1
|
Shi Z, Kuai M, Li B, Akowuah CF, Wang Z, Pan Y, Tang M, Yang X, Lü P. The role of VEGF in Cancer angiogenesis and tumorigenesis: Insights for anti-VEGF therapy. Cytokine 2025; 189:156908. [PMID: 40049050 DOI: 10.1016/j.cyto.2025.156908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis, playing a pivotal role in both physiological and pathological processes. It promotes the formation of new blood vessels and activates downstream signaling pathways that regulate endothelial cell function. This review highlights recent advancements in the understanding of VEGF's molecular structure and its isoforms, as well as their implications in disease progression. It also explores the mechanisms of VEGF inhibitors. While VEGF inhibitors show promise in the treatment of cancer and other diseases, their clinical use faces significant challenges, including drug resistance, side effects, and complex interactions with other signaling pathways. To address these challenges, future research should focus on: (i) enhancing the understanding of VEGF subtypes and their distinct roles in various diseases, supporting the development of personalized treatment strategies; (ii) developing combination therapies that integrate VEGF inhibitors with other targeted treatments to overcome resistance and improve efficacy; (iii) optimizing drug delivery systems to reduce off-target effects and enhance therapeutic outcomes. These approaches aim to improve the effectiveness and safety of VEGF-targeted therapies, offering new possibilities for the treatment of VEGF-related diseases.
Collapse
Affiliation(s)
- Zijun Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Mengmeng Kuai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Baohua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | | | - Zhenyu Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyue Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Xu Z, Ke Y, Feng Q, Tuerdimaimaiti A, Zhang D, Dong L, Liu A. Proteomic characteristics of the aqueous humor in Uyghur patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Exp Eye Res 2024; 243:109903. [PMID: 38642601 DOI: 10.1016/j.exer.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.
Collapse
Affiliation(s)
- Zhao Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yin Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Qiang Feng
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | | | - Dandan Zhang
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Aihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
3
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Shao W, Liu X, Gao L, Tian C, Shi Q. αA-Crystallin inhibits optic nerve astrocyte activation induced by oxygen-glucose deprivation in vitro. Life Sci 2021; 278:119533. [PMID: 33887346 DOI: 10.1016/j.lfs.2021.119533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
AIMS A previous study reported that intravitreal injection of αA-crystallin inhibits glial scar formation after optic nerve traumatic injury. The purpose of this study was to investigate the effect of αA-crystallin on optic nerve astrocytes induced by oxygen glucose deprivation (OGD) in vitro. MATERIALS AND METHODS Optic nerve astrocytes from newborn Long Evans rats were cultured with αA-crystallin (10-4 g/l) to detect the effects of αA-crystallin on astrocytes. Using a scratch assay, the effect of αA-crystallin treatment on astrocyte migration was assessed. Astrocytes were exposed to OGD and glucose reintroduction/reoxygenation culture for 24 h and 48 h. The expression of glial fibrillary acidic protein (GFAP) and neurocan were subsequently evaluated via immunocytochemistry and western blot. BMP2/4, BMPRIa/Ib and Smad1/5/8 mRNA expression levels were detected by RT-PCR. KEY FINDINGS The results showed that αA-crystallin slowed the migration of astrocytes in filling the scratch gaps. GFAP and neurocan expression in astrocytes was increased after OGD. However, after treatment with αA-crystallin, GFAP and neurocan expression levels clearly decreased. Furthermore, RT-PCR showed that BMP2 and BMP4 mRNA expression levels decreased significantly. SIGNIFICANCE These results suggest that αA-crystallin inhibits the activation of astrocytes after OGD injury in vitro. Inhibition of the BMP/Smad signaling pathway might be the mechanism underlying this effect.
Collapse
Affiliation(s)
- Weiyang Shao
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lixiong Gao
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chunyu Tian
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Qian Shi
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
5
|
Ghosh S, Liu H, Yazdankhah M, Stepicheva N, Shang P, Vaidya T, Hose S, Gupta U, Calderon MJ, Hu MW, Nair AP, Weiss J, Fitting CS, Bhutto IA, Gadde SGK, Naik NK, Jaydev C, Lutty GA, Handa JT, Jayagopal A, Qian J, Sahel JA, Rajasundaram D, Sergeev Y, Zigler JS, Sethu S, Watkins S, Ghosh A, Sinha D. βA1-crystallin regulates glucose metabolism and mitochondrial function in mouse retinal astrocytes by modulating PTP1B activity. Commun Biol 2021; 4:248. [PMID: 33627831 PMCID: PMC7904954 DOI: 10.1038/s42003-021-01763-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
βA3/A1-crystallin, a lens protein that is also expressed in astrocytes, is produced as βA3 and βA1-crystallin isoforms by leaky ribosomal scanning. In a previous human proteome high-throughput array, we found that βA3/A1-crystallin interacts with protein tyrosine phosphatase 1B (PTP1B), a key regulator of glucose metabolism. This prompted us to explore possible roles of βA3/A1-crystallin in metabolism of retinal astrocytes. We found that βA1-crystallin acts as an uncompetitive inhibitor of PTP1B, but βA3-crystallin does not. Loss of βA1-crystallin in astrocytes triggers metabolic abnormalities and inflammation. In CRISPR/cas9 gene-edited βA1-knockdown (KD) mice, but not in βA3-knockout (KO) mice, the streptozotocin (STZ)-induced diabetic retinopathy (DR)-like phenotype is exacerbated. Here, we have identified βA1-crystallin as a regulator of PTP1B; loss of this regulation may be a new mechanism by which astrocytes contribute to DR. Interestingly, proliferative diabetic retinopathy (PDR) patients showed reduced βA1-crystallin and higher levels of PTP1B in the vitreous humor.
Collapse
Affiliation(s)
- Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Urvi Gupta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Joseph Calderon
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Naveen Kumar Naik
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Chaitra Jaydev
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Gerard A Lutty
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiang Qian
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Simon Watkins
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Ikeda T, Nakamura K, Sato T, Kida T, Oku H. Involvement of Anoikis in Dissociated Optic Nerve Fiber Layer Appearance. Int J Mol Sci 2021; 22:ijms22041724. [PMID: 33572210 PMCID: PMC7914697 DOI: 10.3390/ijms22041724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Dissociated optic nerve fiber layer (DONFL) appearance is characterized by dimpling of the fundus when observed after vitrectomy with the internal limiting membrane (ILM) peeling in macular diseases. However, the cause of DONFL remains largely unknown. Optical coherence tomography (OCT) findings have indicated that the nerve fiber layer (NFL) and ganglion cells are likely to have been damaged in patients with DONFL appearance. Since DONFL appearance occurs at a certain postoperative period, it is unlikely to be retinal damage directly caused by ILM peeling because apoptosis occurs at a certain period after tissue damage and/or injury. However, it may be due to ILM peeling-induced apoptosis in the retinal tissue. Anoikis is a type of apoptosis that occurs in anchorage-dependent cells upon detachment of those cells from the surrounding extracellular matrix (i.e., the loss of cell anchorage). The anoikis-related proteins βA3/A1 crystallin and E-cadherin are reportedly expressed in retinal ganglion cells. Thus, we theorize that one possible cause of DONFL appearance is ILM peeling-induced anoikis in retinal ganglion cells.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City 569-8686, Osaka, Japan; (T.S.); (T.K.); (H.O.)
- Correspondence: ; Tel.: +81-72-684-6434
| | | | - Takaki Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City 569-8686, Osaka, Japan; (T.S.); (T.K.); (H.O.)
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City 569-8686, Osaka, Japan; (T.S.); (T.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City 569-8686, Osaka, Japan; (T.S.); (T.K.); (H.O.)
| |
Collapse
|
7
|
Yazdankhah M, Shang P, Ghosh S, Bhutto IA, Stepicheva N, Grebe R, Hose S, Weiss J, Luo T, Mishra S, Riazuddin SA, Ghosh A, Handa JT, Lutty GA, Zigler JS, Sinha D. Modulating EGFR-MTORC1-autophagy as a potential therapy for persistent fetal vasculature (PFV) disease. Autophagy 2020; 16:1130-1142. [PMID: 31462148 PMCID: PMC7469569 DOI: 10.1080/15548627.2019.1660545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022] Open
Abstract
Persistent fetal vasculature (PFV) is a human disease that results from failure of the fetal vasculature to regress normally. The regulatory mechanisms responsible for fetal vascular regression remain obscure, as does the underlying cause of regression failure. However, there are a few animal models that mimic the clinical manifestations of human PFV, which can be used to study different aspects of the disease. One such model is the Nuc1 rat model that arose from a spontaneous mutation in the Cryba1 (crystallin, beta 1) gene and exhibits complete failure of the hyaloid vasculature to regress. Our studies with the Nuc1 rat indicate that macroautophagy/autophagy, a process in eukaryotic cells for degrading dysfunctional components to ensure cellular homeostasis, is severely impaired in Nuc1 ocular astrocytes. Further, we show that CRYBA1 interacts with EGFR (epidermal growth factor receptor) and that loss of this interaction in Nuc1 astrocytes increases EGFR levels. Moreover, our data also show a reduction in EGFR degradation in Nuc1 astrocytes compared to control cells that leads to over-activation of the mechanistic target of rapamycin kinase complex 1 (MTORC1) pathway. The impaired EGFR-MTORC1-autophagy signaling in Nuc1 astrocytes triggers abnormal proliferation and migration. The abnormally migrating astrocytes ensheath the hyaloid artery, contributing to the pathogenesis of PFV in Nuc1, by adversely affecting the vascular remodeling processes essential to regression of the fetal vasculature. Herein, we demonstrate in vivo that gefitinib (EGFR inhibitor) can rescue the PFV phenotype in Nuc1 and may serve as a novel therapy for PFV disease by modulating the EGFR-MTORC1-autophagy pathway. ABBREVIATIONS ACTB: actin, beta; CCND3: cyclin 3; CDK6: cyclin-dependent kinase 6; CHQ: chloroquine; COL4A1: collagen, type IV, alpha 1; CRYBA1: crystallin, beta A1; DAPI: 4'6-diamino-2-phenylindole; EGFR: epidermal growth factor receptor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary growth factor; KDR: kinase insert domain protein receptor; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MKI67: antigen identified by monoclonal antibody Ki 67; MTORC1: mechanistic target of rapamycin kinase complex 1; PARP: poly (ADP-ribose) polymerase family; PCNA: proliferating cell nuclear antigen; PFV: persistent fetal vasculature; PHPV: persistent hyperplastic primary vitreous; RPE: retinal pigmented epithelium; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; SQSTM1/p62: sequestome 1; TUBB: tubulin, beta; VCL: vinculin; VEGFA: vascular endothelial growth factor A; WT: wild type.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A. Bhutto
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rhonda Grebe
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stacey Hose
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tianqi Luo
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subrata Mishra
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - James T. Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A. Lutty
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J. Samuel Zigler
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Limi S, Zhao Y, Guo P, Lopez-Jones M, Zheng D, Singer RH, Skoultchi AI, Cvekl A. Bidirectional Analysis of Cryba4-Crybb1 Nascent Transcription and Nuclear Accumulation of Crybb3 mRNAs in Lens Fibers. Invest Ophthalmol Vis Sci 2019; 60:234-244. [PMID: 30646012 PMCID: PMC6336207 DOI: 10.1167/iovs.18-25921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Crystallin gene expression during lens fiber cell differentiation is tightly spatially and temporally regulated. A significant fraction of mammalian genes is transcribed from adjacent promoters in opposite directions ("bidirectional" promoters). It is not known whether two proximal genes located on the same allele are simultaneously transcribed. Methods Mouse lens transcriptome was analyzed for paired genes whose transcriptional start sites are separated by less than 5 kbp to identify coexpressed bidirectional promoter gene pairs. To probe these transcriptional mechanisms, nascent transcription of Cryba4, Crybb1, and Crybb3 genes from gene-rich part of chromosome 5 was visualized by RNA fluorescent in situ hybridizations (RNA FISH) in individual lens fiber cell nuclei. Results Genome-wide lens transcriptome analysis by RNA-seq revealed that the Cryba4-Crybb1 pair has the highest Pearson correlation coefficient between their steady-state mRNA levels. Analysis of Cryba4 and Crybb1 nascent transcription revealed frequent simultaneous expression of both genes from the same allele. Nascent Crybb3 transcript visualization in "early" but not "late" differentiating lens fibers show nuclear accumulation of the spliced Crybb3 transcripts that was not affected in abnormal lens fiber cell nuclei depleted of chromatin remodeling enzyme Snf2h (Smarca5). Conclusions The current study shows for the first time that two highly expressed lens crystallin genes, Cryba4 and Crybb1, can be simultaneously transcribed from adjacent bidirectional promoters and do not show nuclear accumulation. In contrast, spliced Crybb3 mRNAs transiently accumulate in early lens fiber cell nuclei. The gene pairs coexpressed during lens development showed significant enrichment in human "cataract" phenotype.
Collapse
Affiliation(s)
- Saima Limi
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Yilin Zhao
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Peng Guo
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Melissa Lopez-Jones
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Deyou Zheng
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States.,Neurology, Albert Einstein College of Medicine, Bronx, New York, United States.,Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Robert H Singer
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Arthur I Skoultchi
- Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Ales Cvekl
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States.,Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
9
|
Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci 2018; 12:821. [PMID: 30483047 PMCID: PMC6244093 DOI: 10.3389/fnins.2018.00821] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.
Collapse
Affiliation(s)
- David J Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Ghosh S, Shang P, Terasaki H, Stepicheva N, Hose S, Yazdankhah M, Weiss J, Sakamoto T, Bhutto IA, Xia S, Zigler JS, Kannan R, Qian J, Handa JT, Sinha D. A Role for βA3/A1-Crystallin in Type 2 EMT of RPE Cells Occurring in Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD104-AMD113. [PMID: 30098172 PMCID: PMC6058694 DOI: 10.1167/iovs.18-24132] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose The RPE cells have a major role in the development of dry age-related macular degeneration (AMD). We present novel evidence that βA3/A1-crystallin, encoded by the Cryba1 gene, a protein known to be important for lysosomal clearance in the RPE, also has a role in epithelial-to-mesenchymal transition (EMT) of RPE cells. Methods RPE from dry AMD globes, genetically engineered mice lacking Cryba1 globally or specifically in the RPE, spontaneous mutant rats (Nuc1) with a loss-of-function mutation in Cryba1, and the melanoma OCM3 cell line were used. Spatial localization of proteins was demonstrated with immunofluorescence, gene expression levels were determined by quantitative PCR (qPCR), and protein levels by Western blotting. Cell movement was evaluated using wound healing and cell migration assays. Co-immunoprecipitation was used to identify binding partners of βA3/A1-crystallin. Results βA3/A1-crystallin is upregulated in polarized RPE cells compared to undifferentiated cells. Loss of βA3/A1-crystallin in murine and human RPE cells resulted in upregulation of Snail and vimentin, downregulation of E-cadherin, and increased cell migration. βA3/A1-crystallin binds to cortactin, and loss of βA3/A1-crystallin resulted in increased P-cortactinY421. The RPE from AMD samples had increased Snail and vimentin, and decreased E-cadherin, compared to age-matched controls. Conclusions We introduced a novel concept of dry AMD initiation induced by lysosomal clearance defects in the RPE and subsequent attempts by RPE cells to avoid the resulting stress by undergoing EMT. We demonstrate that βA3/A1-crystallin is a potential therapeutic target for AMD through rejuvenation of lysosomal dysfunction and potentially, reversal of EMT.
Collapse
Affiliation(s)
- Sayan Ghosh
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Peng Shang
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hiroto Terasaki
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Nadezda Stepicheva
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stacey Hose
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Meysam Yazdankhah
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joseph Weiss
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Taiji Sakamoto
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Imran A Bhutto
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - J Samuel Zigler
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Jiang Qian
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Shao WY, Liu X, Gu XL, Ying X, Wu N, Xu HW, Wang Y. Promotion of axon regeneration and inhibition of astrocyte activation by alpha A-crystallin on crushed optic nerve. Int J Ophthalmol 2016; 9:955-66. [PMID: 27500100 DOI: 10.18240/ijo.2016.07.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the effects of αA-crystallin in astrocyte gliosis after optic nerve crush (ONC) and the mechanism of α-crystallin in neuroprotection and axon regeneration. METHODS ONC was established on the Sprague-Dawley rat model and αA-crystallin (10(-4) g/L, 4 µL) was intravitreously injected into the rat model. Flash-visual evoked potential (F-VEP) was examined 14d after ONC, and the glial fibrillary acidic protein (GFAP) levels in the retina and crush site were analyzed 1, 3, 5, 7 and 14d after ONC by immunohistochemistry (IHC) and Western blot respectively. The levels of beta Tubulin (TUJ1), growth-associated membrane phosphoprotein-43 (GAP-43), chondroitin sulfate proteoglycans (CSPGs) and neurocan were also determined by IHC 14d after ONC. RESULTS GFAP level in the retina and the optic nerve significantly increased 1d after ONC, and reached the peak level 7d post-ONC. Injection of αA-crystallin significantly decreased GFAP level in both the retina and the crush site 3d after ONC, and induced astrocytes architecture remodeling at the crush site. Quantification of retinal ganglion cell (RGC) axons indicated αA-crystallin markedly promoted axon regeneration in ONC rats and enhanced the regenerated axons penetrated into the glial scar. CSPGs and neurocan expression also decreased 14d after αA-crystallin injection. The amplitude (N1-P1) and latency (P1) of F-VEP were also restored. CONCLUSION Our results suggest α-crystallin promotes the axon regeneration of RGCs and suppresses the activation of astrocytes.
Collapse
Affiliation(s)
- Wei-Yang Shao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xian-Liang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xi Ying
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Nan Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
12
|
Gaddini L, Varano M, Matteucci A, Mallozzi C, Villa M, Pricci F, Malchiodi-Albedi F. Müller glia activation by VEGF-antagonizing drugs: An in vitro study on rat primary retinal cultures. Exp Eye Res 2015; 145:158-163. [PMID: 26607807 DOI: 10.1016/j.exer.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 11/27/2022]
Abstract
The effects of the anti-Vascular Endothelial Growth Factor (VEGF) drugs ranibizumab and aflibercept were studied in Müller glia in primary mixed cultures from rat neonatal retina. Treatment with both agents induced activation of Müller glia, demonstrated by increased levels of Glial Fibrillary Acidic Protein. In addition, phosphorylated Extracellular-Regulated Kinase 1/2 (ERK 1/2) showed enhanced immunoreactivity in activated Müller glia. Treatment with aflibercept induced an increase in K(+) channel (Kir) 4.1 levels and both drugs upregulated Aquaporin 4 (AQP4) in activated Müller glia. The results show that VEGF-antagonizing drugs influence the homeostasis of Müller cells in primary retinal cultures, inducing an activated phenotype. Upregulation of Kir4.1 and AQP4 suggests that Müller glia activation following anti-VEGF drugs may not depict a detrimental gliotic reaction. Indeed, it could represent one of the mechanisms able to contribute to the therapeutic effects of these drugs, particularly in the presence of macular edema.
Collapse
Affiliation(s)
- Lucia Gaddini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, 00161, Italy
| | - Monica Varano
- GB Bietti Eye Foundation IRCCS, Via Livenza, 3, Rome, 00198, Italy
| | - Andrea Matteucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, 00161, Italy
| | - Cinzia Mallozzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, 00161, Italy
| | - Marika Villa
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, 00161, Italy
| | - Flavia Pricci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, 00161, Italy
| | - Fiorella Malchiodi-Albedi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, 00161, Italy.
| |
Collapse
|
13
|
Anbarasu K, Sivakumar J. Multidimensional significance of crystallin protein-protein interactions and their implications in various human diseases. Biochim Biophys Acta Gen Subj 2015; 1860:222-33. [PMID: 26365509 DOI: 10.1016/j.bbagen.2015.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Crystallins are the important structural and functional proteins in the eye lens responsible for refractive index. Post-translational modifications (PTMs) and mutations are major causative factors that affect crystallin structural conformation and functional characteristics thus playing a vital role in the etiology of cataractogenesis. SCOPE OF REVIEW The significance of crystallin protein-protein interactions (PPIs) in the lens and non-lenticular tissues is summarized. MAJOR CONCLUSIONS Aberrancy of PPIs between crystallin, its associated protein and metal ions has been accomplished in various human diseases including cataract. A detailed account on multidimensional structural and functional significance of crystallin PPI in humans must be brought into limelight, in order to understand the biochemical and molecular basis augmenting the aberrancies of such interaction. In this scenario, the present review is focused to shed light on studies which will aid to expand our present understanding on disease pathogenesis related to loss of PPI thereby paving the way for putative future therapeutic targets to curb such diseases. GENERAL SIGNIFICANCE The interactions with α-crystallins always aid to protect their structural and functional characteristics. The up-regulation of αB-crystallin in the non-lenticular tissues always decodes as biomarker for various stress related disorders. For better understanding and treatment of various diseases, PPI studies provide overall outline about the structural and functional characteristics of the proteins. This information not only helps to find out the route of cataractogenesis but also aid to identify potential molecules to inhibit/prevent the further development of such complicated phenomenon. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Kumarasamy Anbarasu
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu, India.
| | - Jeyarajan Sivakumar
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu, India
| |
Collapse
|
14
|
βA3/A1-crystallin and persistent fetal vasculature (PFV) disease of the eye. Biochim Biophys Acta Gen Subj 2015; 1860:287-98. [PMID: 26022148 DOI: 10.1016/j.bbagen.2015.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Persistent fetal vasculature (PFV) is a human disease in which the fetal vasculature of the eye fails to regress normally. The fetal, or hyaloid, vasculature nourishes the lens and retina during ocular development, subsequently regressing after formation of the retinal vessels. PFV causes serious congenital pathologies and is responsible for as much as 5% of blindness in the United States. SCOPE OF REVIEW The causes of PFV are poorly understood, however there are a number of animal models in which aspects of the disease are present. One such model results from mutation or elimination of the gene (Cryba1) encoding βA3/A1-crystallin. In this review we focus on the possible mechanisms whereby loss of functional βA3/A1-crystallin might lead to PFV. MAJOR CONCLUSIONS Cryba1 is abundantly expressed in the lens, but is also expressed in certain other ocular cells, including astrocytes. In animal models lacking βA3/A1-crystallin, astrocyte numbers are increased and they migrate abnormally from the retina to ensheath the persistent hyaloid artery. Evidence is presented that the absence of functional βA3/A1-crystallin causes failure of the normal acidification of endolysosomal compartments in the astrocytes, leading to impairment of certain critical signaling pathways, including mTOR and Notch/STAT3. GENERAL SIGNIFICANCE The findings suggest that impaired endolysosomal signaling in ocular astrocytes can cause PFV disease, by adversely affecting the vascular remodeling processes essential to ocular development, including regression of the fetal vasculature. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|