1
|
Wilson K, Arunachalam S. Cross-Species Insights into PR Proteins: A Comprehensive Study of Arabidopsis thaliana, Solanum lycopersicum, and Solanum tuberosum. Indian J Microbiol 2024; 64:1326-1338. [PMID: 39282158 PMCID: PMC11399520 DOI: 10.1007/s12088-024-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/18/2024] [Indexed: 09/18/2024] Open
Abstract
This study provides a comprehensive analysis of pathogenesis-related (PR) proteins, focusing on PR1, PR5, and PR10, in three plant species: Arabidopsis thaliana (At), Solanum lycopersicum (Sl), and Solanum tuberosum (St). We investigated various physico-chemical properties, including protein length, molecular weight, isoelectric point (pI), hydrophobicity, and structural characteristics, such as RMSD, using state-of-the-art tools like AlphaFold and PyMOL. Our analysis found that the SlPR10-StPR10 protein pair had the highest sequence identity (80.00%), lowest RMSD value (0.307 Å), and a high number of overlapping residues (160) among all other protein pairs, indicating their remarkable similarity. Additionally, we used bioinformatics tools such as Cello, Euk-mPLoc 2.0, and Wolfpsort to predict subcellular localization, with AtPR1, AtPR5, and SlPR5 proteins predicted to be located in the extracellular space in both Arabidopsis and S. lycopersicum, while AtPR10 was predicted to be located in the cytoplasm. This comprehensive analysis, including the use of cutting-edge structural prediction and subcellular localization tools, enhances our understanding of the structural, functional, and localization aspects of PR proteins, shedding light on their roles in plant defense mechanisms across different plant species. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01343-1.
Collapse
Affiliation(s)
- Karun Wilson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Sathiavelu Arunachalam
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
2
|
Ramos E, Selleghin-Veiga G, Magpali L, Daros B, Silva F, Picorelli A, Freitas L, Nery MF. Molecular Footprints on Osmoregulation-Related Genes Associated with Freshwater Colonization by Cetaceans and Sirenians. J Mol Evol 2023; 91:865-881. [PMID: 38010516 DOI: 10.1007/s00239-023-10141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
The genetic basis underlying adaptive physiological mechanisms has been extensively explored in mammals after colonizing the seas. However, independent lineages of aquatic mammals exhibit complex patterns of secondary colonization in freshwater environments. This change in habitat represents new osmotic challenges, and additional changes in key systems, such as the osmoregulatory system, are expected. Here, we studied the selective regime on coding and regulatory regions of 20 genes related to the osmoregulation system in strict aquatic mammals from independent evolutionary lineages, cetaceans, and sirenians, with representatives in marine and freshwater aquatic environments. We identified positive selection signals in genes encoding the protein vasopressin (AVP) in mammalian lineages with secondary colonization in the fluvial environment and in aquaporins for lineages inhabiting the marine and fluvial environments. A greater number of sites with positive selection signals were found for the dolphin species compared to the Amazonian manatee. Only the AQP5 and AVP genes showed selection signals in more than one independent lineage of these mammals. Furthermore, the vasopressin gene tree indicates greater similarity in river dolphin sequences despite the independence of their lineages based on the species tree. Patterns of distribution and enrichment of Transcription Factors in the promoter regions of target genes were analyzed and appear to be phylogenetically conserved among sister species. We found accelerated evolution signs in genes ACE, AQP1, AQP5, AQP7, AVP, NPP4, and NPR1 for the fluvial mammals. Together, these results allow a greater understanding of the molecular bases of the evolution of genes responsible for osmotic control in aquatic mammals.
Collapse
Affiliation(s)
- Elisa Ramos
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Giovanna Selleghin-Veiga
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Letícia Magpali
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Beatriz Daros
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Felipe Silva
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Agnello Picorelli
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Lucas Freitas
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva., Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP, 13083970, Brazil.
| |
Collapse
|
3
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
4
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
5
|
Integrated Full-Length Transcriptome and RNA-Seq to Identify Immune System Genes from the Skin of Sperm Whale ( Physeter macrocephalus). Genes (Basel) 2021; 12:genes12020233. [PMID: 33562637 PMCID: PMC7914425 DOI: 10.3390/genes12020233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cetaceans are a group of secondary aquatic mammals whose ancestors returned to the ocean from land, and during evolution, their immune systems adapted to the aquatic environment. Their skin, as the primary barrier to environmental pathogens, supposedly evolved to adapt to a new living environment. However, the immune system in the skin of cetaceans and the associated molecular mechanisms are still largely unknown. To better understand the immune system, we extracted RNA from the sperm whale's (Physeter macrocephalus) skin and performed PacBio full-length sequencing and RNA-seq sequencing. We obtained a total of 96,350 full-length transcripts with an average length of 1705 bp and detected 5150 genes that were associated with 21 immune-related pathways by gene annotation enrichment analysis. Moreover, we found 89 encoding genes corresponding to 33 proteins were annotated in the NOD-like receptor (NLR)-signaling pathway, including NOD1, NOD2, RIP2, and NF-kB genes, which were discussed in detail and predicted to play essential roles in the immune system of the sperm whale. Furthermore, NOD1 was highly conservative during evolution by the sequence comparison and phylogenetic tree. These results provide new information about the immune system in the skin of cetaceans, as well as the evolution of immune-related genes.
Collapse
|
6
|
Rolvien T, Hahn M, Siebert U, Püschel K, Wilke HJ, Busse B, Amling M, Oheim R. Vertebral bone microarchitecture and osteocyte characteristics of three toothed whale species with varying diving behaviour. Sci Rep 2017; 7:1604. [PMID: 28487524 PMCID: PMC5431672 DOI: 10.1038/s41598-017-01926-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Although vertebral bone microarchitecture has been studied in various tetrapods, limited quantitative data are available on the structural and compositional changes of vertebrae in marine mammals. Whales exhibit exceptional swimming and diving behaviour, and they may not be immune to diving-associated bone pathologies. Lumbar vertebral bodies were analysed in three toothed whale species: the sperm whale (Physeter macrocephalus), orca (Orcinus orca) and harbour porpoise (Phocoena phocoena). The bone volume fraction (BV/TV) did not scale with body size, although the trabeculae were thicker, fewer in number and further apart in larger whale species than in the other two species. These parameters had a negative allometric scaling relationship with body length. In sperm whales and orcas, the analyses revealed a central ossification zone (“bone-within-bone”) with an increased BV/TV and trabecular thickness. Furthermore, a large number of empty osteocyte lacunae was observed in the sperm whales. Quantitative backscattered electron imaging showed that the lacunae were significantly smaller and less densely packed. Our results indicate that whales have a unique vertebral bone morphology with an inside-out appearance and that deep diving may result in a small number of viable osteocytes because of diving depth-related osteocyte death.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761, Buesum, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14 D, 89081, Ulm, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| |
Collapse
|
7
|
Porter ML, Roberts NW, Partridge JC. Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments. Mol Phylogenet Evol 2016; 105:160-165. [DOI: 10.1016/j.ympev.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
|
8
|
Selection on different genes with equivalent functions: the convergence story told by Hox genes along the evolution of aquatic mammalian lineages. BMC Evol Biol 2016; 16:113. [PMID: 27209096 PMCID: PMC4875654 DOI: 10.1186/s12862-016-0682-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 11/24/2022] Open
Abstract
Background Convergent evolution has been a challenging topic for decades, being cetaceans, pinnipeds and sirenians textbook examples of three independent origins of equivalent phenotypes. These mammalian lineages acquired similar anatomical features correlated to an aquatic life, and remarkably differ from their terrestrial counterparts. Whether their molecular evolutionary history also involved similar genetic mechanisms underlying such morphological convergence nevertheless remained unknown. To test for the existence of convergent molecular signatures, we studied the molecular evolution of Hox genes in these three aquatic mammalian lineages, comparing their patterns to terrestrial mammals. Hox genes are transcription factors that play a pivotal role in specifying embryonic regional identity of nearly any bilateral animal, and are recognized major agents for diversification of body plans. Results We detected few signatures of positive selection on Hox genes across the three aquatic mammalian lineages and verified that purifying selection prevails in these sequences, as expected for pleiotropic genes. Genes found as being positively selected differ across the aquatic mammalian lineages, but we identified a substantial overlap of their developmental functions. Such pattern likely resides on the duplication history of Hox genes, which probably provided different possible evolutionary routes for achieving the same phenotypic solution. Conclusions Our results indicate that convergence occurred at a functional level of Hox genes along three independent origins of aquatic mammals. This conclusion reinforces the idea that different changes in developmental genes may lead to similar phenotypes, probably due to the redundancy provided by the participation of Hox paralogous genes in several developmental functions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0682-4) contains supplementary material, which is available to authorized users.
Collapse
|