1
|
Li Y, Shi W, Sun Z, Zhang W. Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence. Microbiol Res 2024; 289:127917. [PMID: 39368257 DOI: 10.1016/j.micres.2024.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. Vibrio splendidus is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber. Our study demonstrated that V. splendidus AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in V. splendidus virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of V. splendidus toward L-Glu, and highlights the importance of chemotaxis in its virulence.
Collapse
Affiliation(s)
- Ya Li
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Zihao Sun
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China.
| |
Collapse
|
2
|
Winski A, Ludwiczak J, Orlowska M, Madaj R, Kaminski K, Dunin‐Horkawicz S. AlphaFold2 captures the conformational landscape of the HAMP signaling domain. Protein Sci 2024; 33:e4846. [PMID: 38010737 PMCID: PMC10731501 DOI: 10.1002/pro.4846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
In this study, we present a conformational landscape of 5000 AlphaFold2 models of the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) domain, a short helical bundle that transduces signals from sensors to effectors in two-component signaling proteins such as sensory histidine kinases and chemoreceptors. The landscape reveals the conformational variability of the HAMP domain, including rotations, shifts, displacements, and tilts of helices, many combinations of which have not been observed in experimental structures. HAMP domains belonging to a single family tend to occupy a defined region of the landscape, even when their sequence similarity is low, suggesting that individual HAMP families have evolved to operate in a specific conformational range. The functional importance of this structural conservation is illustrated by poly-HAMP arrays, in which HAMP domains from families with opposite conformational preferences alternate, consistent with the rotational model of signal transduction. The only poly-HAMP arrays that violate this rule are predicted to be of recent evolutionary origin and structurally unstable. Finally, we identify a family of HAMP domains that are likely to be dynamic due to the presence of a conserved pi-helical bulge. All code associated with this work, including a tool for rapid sequence-based prediction of the rotational state in HAMP domains, is deposited at https://github.com/labstructbioinf/HAMPpred.
Collapse
Affiliation(s)
- Aleksander Winski
- Laboratory of Structural Bioinformatics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Jan Ludwiczak
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
- Present address:
Prescient Design, Genentech Research & Early DevelopmentRoche GroupBaselSwitzerland
| | - Malgorzata Orlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Rafal Madaj
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Kamil Kaminski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Stanislaw Dunin‐Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
- Department of Protein EvolutionMax Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
3
|
Guo L, Wang YH, Cui R, Huang Z, Hong Y, Qian JW, Ni B, Xu AM, Jiang CY, Zhulin IB, Liu SJ, Li DF. Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor. PLoS Biol 2023; 21:e3002429. [PMID: 38079456 PMCID: PMC10735184 DOI: 10.1371/journal.pbio.3002429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Motile bacteria navigate toward favorable conditions and away from unfavorable environments using chemotaxis. Mechanisms of sensing attractants are well understood; however, molecular aspects of how bacteria sense repellents have not been established. Here, we identified malate as a repellent recognized by the MCP2201 chemoreceptor in a bacterium Comamonas testosteroni and showed that it binds to the same site as an attractant citrate. Binding determinants for a repellent and an attractant had only minor differences, and a single amino acid substitution in the binding site inverted the response to malate from a repellent to an attractant. We found that malate and citrate affect the oligomerization state of the ligand-binding domain in opposing way. We also observed opposing effects of repellent and attractant binding on the orientation of an alpha helix connecting the sensory domain to the transmembrane helix. We propose a model to illustrate how positive and negative signals might be generated.
Collapse
Affiliation(s)
- Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Hao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Rui Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - An-Ming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Monteagudo-Cascales E, Ortega Á, Velando F, Morel B, Matilla MA, Krell T. Study of NIT domain-containing chemoreceptors from two global phytopathogens and identification of NIT domains in eukaryotes. Mol Microbiol 2023. [PMID: 37186477 DOI: 10.1111/mmi.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Bacterial signal transduction systems are typically activated by the binding of signal molecules to receptor ligand binding domains (LBDs), such as the NIT LBD. We report here the identification of the NIT domain in more than 15,000 receptors that were present in 30 bacterial phyla, but also in 19 eukaryotic phyla, expanding its known phylogenetic distribution. The NIT domain formed part of seven receptor families that either control transcription, mediate chemotaxis or regulate second messenger levels. We have produced the NIT domains from chemoreceptors of the bacterial phytopathogens Pectobacterium atrosepticum (PacN) and Pseudomonas savastanoi (PscN) as individual purified proteins. High-throughput ligand screening using compound libraries revealed a specificity for nitrate and nitrite binding. Isothermal titration calorimetry experiments showed that PacN-LBD bound preferentially nitrate ( K D = 1.9 μM), whereas the affinity of PscN-LBD for nitrite ( K D = 2.1 μM) was 22 times higher than that for nitrate. Analytical ultracentrifugation experiments indicated that PscN-LBD is monomeric in the presence and absence of ligands. The R182A mutant of PscN did not bind nitrate or nitrite. This residue is not conserved in the NIT domain of the Pseudomonas aeruginosa chemoreceptor PA4520, which may be related to its failure to bind nitrate/nitrite. The magnitude of P. atrosepticum chemotaxis towards nitrate was significantly greater than that of nitrite and pacN deletion almost abolished responses to both compounds. This study highlights the important role of nitrate and nitrite as signal molecules in life and advances our knowledge on the NIT domain as universal nitrate/nitrite sensor module.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence 'Campus Mare Nostrum, Murcia, Spain
| | - Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Bertrand Morel
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
5
|
Chen X, Bi S, Ma X, Sourjik V, Lai L. Discovery of a New Chemoeffector for Escherichia coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing. ACS BIO & MED CHEM AU 2022; 2:386-394. [PMID: 37102165 PMCID: PMC10125284 DOI: 10.1021/acsbiomedchemau.1c00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Motile bacteria use chemotaxis to search for nutrients and escape from harmful chemicals. While the sensing mechanisms for chemical attractants are well established, the molecular details of chemorepellent detection are poorly understood. Here, by using combined computational and experimental approaches to screen potential chemoeffectors for the Escherichia coli chemoreceptor Tsr, we identified a specific chemorepellent, 1-aminocyclohexanecarboxylic acid (ACHC). Our study strongly suggests that ACHC directly binds to the periplasmic sensory domain of Tsr and competes with l-serine, the amino acid attractant of Tsr. We further characterized the binding features of l-serine, ACHC, and l-leucine (a natural repellent that binds Tsr) and found that Asn68 plays a key role in mediating chemotactic response. Mutating Asn68 to Ala inverted the response to l-leucine from a repellent to an attractant. Our study provides important insights into the molecular mechanisms of ligand sensing via bacterial chemoreceptors.
Collapse
Affiliation(s)
- Xi Chen
- BNLMS,
Peking-Tsinghua Center for Life Sciences at College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuangyu Bi
- Max
Planck Institute for Terrestrial Microbiology & LOEWE Center for
Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomin Ma
- BNLMS,
Peking-Tsinghua Center for Life Sciences at College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Victor Sourjik
- Max
Planck Institute for Terrestrial Microbiology & LOEWE Center for
Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
| | - Luhua Lai
- BNLMS,
Peking-Tsinghua Center for Life Sciences at College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Gavira JA, Matilla MA, Fernández M, Krell T. The structural basis for signal promiscuity in a bacterial chemoreceptor. FEBS J 2020; 288:2294-2310. [PMID: 33021055 DOI: 10.1111/febs.15580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023]
Abstract
Signalling through chemosensory pathways is typically initiated by the binding of signal molecules to the chemoreceptor ligand binding domain (LBD). The PcaY_PP chemoreceptor from Pseudomonas putida KT2440 is characterized by an unusually broad signal range, and minimal requisites for signal binding are the presence of a C6-membered ring and that of a carboxyl group. Previous studies have shown that only some of the multiple signals recognized by this chemoreceptor are of apparent metabolic value. We report here high-resolution structures of PcaY_PP-LBD in the absence and presence of four cognate chemoeffectors and glycerol. The domain formed a four-helix bundle (4HB), and both ligand binding sites of the dimer were occupied with the high-affinity ligands protocatechuate and quinate, whereas the lower-affinity ligands benzoate and salicylate were present in only one site. Ligand binding was verified by microcalorimetric titration of site-directed mutants revealing important roles of an arginine and number of polar residues that establish an extensive hydrogen bonding network with bound ligands. The comparison of the apo and holo structures did not provide evidence for this receptor employing a transmembrane signalling mechanism that involves piston-like shifts of the final helix. Instead, ligand binding caused rigid-body scissoring movements of both monomers of the dimer. Comparisons with the 4HB domains of the Tar and Tsr chemoreceptors revealed significant structural differences. Importantly, the ligand binding site in PcaY_PP-LBD is approximately 8 Å removed from that of the Tar and Tsr receptors. Data indicate a significant amount of structural and functional diversity among 4HB domains. DATABASES: The coordinates and structure factors have been deposited in the protein data band with the following IDs: 6S1A (apo form), 6S18 (bound glycerol), 6S33 (bound protocatechuate), 6S38 (bound quinate), 6S3B (bound benzoate) and 6S37 (bound salicylate).
Collapse
Affiliation(s)
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
7
|
Abstract
Many bacteria possess a large number of chemoreceptors that recognize a variety of different compounds. More than 60% of the genomes analyzed in this study contain paralogous chemoreceptors, suggesting that they emerge with high frequency. We provide first insight on how paralogous receptors have evolved and show that two chemoreceptors with a narrow ligand range have evolved from an ancestral protein with a broad chemoeffector spectrum. Protein structures show that multiple changes in the ligand-binding site account for the differences in the ligand spectrum. This work lays the ground for further studies aimed at establishing whether the principles of ligand-binding evolution reported here can be generalized for a wider spectrum of sensory proteins in bacteria. Chemoreceptor-based signaling pathways are among the major modes of bacterial signal transduction, and Pseudomonas aeruginosa PAO1 is an important model to study their function. Of the 26 chemoreceptors of this strain, PctA has a broad ligand range and responds to most of the proteinogenic amino acids, whereas PctB and PctC have a much narrower range and show strong ligand preference for l-glutamine and γ-aminobutyrate, respectively. Using several comparative genomics approaches, we show that these receptors are paralogs: pctA gene duplication in the common ancestor of the genus Pseudomonas led to pctC, whereas pctB originated through another, independent pctA duplication in the common ancestor of P. aeruginosa. Thus, the broad-range amino acid chemoreceptor was evolutionarily older, and chemoreceptors that complemented “missing” amino acid sensing abilities arose later in specific Pseudomonas lineages. Using comparative sequence analysis, newly solved crystal structures of PctA, PctB, and PctC ligand-binding domains, and their molecular dynamics simulations, we identified a conserved amino acid recognition motif and changes in the ligand-binding pocket that led to novel ligand specificities. In addition, we determined major forces driving the evolution of this group of chemoreceptors.
Collapse
|
8
|
Podgorny AR, Ray JCJ. Tasting the Terroir with Tsr. Biophys J 2020; 118:279-280. [DOI: 10.1016/j.bpj.2019.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022] Open
|
9
|
Orr AA, Yang J, Sule N, Chawla R, Hull KG, Zhu M, Romo D, Lele PP, Jayaraman A, Manson MD, Tamamis P. Molecular Mechanism for Attractant Signaling to DHMA by E. coli Tsr. Biophys J 2019; 118:492-504. [PMID: 31839263 DOI: 10.1016/j.bpj.2019.11.3382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
The attractant chemotaxis response of Escherichia coli to norepinephrine requires that it be converted to 3,4-dihydroxymandelic acid (DHMA) by the monoamine oxidase TynA and the aromatic aldehyde dehydrogenase FeaB. DHMA is sensed by the serine chemoreceptor Tsr, and the attractant response requires that at least one subunit of the periplasmic domain of the Tsr homodimer (pTsr) has an intact serine-binding site. DHMA that is generated in vivo by E. coli is expected to be a racemic mixture of the (R) and (S) enantiomers, so it has been unclear whether one or both chiral forms are active. Here, we used a combination of state-of-the-art tools in molecular docking and simulations, including an in-house simulation-based docking protocol, to investigate the binding properties of (R)-DHMA and (S)-DHMA to E. coli pTsr. Our studies computationally predicted that (R)-DHMA should promote a stronger attractant response than (S)-DHMA because of a consistently greater-magnitude piston-like pushdown of the pTsr α-helix 4 toward the membrane upon binding of (R)-DHMA than upon binding of (S)-DHMA. This displacement is caused primarily by interaction of DHMA with Tsr residue Thr156, which has been shown by genetic studies to be critical for the attractant response to L-serine and DHMA. These findings led us to separate the two chiral species and test their effectiveness as chemoattractants. Both the tethered cell and motility migration coefficient assays validated the prediction that (R)-DHMA is a stronger attractant than (S)-DHMA. Our study demonstrates that refined computational docking and simulation studies combined with experiments can be used to investigate situations in which subtle differences between ligands may lead to diverse chemotactic responses.
Collapse
Affiliation(s)
- Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Jingyun Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Nitesh Sule
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Kenneth G Hull
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas
| | - Daniel Romo
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Michael D Manson
- Department of Biology, Texas A&M University, College Station, Texas.
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Hong Y, Huang Z, Guo L, Ni B, Jiang CY, Li XJ, Hou YJ, Yang WS, Wang DC, Zhulin IB, Liu SJ, Li DF. The ligand-binding domain of a chemoreceptor from Comamonas testosteroni has a previously unknown homotrimeric structure. Mol Microbiol 2019; 112:906-917. [PMID: 31177588 PMCID: PMC6736725 DOI: 10.1111/mmi.14326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand-binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo-form LBD crystal revealed a typical four-helix bundle homodimer, similar to previously well-studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate-bound LBD revealed a four-helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size-exclusion chromatography, analytical ultracentrifugation and cross-linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site-directed mutations of key amino acid residues in C. testosteroni mutants.
Collapse
Affiliation(s)
- Yuan Hong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Xiao-Jing Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yan-Jie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Igor B. Zhulin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| |
Collapse
|
11
|
Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol 2019; 8:rsob.180023. [PMID: 29695618 PMCID: PMC5936718 DOI: 10.1098/rsob.180023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Every living cell possesses numerous transmembrane signalling systems that receive chemical and physical stimuli from the environment and transduce this information into an intracellular signal that triggers some form of cellular response. As unicellular organisms, bacteria require these systems for survival in rapidly changing environments. The receptors themselves act as ‘sensory organs’, while subsequent signalling circuits can be regarded as forming a ‘neural network’ that is involved in decision making, adaptation and ultimately in ensuring survival. Bacteria serve as useful biosensors in industry and clinical diagnostics, in addition to producing drugs for therapeutic purposes. Therefore, there is a great demand for engineered bacterial strains that contain transmembrane signalling systems with high molecular specificity, sensitivity and dose dependency. In this review, we address the complexity of transmembrane signalling systems and discuss principles to rewire receptors and their signalling outputs.
Collapse
Affiliation(s)
- Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Florian Fabiani
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
12
|
Liu M, He M, Wang R, Li S. A new local density and relative distance based spectrum clustering. Knowl Inf Syst 2019. [DOI: 10.1007/s10115-018-1316-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yu M, Chen Y, Wang ZL, Liu Z. Fluctuation correlations as major determinants of structure- and dynamics-driven allosteric effects. Phys Chem Chem Phys 2019; 21:5200-5214. [DOI: 10.1039/c8cp07859a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both structure- and dynamics-driven allosteric effects are determined by the correlation of distance fluctuations in proteins.
Collapse
Affiliation(s)
- Miao Yu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Yixin Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zi-Le Wang
- Department of Physics
- Tsinghua University
- Beijing 100084
- China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
- Center for Quantitative Biology
| |
Collapse
|
14
|
Structure of the sensory domain of McpX from Sinorhizobium meliloti, the first known bacterial chemotactic sensor for quaternary ammonium compounds. Biochem J 2018; 475:3949-3962. [PMID: 30442721 DOI: 10.1042/bcj20180769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/01/2023]
Abstract
The α-proteobacterium Sinorhizobium meliloti can live freely in the soil or engage in a symbiosis with its legume host. S. meliloti facilitates nitrogen fixation in root nodules, thus providing pivotal, utilizable nitrogen to the host. The organism has eight chemoreceptors, namely McpT to McpZ and IcpA that facilitate chemotaxis. McpX is the first known bacterial sensor of quaternary ammonium compounds (QACs) such as choline and betaines. Because QACs are exuded at chemotaxis-relevant concentrations by germinating alfalfa seeds, McpX has been proposed to contribute to host-specific chemotaxis. We have determined the crystal structure of the McpX periplasmic region (McpXPR) in complex with the proline betaine at 2.7 Å resolution. In the crystal, the protein forms a symmetric dimer with one proline betaine molecule bound to each monomer of McpXPR within membrane-distal CACHE module. The ligand is bound through cation-πinteractions with four aromatic amino acid residues. Mutational analysis in conjunction with binding studies revealed that a conserved aspartate residue is pivotal for ligand binding. We discovered that, in a striking example of convergent evolution, the ligand-binding site of McpXPR resembles that of a group of structurally unrelated betaine-binding proteins including ProX and OpuAC. Through this comparison and docking studies, we rationalized the specificity of McpXPR for this specific group of ligands. Collectively, our structural, biochemical, and molecular docking data have revealed the molecular determinants in McpX that are crucial for its rare ligand specificity for QACs.
Collapse
|
15
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
16
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
17
|
Bi S, Jin F, Sourjik V. Inverted signaling by bacterial chemotaxis receptors. Nat Commun 2018; 9:2927. [PMID: 30050034 PMCID: PMC6062612 DOI: 10.1038/s41467-018-05335-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
Microorganisms use transmembrane sensory receptors to perceive a wide range of environmental factors. It is unclear how rapidly the sensory properties of these receptors can be modified when microorganisms adapt to novel environments. Here, we demonstrate experimentally that the response of an Escherichia coli chemotaxis receptor to its chemical ligands can be easily inverted by mutations at several sites along receptor sequence. We also perform molecular dynamics simulations to shed light on the mechanism of the transmembrane signaling by E. coli chemoreceptors. Finally, we use receptors with inverted signaling to map determinants that enable the same receptor to sense multiple environmental factors, including metal ions, aromatic compounds, osmotic pressure, and salt ions. Our findings demonstrate high plasticity of signaling and provide further insights into the mechanisms of stimulus sensing and processing by bacterial chemoreceptors. Bacteria use chemotaxis receptors to perceive environmental factors. Here, the authors show that mutations in a chemotaxis receptor can invert the sensory response, e.g. from attractant to repellent, and use these mutants to map regions that enable the receptor to sense multiple environmental factors.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Fan Jin
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany.
| |
Collapse
|
18
|
Gavira JA, Ortega Á, Martín-Mora D, Conejero-Muriel MT, Corral-Lugo A, Morel B, Matilla MA, Krell T. Structural Basis for Polyamine Binding at the dCACHE Domain of the McpU Chemoreceptor from Pseudomonas putida. J Mol Biol 2018; 430:1950-1963. [PMID: 29758259 DOI: 10.1016/j.jmb.2018.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
Many bacteria can move chemotactically to a variety of compounds and the recognition of chemoeffectors by the chemoreceptor ligand binding domain (LBD) defines the specificity of response. Many chemoreceptors were found to recognize different amino and organic acids, but the McpU chemoreceptor from Pseudomonas putida was identified as the first chemoreceptor that bound specifically polyamines. We report here the three-dimensional structure of McpU-LBD in complex with putrescine at a resolution of 2.4 Å, which fitted well a solution structure generated by small-angle X-ray scattering. Putrescine bound to a negatively charged pocket in the membrane distal module of McpU-LBD. Similarities exist in the binding of putrescine to McpU-LBD and taurine to the LBD of the Mlp37 chemoreceptor of Vibrio cholerae. In both structures, the primary amino group of the respective ligand is recognized by hydrogen bonds established by two aspartate and a tyrosine side chain. This feature may be used to predict the ligands of chemoreceptors with unknown function. Analytical ultracentrifugation revealed that McpU-LBD is monomeric in solution and that ligand binding does not alter this oligomeric state. This sensing mode thus differs from that of the well-characterised four-helix bundle domains where ligands bind to two sites at the LBD dimer interface. Although there appear to be different sensing modes, results are discussed in the context of data, indicating that chemoreceptors employ the same mechanism of transmembrane signaling. This work enhances our understanding of CACHE domains, which are the most abundant sensor domains in bacterial chemoreceptors and sensor kinases.
Collapse
Affiliation(s)
- José Antonio Gavira
- Laboratory of Crystallographic Studies, IACT, (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María Teresa Conejero-Muriel
- Laboratory of Crystallographic Studies, IACT, (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
19
|
Bi S, Sourjik V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr Opin Microbiol 2018; 45:22-29. [PMID: 29459288 DOI: 10.1016/j.mib.2018.02.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/25/2022]
Abstract
Motile bacteria use chemotaxis to migrate towards environments that are favorable for growth and survival. The signaling pathway that mediates this behavior is largely conserved among prokaryotes, with Escherichia coli chemotaxis system being one of the simplest and the best studied. At the core of this pathway are the arrays of clustered chemoreceptors that detect, amplify and integrate various stimuli. Recent work provided deeper understanding of spatial organization and signal processing by these clusters and uncovered the variety of sensory mechanisms used to detect environmental stimuli. Moreover, studies of bacteria with different lifestyles have led to new insights into the diversity and evolutionary conservation of the chemotaxis pathway, as well as the physiological relevance of chemotactic behavior in different environments.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology, Karl-von-Frisch-Strasse 16, 35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology, Karl-von-Frisch-Strasse 16, 35043 Marburg, Germany.
| |
Collapse
|
20
|
The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018; 8:2102. [PMID: 29391435 PMCID: PMC5795001 DOI: 10.1038/s41598-018-20283-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Chemotaxis toward organic acids has been associated with colonization fitness and virulence and the opportunistic pathogen Pseudomonas aeruginosa exhibits taxis toward several tricarboxylic acid intermediates. In this study, we used high-throughput ligand screening and isothermal titration calorimetry to demonstrate that the ligand binding domain (LBD) of the chemoreceptor PA2652 directly recognizes five C4-dicarboxylic acids with KD values ranging from 23 µM to 1.24 mM. In vivo experimentation showed that three of the identified ligands act as chemoattractants whereas two of them behave as antagonists by inhibiting the downstream chemotaxis signalling cascade. In vitro and in vivo competition assays showed that antagonists compete with chemoattractants for binding to PA2652-LBD, thereby decreasing the affinity for chemoattractants and the subsequent chemotactic response. Two chemosensory pathways encoded in the genome of P. aeruginosa, che and che2, have been associated to chemotaxis but we found that only the che pathway is involved in PA2652-mediated taxis. The receptor PA2652 is predicted to contain a sCACHE LBD and analytical ultracentrifugation analyses showed that PA2652-LBD is dimeric in the presence and the absence of ligands. Our results indicate the feasibility of using antagonists to interfere specifically with chemotaxis, which may be an alternative strategy to fight bacterial pathogens.
Collapse
|
21
|
Abstract
Docking algorithms have been widely used to elucidate ligand:receptor interactions that are important in biological function. Here, we introduce an in-house developed docking-refinement protocol that combines the following innovative features. (1) The use of multiple short molecular dynamics (MD) docking simulations, with residues within the binding pocket of the receptor unconstrained, so that the binding modes of the ligand in the binding pocket may be exhaustively examined. (2) The initial positioning of the ligand within the binding pocket based on complementary shape, and the use of both harmonic and quartic spherical potentials to constrain the ligand in the binding pocket during multiple short docking simulations. (3) The selection of the most probable binding modes generated by the short docking simulations using interaction energy calculations, as well as the subsequent application of all-atom MD simulations and physical-chemistry based free energy calculations to elucidate the most favorable binding mode of the ligand in complex with the receptor. In this chapter, we provide step-by-step instructions on how to computationally investigate the binding of small-molecule ligands to protein receptors by examining as control and test cases, respectively, the binding of L-serine and R-3,4-dihydroxymandelic acid (R-DHMA) to the Escherichia coli chemoreceptor Tsr. Similar computational strategies can be used for the molecular modeling of a series of ligand:protein receptor interactions.
Collapse
|
22
|
Gushchin I, Gordeliy V. Transmembrane Signal Transduction in Two-Component Systems: Piston, Scissoring, or Helical Rotation? Bioessays 2017; 40. [PMID: 29280502 DOI: 10.1002/bies.201700197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/30/2017] [Indexed: 11/10/2022]
Abstract
Allosteric and transmembrane (TM) signaling are among the major questions of structural biology. Here, we review and discuss signal transduction in four-helical TM bundles, focusing on histidine kinases and chemoreceptors found in two-component systems. Previously, piston, scissors, and helical rotation have been proposed as the mechanisms of TM signaling. We discuss theoretically possible conformational changes and examine the available experimental data, including the recent crystallographic structures of nitrate/nitrite sensor histidine kinase NarQ and phototaxis system NpSRII:NpHtrII. We show that TM helices can flex at multiple points and argue that the various conformational changes are not mutually exclusive, and often are observed concomitantly, throughout the TM domain or in its part. The piston and scissoring motions are the most prominent motions in the structures, but more research is needed for definitive conclusions.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia.,Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.,Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425, Jülich, Germany
| |
Collapse
|
23
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
24
|
Bardy SL, Briegel A, Rainville S, Krell T. Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction. J Bacteriol 2017; 199:e00203-17. [PMID: 28484047 PMCID: PMC5573076 DOI: 10.1128/jb.00203-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Unraveling the structure and function of two-component and chemotactic signaling along with different aspects related to motility of bacteria and archaea are key research areas in modern microbiology. Escherichia coli is the traditional model organism to study chemotaxis signaling and motility. However, the recent study of a wide range of bacteria and even some archaea with different lifestyles has provided new insight into the eco-physiology of chemotaxis, which is essential for the host establishment of different pathogens or beneficial bacteria. The expanded range of model organisms has also permitted the study of chemosensory pathways unrelated to chemotaxis, multiple chemotaxis pathways within an organism, and new types of chemoreceptors. This research has greatly benefitted from technical advances in the field of cryo-microscopy that continues to reveal with increasing resolution the complexity and diversity of large protein complexes like the flagellar motor or chemoreceptor arrays. In addition, sensitive instruments now allow for an increasing number of experiments to be conducted at the single-cell level, thereby revealing information that is beginning to bridge the gap between individual cells and population behavior. Evidence has also accumulated showing that bacteria have evolved different mechanisms for surface sensing, which appears to be mediated by flagella and possibly type IV pili, and that the downstream signaling involves chemosensory pathways and two-component system based processes. Herein we summarize the recent advances and research tendencies in this field as presented at the latest Bacterial Locomotion and Signal Transduction (BLAST XIV) conference.
Collapse
Affiliation(s)
- Sonia L. Bardy
- University of Wisconsin—Milwaukee, Biological Sciences, Milwaukee, Wisconsin, USA
| | | | - Simon Rainville
- Laval University, Department of Physics, Engineering Physics and Optics, Quebec City, Québec, Canada
| | - Tino Krell
- Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
25
|
Voskoboynikova N, Mosslehy W, Colbasevici A, Ismagulova TT, Bagrov DV, Akovantseva AA, Timashev PS, Mulkidjanian AY, Bagratashvili VN, Shaitan KV, Kirpichnikov MP, Steinhoff HJ. Characterization of an archaeal photoreceptor/transducer complex from Natronomonas pharaonis assembled within styrene–maleic acid lipid particles. RSC Adv 2017. [DOI: 10.1039/c7ra10756k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The archaeal receptor/transducer complex NpSRII/NpHtrII retains its integrity upon reconstitution in styrene–maleic acid lipid particles.
Collapse
Affiliation(s)
| | - W. Mosslehy
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - A. Colbasevici
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - T. T. Ismagulova
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - D. V. Bagrov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - A. A. Akovantseva
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - P. S. Timashev
- Institute for Regenerative Medicine of I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
| | | | - V. N. Bagratashvili
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - K. V. Shaitan
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - M. P. Kirpichnikov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - H.-J. Steinhoff
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| |
Collapse
|
26
|
Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937. [PMID: 27965656 PMCID: PMC5126104 DOI: 10.3389/fmicb.2016.01937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - José A Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Diana López-Farfán
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
27
|
Ames P, Hunter S, Parkinson JS. Evidence for a Helix-Clutch Mechanism of Transmembrane Signaling in a Bacterial Chemoreceptor. J Mol Biol 2016; 428:3776-88. [PMID: 27019297 PMCID: PMC5023463 DOI: 10.1016/j.jmb.2016.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
The Escherichia coli Tsr protein contains a periplasmic serine-binding domain that transmits ligand occupancy information to a cytoplasmic kinase-control domain to regulate the cell's flagellar motors. The Tsr input and output domains communicate through conformational changes transmitted through a transmembrane helix (TM2), a five-residue control cable helix at the membrane-cytoplasm interface, and a four-helix HAMP bundle. Changes in serine occupancy are known to promote TM2 piston displacements in one subunit of the Tsr homodimer. We explored how such piston motions might be relayed through the control cable to reach the input AS1 helix of HAMP by constructing and characterizing mutant receptors that had one-residue insertions or deletions in the TM2-control cable segment of Tsr. TM2 deletions caused kinase-off output shifts; TM2 insertions caused kinase-on shifts. In contrast, control cable deletions caused kinase-on output, whereas insertions at the TM2-control cable junction caused kinase-off output. These findings rule out direct mechanical transmission of TM2 conformational changes to HAMP. Instead, we suggest that the Tsr control cable transmits input signals to HAMP by modulating the intensity of structural clashes between out-of-register TM2 and AS1 helices. Inward displacement of TM2 might alter the sidechain environment of control cable residues at the membrane core-headgroup interface, causing a break in the control cable helix to attenuate the register mismatch and enhance HAMP packing stability, leading to a kinase-off output response. This helix-clutch model offers a new perspective on the mechanism of transmembrane signaling in chemoreceptors.
Collapse
Affiliation(s)
- Peter Ames
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Samuel Hunter
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
28
|
Mise T. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli. Biochemistry 2016; 55:3708-13. [DOI: 10.1021/acs.biochem.6b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Mise
- 2-19-3 Misato, Okinawa-shi, Okinawa 904-2153, Japan
| |
Collapse
|
29
|
Liu D, Zhang J, Wang X. Reference spectral signature selection using density-based cluster for automatic oil spill detection in hyperspectral images. OPTICS EXPRESS 2016; 24:7411-7425. [PMID: 27137031 DOI: 10.1364/oe.24.007411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reference spectral signature selection is a fundamental work for automatic oil spill detection. To address this issue, a new approach is proposed here, which employs the density-based cluster to select a specific spectral signature from a hyperspectral image. This paper first introduces the framework of oil spill detection from hyperspectral images, indicating that detecting oil spill requires a reference spectral signature of oil spill, parameters of background, and a target detection algorithm. Based on the framework, we give the new reference spectral signature selection approach in details. Then, we demonstrate the estimation of background parameters according to the reflectance of seawater in the infrared bands. Next, the conventional adaptive cosine estimator (ACE) algorithm is employed to achieve oil spill detection. Finally, the proposed approach is tested via several practical hyperspectral images that are collected during the Horizon Deep water oil spill. The experimental results show that this new approach can automatically select the reference spectral signature of oil spills from hyperspectral images and has high detection performance.
Collapse
|
30
|
Abstract
Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit swapping interactions that will need to be taken into account in experimental applications of single-chain chemoreceptors.
Collapse
|
31
|
Orekhov PS, Klose D, Mulkidjanian AY, Shaitan KV, Engelhard M, Klare JP, Steinhoff HJ. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol 2015; 11:e1004561. [PMID: 26496122 PMCID: PMC4651059 DOI: 10.1371/journal.pcbi.1004561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors. Achaea and bacteria can “see” and “sniffle”, they have photo- and chemosensors that measure the environment. On the cell poles, these sensor proteins form large arrays built of several thousands of different receptors. The receptors comprise extracellular or transmembrane sensory domains and elongated homodimeric coiled-coil bundles, which transduce the signals from the membrane across ~20 nm to a conserved cytoplasmic signaling subdomain in an unknown manner. In our study we performed coarse-grained molecular dynamics simulations of the phototactic receptor/transducer complex from Natronomonas pharaonis. Comparing fully methylated and demethylated complexes reveals an interconversion between states of different dynamics along the coiled-coil bundle, which might represent the essential characteristics of the signal transfer from the membrane to the binding sites of the downstream kinase CheA.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daniel Klose
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
- Department of Bioengineering and Bioinformatics and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Martin Engelhard
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | | |
Collapse
|
32
|
A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor. J Bacteriol 2015; 197:2568-79. [PMID: 26013490 DOI: 10.1128/jb.00274-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membrane-distal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An all-alanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. IMPORTANCE The Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control domain through piston displacements of a membrane-spanning helix and an adjoining five-residue control cable segment. We characterized the signaling properties of Tsr variants to elucidate the transmembrane signaling role of the control cable, an element present in many microbial sensory proteins. Both the kinase-on and kinase-off output states of Tsr depended on control cable helicity, but only one residue, I214, was critical for triggering responses to attractant inputs. These findings suggest that signal transmission in Tsr involves modulation of control cable helicity through interaction of the I214 side chain with the cytoplasmic membrane.
Collapse
|