. Int J Food Sci Nutr 2017; 68:1005-1012. [PMID: 28420279 DOI: 10.1080/09637486.2017.1315058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Non-celiac gluten sensitivity (NCGS) is a clinical entity recently documented by the scientific community in pediatric patients. Nevertheless, its triggering mechanisms remain largely unsettled. We studied 11 children with NCGS who were diagnosed based on a clear-cut relationship between wheat consumption and development of symptoms, after excluding celiac disease (CD) and wheat allergy, matched with 18 children with active CD. Sixteen pediatric patients were also enrolled as controls. Cultured peripheral blood mononucleated cells (PBMCs) obtained from NCGS, CD and control patients were cultured in the presence of wheat proteins extracted from ancient and modern cultivars. Results demonstrated that wheat proteins induced an overactivation of the proinflammatory chemokine CXCL10 in PBMC from NCGS pediatric patients and that this overexpression also depended on the wheat cultivar from which proteins were extracted. Proteins from modern wheat cultivar activated CXCL10 to a greater extent than those extracted from ancient wheat genotypes.
Collapse
Affiliation(s)
- Patrizia Alvisi
- a Gastroenterology of Pediatric Unit , Maggiore Hospital , Bologna , Italy
| | - Luigia De Fazio
- b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Maria Chiara Valerii
- b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Elena Cavazza
- b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Angela Salerno
- c Anatomy, Histology and Cytodiagnostic Unit , Maggiore Hospital , Bologna , Italy
| | - Doriana Lacorte
- d Graduate School of Pediatrics , University of Ferrara , Ferrara , Italy
| | - Giovanni Dinelli
- e Department of Agricultural Sciences , University of Bologna , Bologna , Italy
| | - Enzo Spisni
- b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|