1
|
Yao F, He J, Nyaruaba R, Wei H, Li Y. Endolysins as Effective Agents for Decontaminating S. typhimurium, E. coli, and L. monocytogenes on Mung Bean Seeds. Int J Mol Sci 2025; 26:2047. [PMID: 40076670 PMCID: PMC11900444 DOI: 10.3390/ijms26052047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Seeds are a major source of contamination by foodborne pathogens such as Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes, significantly increasing the risk of foodborne diseases associated with fresh produce like sprouts. In this study, we described novel endolysins and the engineered variants that exhibited potent bactericidal activity against these pathogens. These endolysins demonstrated strong bactericidal effects independently of outer membrane permeabilizers, effectively killing S. typhimurium, E. coli, and L. monocytogenes to undetectable levels (>4-log kill) at concentrations as low as 12.5 μg/mL. The enzymes retained their activity in complex environments, such as a wide range of temperatures (4-100 °C), pH values (4-10), serum concentrations (0-50%), and sodium chloride concentrations (0-500 mM). Furthermore, their rapid bactericidal kinetics, excellent storage stability (>18 months), and broad-spectrum antimicrobial activity enhanced their potential for application. These endolysins remained effective against stationary-phase bacteria and biofilm-forming bacteria, achieving more than 99% biofilm eradication at 200 μg/mL. Notably, at concentrations as low as 50 μg/mL, these enzymes completely decontaminated foodborne pathogens in a mung bean seed model contaminated with 4-5 log CFU of bacteria. This study is the first to report the successful use of lysins to control both Gram-negative and Gram-positive pathogens on mung bean seeds.
Collapse
Affiliation(s)
- Fangfang Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiajun He
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Raphael Nyaruaba
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongping Wei
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
2
|
Anandhan Sujatha V, Gopalakrishnan C, Anbarasu A, Ponnusamy CS, Choudhary R, Saravanan Geetha SA, Ramalingam R. Beyond the venom: Exploring the antimicrobial peptides from Androctonus species of scorpion. J Pept Sci 2024; 30:e3613. [PMID: 38749486 DOI: 10.1002/psc.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 10/08/2024]
Abstract
Prevalent worldwide, the Androctonus scorpion genus contributes a vital role in scorpion envenoming. While diverse scorpionisms are observed because of several different species, their secretions to protect themselves have been identified as a potent source of antimicrobial peptide (AMP)-like compounds. Distinctly, the venom of these species contains around 24 different AMPs, with definite molecules studied for their therapeutic potential as antimicrobial, antifungal, antiproliferative and antiangiogenic agents. Our review focuses on the therapeutic potential of native and synthetic AMPs identified so far in the Androctonus scorpion genus, identifying research gaps in peptide therapeutics and guiding further investigations. Certain AMPs have demonstrated remarkable compatibility to be prescribed as anticancer drug to reduce cancer cell proliferation and serve as a potent antibiotic alternative. Besides, analyses were performed to explore the characteristics and affinities of peptides for membranes. Overall, the study of AMPs derived from the Androctonus scorpion genus provides valuable insights into their potential applications in medicine and drug development.
Collapse
Affiliation(s)
- Vinutha Anandhan Sujatha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Chandrasekhar Gopalakrishnan
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Amarnath Anbarasu
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Chandra Sekar Ponnusamy
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Rajkumar Choudhary
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Sree Agash Saravanan Geetha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Rajasekaran Ramalingam
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Cabral LGDS, de Oliveira CS, Oliveira VX, Alves RCB, Poyet JL, Maria DA. Antitumoral and Antiproliferative Potential of Synthetic Derivatives of Scorpion Peptide IsCT1 in an Oral Cavity Squamous Carcinoma Model. Molecules 2024; 29:4533. [PMID: 39407463 PMCID: PMC11478212 DOI: 10.3390/molecules29194533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
The oral cavity is a frequent site for head and neck cancers, which rank as the sixth most common cancer globally, with a 5-year survival rate slightly over 50%. Current treatments are limited, and resistance to therapy remains a significant clinical obstacle. IsCT1, a membrane-active peptide derived from the venom of the scorpion Opisthacanthus madagascariensis, has shown antitumor effects in various cancer cell lines, including breast cancer and chronic myeloid leukemia. However, its hemolytic action limits its potential therapeutic use. This study aims to assess the antitumor and antiproliferative activities of synthetic peptides derived from IsCT1 (IsCT-P, AC-AFPK-IsCT1, AFPK-IsCT1, AC-KKK-IsCT1, and KKK-IsCT1) in the context of oral squamous cell carcinoma. We evaluated the cytotoxic effects of these peptides on tongue squamous cell carcinoma cells and normal cells, as well as their impact on cell cycle phases, the expression of proliferation markers, modulators of cell death pathways, and mitochondrial potential. Our results indicate that the IsCT1 derivatives IsCT-P and AC-AFPK-IsCT1 possess cytotoxic properties towards squamous cell carcinoma cells, reducing mitochondrial membrane potential and the proliferative index. The treatment of cancer cells with AC-AFPK-IsCT1 led to a positive modulation of pro-apoptotic markers p53 and caspases 3 and 8, a decrease in PCNA and Cyclin D1 expression, and cell cycle arrest in the S phase. Notably, contrary to the parental IsCT1 peptide, AC-AFPK-IsCT1 did not exhibit hemolytic activity or cytotoxicity towards normal cells. Therefore, AC-AFPK-IsCT1 might be a viable therapeutic option for head and neck cancer treatment.
Collapse
Affiliation(s)
- Laertty Garcia de Sousa Cabral
- Faculty of Medicine, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, Brazil;
| | - Cyntia Silva de Oliveira
- Paulista School of Medicine, Postgraduate Program in Molecular Biology, Federal University of São Paulo, Sao Paulo 04044-020, Brazil; (C.S.d.O.); (V.X.O.J.)
| | - Vani Xavier Oliveira
- Paulista School of Medicine, Postgraduate Program in Molecular Biology, Federal University of São Paulo, Sao Paulo 04044-020, Brazil; (C.S.d.O.); (V.X.O.J.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-560, Brazil
| | | | - Jean-Luc Poyet
- INSERM UMRS976, Institut De Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Durvanei Augusto Maria
- Faculty of Medicine, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, Brazil;
| |
Collapse
|
4
|
Jantaruk P, Teerapo K, Charoenwutthikun S, Roytrakul S, Kunthalert D. Anti-Biofilm and Anti-Inflammatory Properties of the Truncated Analogs of the Scorpion Venom-Derived Peptide IsCT against Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:775. [PMID: 39200075 PMCID: PMC11352108 DOI: 10.3390/antibiotics13080775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in humans and a frequent cause of severe nosocomial infections and fatal infections in immunocompromised individuals. Its ability to form biofilms has been the main driving force behind its resistance to almost all conventional antibiotics, thereby limiting treatment efficacy. In an effort to discover novel therapeutic agents to fight P. aeruginosa-associated biofilm infections, the truncated analogs of scorpion venom-derived peptide IsCT were synthesized and their anti-biofilm properties were examined. Among the investigated peptides, the IsCT-Δ6-8 peptide evidently showed the most potential anti-P. aeruginosa biofilm activity and the effect was not due to bacterial growth inhibition. The IsCT-Δ6-8 peptide also exhibited inhibitory activity against the production of pyocyanin, an important virulence factor of P. aeruginosa. Furthermore, the IsCT-Δ6-8 peptide significantly suppressed the production of inflammatory mediators nitric oxide and interleukin-6 in P. aeruginosa LPS-induced macrophages. Due to its low cytotoxicity to mammalian cells, the IsCT-Δ6-8 peptide emerges as a promising candidate with significant anti-biofilm and anti-inflammatory properties. These findings highlight its potential application in treating P. aeruginosa-related biofilm infections.
Collapse
Affiliation(s)
- Pornpimon Jantaruk
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
| | - Kittitat Teerapo
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
| | - Supattra Charoenwutthikun
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand;
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Panayi T, Diavoli S, Nicolaidou V, Papaneophytou C, Petrou C, Sarigiannis Y. Short-Chained Linear Scorpion Peptides: A Pool for Novel Antimicrobials. Antibiotics (Basel) 2024; 13:422. [PMID: 38786150 PMCID: PMC11117241 DOI: 10.3390/antibiotics13050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Scorpion venom peptides are generally classified into two main groups: the disulfide bridged peptides (DBPs), which usually target membrane-associated ion channels, and the non-disulfide bridged peptides (NDBPs), a smaller group with multifunctional properties. In the past decade, these peptides have gained interest because most of them display functions that include antimicrobial, anticancer, haemolytic, and anti-inflammatory activities. Our current study focuses on the short (9-19 amino acids) antimicrobial linear scorpion peptides. Most of these peptides display a net positive charge of 1 or 2, an isoelectric point at pH 9-10, a broad range of hydrophobicity, and a Grand Average of Hydropathy (GRAVY) Value ranging between -0.05 and 1.7. These features allow these peptides to be attracted toward the negatively charged phospholipid head groups of the lipid membranes of target cells, a force driven by electrostatic interactions. This review outlines the antimicrobial potential of short-chained linear scorpion venom peptides. Additionally, short linear scorpion peptides are in general more attractive for large-scale synthesis from a manufacturing point of view. The structural and functional diversity of these peptides represents a good starting point for the development of new peptide-based therapeutics.
Collapse
Affiliation(s)
- Tolis Panayi
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (T.P.); (V.N.); (C.P.)
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| | - Spiridoula Diavoli
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (T.P.); (V.N.); (C.P.)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (T.P.); (V.N.); (C.P.)
| | - Christos Petrou
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| | - Yiannis Sarigiannis
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| |
Collapse
|
6
|
Salinas-Restrepo C, Naranjo-Duran AM, Quintana J, Bueno J, Guzman F, Hoyos Palacio LM, Segura C. Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 13:6. [PMID: 38275316 PMCID: PMC10812672 DOI: 10.3390/antibiotics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024] Open
Abstract
Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod's AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential "carpet model" mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin's effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Ana María Naranjo-Duran
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Juan Quintana
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050012, Colombia;
| | - Julio Bueno
- Grupo Reproducción, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia;
| | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 3100000, Chile;
| | - Lina M. Hoyos Palacio
- Escuela de Ciencias de la Salud, Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
7
|
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF. Antimicrobial Peptide Analogs From Scorpions: Modifications and Structure-Activity. Front Mol Biosci 2022; 9:887763. [PMID: 35712354 PMCID: PMC9197468 DOI: 10.3389/fmolb.2022.887763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.
Collapse
Affiliation(s)
- Bruno Amorim-Carmo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Adriana M. S. Parente
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Eden S. Souza
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Arnóbio A. Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Renata M. Araújo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Matheus F. Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| |
Collapse
|
8
|
Pratap Verma D, Ansari MM, Verma NK, Saroj J, Akhtar S, Pant G, Mitra K, Singh BN, Ghosh JK. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J Med Chem 2021; 64:15349-15366. [PMID: 34662112 DOI: 10.1021/acs.jmedchem.1c01352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To design novel antimicrobial peptides by utilizing the sequence of the human host defense protein, chemerin, a seven-residue amphipathic stretch located in the amino acid region, 109-115, was identified, which possesses the highest density of hydrophobic and positively charged residues. Although this 7-mer peptide was inactive toward microorganisms, its 14-mer tandem repeat (Chem-KVL) was highly active against different bacteria including methicillin-resistant Staphylococcus aureus, a multidrug-resistant Staphylococcus aureus strain, and slow- and fast-growing mycobacterial species. The selective enantiomeric substitutions of its two l-lysine residues were attempted to confer cell selectivity and proteolytic stability to Chem-KVL. Chem-8dK with a d-lysine replacement in its middle (eighth position) showed the lowest hemolytic activity against human red blood cells among Chem-KVL analogues and maintained high antimicrobial properties. Chem-8dK showed in vivo efficacy against Pseudomonas aeruginosa infection in BALB/c mice and inhibited the development of resistance in this microorganism up to 30 serial passages and growth of intracellular mycobacteria in THP-1 cells.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
9
|
Oliveira CS, Torres MDT, Pedron CN, Andrade VB, Silva PI, Silva FD, de la Fuente-Nunez C, Oliveira VX. Synthetic Peptide Derived from Scorpion Venom Displays Minimal Toxicity and Anti-infective Activity in an Animal Model. ACS Infect Dis 2021; 7:2736-2745. [PMID: 34463484 DOI: 10.1021/acsinfecdis.1c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multidrug-resistant bacteria represent a global health problem increasingly leading to infections that are untreatable with our existing antibiotic arsenal. Therefore, it is critical to identify novel effective antimicrobials. Venoms represent an underexplored source of potential antibiotic molecules. Here, we engineered a peptide (IsCT1-NH2) derived from the venom of the scorpion Opisthacanthus madagascariensis, whose application as an antimicrobial had been traditionally hindered by its high toxicity. Through peptide design and the knowledge obtained in preliminary studies with single and double-substituted analogs, we engineered IsCT1 derivatives with multiple amino acid substitutions to assess the impact of net charge on antimicrobial activity and toxicity. We demonstrate that increased net charge (from +3 to +6) significantly reduced toxicity toward human erythrocytes. Our lead synthetic peptide, [A]1[K]3[F]5[K]8-IsCT1-NH2 (net charge of +4), exhibited increased antimicrobial activity against Gram-negative and Gram-positive bacteria in vitro and enhanced anti-infective activity in a mouse model. Mechanism of action studies revealed that the increased antimicrobial activity of our lead molecule was due, at least in part, to its enhanced ability to permeabilize the outer membrane and depolarize the cytoplasmic membrane. In summary, we describe a simple method based on net charge tuning to turn highly toxic venom-derived peptides into viable therapeutics.
Collapse
Affiliation(s)
- Cyntia Silva Oliveira
- Escola Paulista de Medicina, Programa de pós-graduação em Biologia Molecular, Universidade Federal de São Paulo, São Paulo, SP 04044020, Brazil
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cibele Nicolaski Pedron
- Escola Paulista de Medicina, Programa de pós-graduação em Biologia Molecular, Universidade Federal de São Paulo, São Paulo, SP 04044020, Brazil
| | - Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580, Brazil
| | - Pedro Ismael Silva
- Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, São Paulo, SP 05503900, Brazil
| | - Fernanda Dias Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vani Xavier Oliveira
- Escola Paulista de Medicina, Programa de pós-graduação em Biologia Molecular, Universidade Federal de São Paulo, São Paulo, SP 04044020, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580, Brazil
| |
Collapse
|
10
|
Yadav V, Misra R. A review emphasizing on utility of heptad repeat sequence as a tool to design pharmacologically safe peptide-based antibiotics. Biochimie 2021; 191:126-139. [PMID: 34492334 DOI: 10.1016/j.biochi.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Extensive usage of antibiotics has created an unprecedented scenario of the rapid emergence of many drug-resistant bacteria, which has become an alarming public health concern around the globe. Search for better alternatives that are as efficacious as antibiotics led to the discovery of antimicrobial peptides (AMPs). These small cationic amphiphilic peptides have emerged as a promising option as antimicrobial agents, owing to their multifaceted implications against varied pathogens. Recent years have witnessed tremendous growth in research on AMPs resulting in them being tested in clinical trials of which six got approved for topical application. The relatively less successful outcome has been attributed to the poor cell selectivity shown by most of the naturally occurring AMPs. This drawback needs to be circumvented by identifying strategies to design safe and effective peptides. In the present review, we have emphasized the importance of heptad repeat sequence (leucine and/or phenylalanine zipper motif) as a tool that has shown great promise in remodeling the toxic AMPs to safe antimicrobial agents.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULiège), Liège, Belgium.
| | - Richa Misra
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Batista Martins D, Fadel V, Oliveira FD, Gaspar D, Alvares DS, Castanho MARB, Dos Santos Cabrera MP. Protonectin peptides target lipids, act at the interface and selectively kill metastatic breast cancer cells while preserving morphological integrity. J Colloid Interface Sci 2021; 601:517-530. [PMID: 34090029 DOI: 10.1016/j.jcis.2021.05.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Despite the need for innovative compounds as antimicrobial and anticancer agents, natural sources of peptides remain underexplored. Protonectin (PTN), a cationic dodecapeptide of pharmacological interest, presents large hydrophobicity that is associated with the tendency to aggregate and supposedly influences bioactivity. A disaggregating role was assigned to PTN' N-terminal fragment (PTN1-6), which enhances the bioactivity of PTN in a 1:1 mixture (PTN/PTN1-6). Spectroscopic techniques and model membranes (phospholipid bilayers and SDS micelles) revealed that environment-dependent aggregation is reduced for PTN/PTN1-6, but cytotoxicity of PTNs on MDA-MB-231 breast cancer showed the same CC50 values around 16 µM and on MCF-10A epithelial breast cells 6 to 5-fold higher values, revealing a selective interaction. Since PTN1-6 lacks activity on breast cells, its presence should differently affect PTN activity, suggesting that aggregation could modulate activity depending on the membrane characteristics. Indeed, increased partitioning and lytic activity of PTN/PTN1-6 were found in model membranes independently of charge density, but affected by the curvature tendency. PTN and PTN/PTN1-6 do not alter morphology and roughness of cancer cells, indicating a superficial interaction with membranes and consistent with results obtained in NMR experiments. Our results indicate that aggregation of PTNs depends on the membrane characteristics and modulates the activity of the peptides.
Collapse
Affiliation(s)
- Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Valmir Fadel
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Filipa D Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Dayane S Alvares
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcia Perez Dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil; Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Azmi S, Verma NK, Tripathi JK, Srivastava S, Verma DP, Ghosh JK. Introduction of cell‐selectivity in bovine cathelicidin
BMAP
‐28 by exchanging heptadic isoleucine with the adjacent proline at a non‐heptadic position. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sarfuddin Azmi
- Molecular and Structural Biology Division CSIR‐CDRI Lucknow India
- Scientific Research Centre Prince Sultan Military Medical City, Sulaimaniyah Riyadh Saudi Arabia
| | | | | | | | | | | |
Collapse
|
13
|
Kumari T, Verma DP, Afshan T, Verma NK, Pant G, Ali M, Shukla PK, Mitra K, Ghosh JK. A Noncytotoxic Temporin L Analogue with In Vivo Antibacterial and Antiendotoxin Activities and a Nonmembrane-Lytic Mode of Action. ACS Infect Dis 2020; 6:2369-2385. [PMID: 32786286 DOI: 10.1021/acsinfecdis.0c00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytotoxic frog antimicrobial peptide Temporin L (TempL) is an attractive molecule for the design of lead antimicrobial agents due to its short size and versatile biological activities. However, noncytotoxic TempL variants with desirable biological activities have rarely been reported. TempL analogue Q3K,TempL is water-soluble and possesses a significant antiendotoxin property along with comparable cytotoxicity to TempL. A phenylalanine residue, located at the hydrophobic face of Q3K,TempL and the "d" position of its phenylalanine zipper sequence, was replaced with a cationic lysine residue. This analogue, Q3K,F8K,TempL, showed reduced hydrophobic moment and was noncytotoxic with lower antimicrobial activity. Interestingly, swapping between tryptophan at the fourth and serine at the sixth positions turned Q3K,F8K,TempL totally amphipathic as reflected by its helical wheel projection with clusters of hydrophobic and hydrophilic residues and the highest hydrophobic moment among these peptides. Surprisingly, this analogue, SW,Q3K,F8K,TempL, was as noncytotoxic as Q3K,F8K,TempL but showed augmented antimicrobial and antiendotoxin properties, comparable to that of TempL and Q3K,TempL. SW,Q3K,F8K,TempL exhibited appreciable survival of mice against P. aeruginosa infection and a lipopolysaccharide (LPS) challenge. Unlike TempL and Q3K,TempL, SW,Q3K,F8K,TempL adopted an unordered secondary structure in bacterial membrane mimetic lipid vesicles and did not permeabilize them or depolarize the bacterial membrane. Overall, the results demonstrate the design of a nontoxic TempL analogue that possesses clusters of hydrophobic and hydrophilic residues with impaired secondary structure and shows a nonmembrane-lytic mechanism and in vivo antiendotoxin and antimicrobial activities. This paradigm of design of antimicrobial peptide with clusters of hydrophobic and hydrophilic residues and high hydrophobic moment but low secondary structure could be attempted further.
Collapse
Affiliation(s)
- Tripti Kumari
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Devesh Pratap Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Tayyaba Afshan
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Neeraj Kumar Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Mehmood Ali
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - P. K. Shukla
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| |
Collapse
|
14
|
Yamada M, Shigemune H, Maeda S, Sawada H. Directional and velocity control of active droplets using a rigid-frame. RSC Adv 2019; 9:40523-40530. [PMID: 35542662 PMCID: PMC9076230 DOI: 10.1039/c9ra07789h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/28/2019] [Indexed: 01/06/2023] Open
Abstract
This paper introduces a novel directional control method of self-propelled oil droplets. Oil droplets locomote spontaneously with surfactant action. This self-propulsion is caused by Marangoni convection within the oil droplet due to differences in the surfactant concentration at the droplet surface. Recent studies have reported that self-propelled oil droplets change their locomotion style depending on their shapes. We confirm that spherical oil droplets move randomly, including straight motion, bending motion, and rotation. In particular, we discover that boomerang-shaped oil droplets exhibit only straight motion. In this study, we introduce an exoskeleton for the directional and velocity control of oil droplets. A droplet shaped as a boomerang by an exoskeleton locomotes in the direction from a concave region to a convex region. Through experimental studies, we found that the stability of the velocity and locomotion direction depended on the boomerang shape. Self-propelled oil droplets with exoskeletons were then applied to a transporting robot driven only by the energy obtained from chemical reactions. We demonstrate the robot pushes and transports an object floating on water.
Collapse
Affiliation(s)
- Masato Yamada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Hiroki Shigemune
- Department of Engineering Science and Mechanics, School of Engineering, Shibaura Institute of Technology 3-7-5 Toyosu, Koto-ku Tokyo 135-8548 Japan
| | - Shingo Maeda
- Department of Engineering Science and Mechanics, School of Engineering, Shibaura Institute of Technology 3-7-5 Toyosu, Koto-ku Tokyo 135-8548 Japan
| | - Hideyuki Sawada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
15
|
Acevedo ICC, Silva Jr PI, Silva FD, Araújo I, Alves FL, Oliveira CS, Oliveira Jr VX. IsCT‐based analogs intending better biological activity. J Pept Sci 2019; 25:e3219. [DOI: 10.1002/psc.3219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Fernanda Dias Silva
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André SP Brazil
| | - Iris Araújo
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André SP Brazil
| | - Flávio Lopes Alves
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André SP Brazil
- Departamento de BiofísicaUniversidade Federal de São Paulo São Paulo SP Brazil
| | | | - Vani Xavier Oliveira Jr
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André SP Brazil
- Departamento de BiofísicaUniversidade Federal de São Paulo São Paulo SP Brazil
| |
Collapse
|
16
|
Sweidan A, Smida I, Chollet-Krugler M, Sauvager A, Vallet J, Gouault N, Oliviero N, Tamanai-Shacoori Z, Burel A, van de Weghe P, Chokr A, Tomasi S, Bousarghin L. Lichen butyrolactone derivatives disrupt oral bacterial membrane. Fitoterapia 2019; 137:104274. [DOI: 10.1016/j.fitote.2019.104274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
|
17
|
The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. Eur J Pharm Sci 2019; 136:104952. [DOI: 10.1016/j.ejps.2019.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
|
18
|
Faya M, Kalhapure RS, Dhumal D, Agrawal N, Omolo C, Akamanchi KG, Govender T. Antimicrobial cell penetrating peptides with bacterial cell specificity: pharmacophore modelling, quantitative structure activity relationship and molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:2370-2380. [PMID: 30047310 DOI: 10.1080/07391102.2018.1484814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Current research has shown cell-penetrating peptides and antimicrobial peptides (AMPs) as probable vectors for use in drug delivery and as novel antibiotics. It has been reported that the higher the therapeutic index (TI) the higher would be the bacterial cell penetrating ability. To the best of our knowledge, no in-silico study has been performed to determine bacterial cell specificity of the antimicrobial cell penetrating peptides (aCPP's) based on their TI. The aim of this study was to develop a quantitative structure activity relationship (QSAR) model, which can estimate antimicrobial potential and cell-penetrating ability of aCPPs against S. aureus, to confirm the relationship between the TI and aCPPs and to identify specific descriptors responsible for aCPPs penetrating ability. Molecular dynamics (MD) simulation was also performed to confirm the membrane insertion of the most active aCPPs obtained from the QSAR study. The most appropriate pharmacophore was identified to predict the aCPP's activity. The statistical results confirmed the validity of the model. The QSAR model was successful in identifying the optimal aCPP with high activity prediction and provided insights into the structural requirements to correlate their TI to cell penetrating ability. MD simulation of the best aCPP with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer confirmed its interaction with the membrane and the C-terminal residues of the aCPP played a key role in membrane penetration. The strategy of combining QSAR and molecular dynamics, allowed for optimal estimation of ligand-target interaction and confirmed the importance of Trp and Lys in interacting with the POPC bilayer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mbuso Faya
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Rahul S Kalhapure
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Dinesh Dhumal
- b Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Nikhil Agrawal
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Calvin Omolo
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Krishnacharya G Akamanchi
- b Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Thirumala Govender
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| |
Collapse
|
19
|
Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Acta Biomater 2017; 57:170-186. [PMID: 28483698 DOI: 10.1016/j.actbio.2017.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 05/04/2017] [Indexed: 01/09/2023]
Abstract
Introducing cell-selectivity in antimicrobial peptides (AMPs) without compromising the antimicrobial and anti-endotoxin properties is a crucial step towards the development of new antimicrobial agents. A peptide designed on phenylalanine heptad repeat possesses significant cytotoxicity along with desired antimicrobial and anti-endotoxin properties. Amino acid substitutions at 'a' and/or 'd' positions of heptad repeats of AMPs could alter their helical structure in mammalian membrane-mimetic environments and cytotoxicity towards mammalian cells. Since proline is a helix breaker, effects of selective proline substitution(s) at 'a' and/or 'd' positions of a 15-residue peptide designed on phenylalanine heptad repeat (FR-15) were investigated. Proline-substituted FR-15 variants were highly selective toward bacteria and fungi over hRBCs and murine 3T3 cells and also retained their antibacterial activities at high salt, serum and elevated temperatures. These non-cytotoxic variants also inhibited LPS-induced production of pro-inflammatory cytokines/chemokines in human monocytes, THP-1, RAW 264.7 and in BALB/c mice. The two non-cytotoxic variants (FR8P and FR11P) showed potent anti-cancer activity against highly metastatic human breast cancer cell line MDA-MB-231 with IC50 values less than 10μM. At sub-IC50 concentrations, FR8P and FR11P also showed anti-migratory and anti-invasive effects against MDA-MB-231 cells. FR8P and FR11P induced cellular apoptosis by triggering intrinsic apoptotic pathway through depolarization of mitochondrial membrane potential and activation of caspases. Overall the results demonstrated the utilization of selective phenylalanine to proline substitution in a heptad repeat of phenylalanine residues for the design of cell-selective, broad-spectrum AMPs with significant anti-cancer properties. STATEMENT OF SIGNIFICANCE We have demonstrated a methodology to design cell-selective potent antimicrobial and anti-endotoxin peptides by utilizing phenylalanine zipper as a template and replacement of phenylalanine residue(s) from "a" and/or "d" position(s) with proline residue(s) produced non-cytotoxic AMPs with improved antibacterial properties against the drug-resistant strains of bacteria. The work showed that the 'a' and 'd' positions of the phenylalanine heptad repeat could be replaced by an appropriate amino acid to control cytotoxicity of the peptide without compromising its potency in antimicrobial and anti-endotoxin properties. The direct bacterial membrane targeting mechanism of proline substituted analogs of parent peptide makes difficult for bacteria to grow resistance against them. The peptides designed could be lead molecules in the area of sepsis as they possess significant anti-LPS activities for in vitro and in vivo. Interestingly since cancer cells and bacterial cell membranes possess the structural resemblances, the cancer cells are also targets for these peptides making them lead molecules in this field. However, unlike in bacteria where the peptides showed membrane permeabilization property to lyse them, the peptides induced apoptosis in MDA-MB-231 breast cancer cells to inhibit their proliferation and growth. The results are significant because it reveals that "a" and "d" positions of a phenylalanine zipper can be utilized as switches to design cell-selective, antimicrobial, anti-endotoxin and anticancer peptides.
Collapse
|
20
|
Antibacterial Activity and Toxicity of Analogs of Scorpion Venom IsCT Peptides. Antibiotics (Basel) 2017; 6:antibiotics6030013. [PMID: 28657596 PMCID: PMC5617977 DOI: 10.3390/antibiotics6030013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Seven analogs of the natural, α-helix peptides IsCT1 and IsCT2-found in the venom of scorpion Opithancatus Madagascariensis-have been synthesized and tested to compare their antibacterial and hemolytic activity against natural peptides. In general, results show that increasing hydrophobicity by substituting positions 5 and 9 of the sequences with alanine, valine, and leucine, enhances antibacterial activity. However, this also increases hemolytic activity. The analog with an increased net positive charge from +1 to +3 produces moderate bacterial growth inhibition but also has high hemolytic activity. On the other hand, the analog with a negative net charge (-1) has low antibacterial properties but also no cytotoxicity under the tested conditions, a similar result was found for five of the seven studied analogs.
Collapse
|
21
|
Identification of GXXXXG motif in Chrysophsin-1 and its implication in the design of analogs with cell-selective antimicrobial and anti-endotoxin activities. Sci Rep 2017; 7:3384. [PMID: 28611397 PMCID: PMC5469811 DOI: 10.1038/s41598-017-03576-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Marine fish antimicrobial peptide, chrysophsin-1 possesses versatile biological activities but its non-selective nature restricts its therapeutic possibilities. Often small alterations in structural motifs result in significant changes in the properties of concerned proteins/peptides. We have identified GXXXXG motif in chrysophsin-1. Glycine residue(s) of this motif in Chrysophsin-1 was/were replaced with alanine, valine and proline residue(s). Of these, proline-substituted Chrysophsin-1 analogs exhibited significantly reduced cytotoxicity towards mammalian cells. Further, these analogs showed broad-spectrum activity against Gram-positive, Gram-negative bacteria, Methicillin-resistant Staphylococcus aureus strains and fungi and also retained antibacterial activity in presence of physiological salts, serum and at elevated temperatures indicative of their therapeutic potential. These Chrysophsin-1 analogs also inhibited lipopolysaccharide (LPS) induced pro-inflammatory responses in THP-1 cells and in murine primary macrophages. One of these single proline-substituted Chrysophsin-1 analogs inhibited LPS-stimulated pro-inflammatory cytokine production in BALB/c mice and elicited appreciable survival of mice administered with a lethal dose of LPS in a model of severe sepsis. The data for the first time showed the implication of GXXXXG motifs in functional and biological properties of an antimicrobial peptide and could be useful to design novel anti-microbial and anti-endotoxin peptides by employing this motif.
Collapse
|
22
|
Piscidin-1-analogs with double L- and D-lysine residues exhibited different conformations in lipopolysaccharide but comparable anti-endotoxin activities. Sci Rep 2017; 7:39925. [PMID: 28051162 PMCID: PMC5209718 DOI: 10.1038/srep39925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
To become clinically effective, antimicrobial peptides (AMPs) should be non-cytotoxic to host cells. Piscidins are a group of fish-derived AMPs with potent antimicrobial and antiendotoxin activities but limited by extreme cytotoxicity. We conjectured that introduction of cationic residue(s) at the interface of polar and non-polar faces of piscidins may control their insertion into hydrophobic mammalian cell membrane and thereby reducing cytotoxicity. We have designed several novel analogs of piscidin-1 by substituting threonine residue(s) with L and D-lysine residue(s). L/D-lysine-substituted analogs showed significantly reduced cytotoxicity but exhibited either higher or comparable antibacterial activity akin to piscidin-1. Piscidin-1-analogs demonstrated higher efficacy than piscidin-1 in inhibiting lipopolysaccharide (LPS)-induced pro-inflammatory responses in THP-1 cells. T15,21K-piscidin-1 (0.5 mg/Kg) and T15,21dK-piscidin-1 (1.0 mg/Kg) demonstrated 100% survival of LPS (12.0 mg/Kg)-administered mice. High resolution NMR studies revealed that both piscidin-1 and T15,21K-piscidin-1 adopted helical structures, with latter showing a shorter helix, higher amphipathicity and cationic residues placed at optimal distances to form ionic/hydrogen bond with lipid A of LPS. Remarkably, T15,21dK-piscidin-1 showed a helix-loop-helix structure in LPS and its interactions with LPS could be sustained by the distance of separation of side chains of R7 and D-Lys-15 which is close to the inter-phosphate distance of lipid A.
Collapse
|
23
|
Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence. Biochem J 2016; 473:4045-4062. [PMID: 27609815 DOI: 10.1042/bcj20160713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/07/2016] [Indexed: 11/17/2022]
Abstract
A 13-residue frog antimicrobial peptide Temporin L (TempL) possesses versatile antimicrobial activities and is considered a lead molecule for the development of new antimicrobial agents. To find out the amino acid sequences that influence the anti-microbial property of TempL, a phenylalanine zipper-like sequence was identified in it which was not reported earlier. Several alanine-substituted analogs and a scrambled peptide having the same composition of TempL were designed for evaluating the role of this motif. To investigate whether leucine residues instead of phenylalanine residues at 'a' and/or 'd' position(s) of the heptad repeat sequence could alter its antimicrobial property, several TempL analogs were synthesized after replacing these phenylalanine residues with leucine residues. Replacing phenylalanine residues with alanine residues in the phenylalanine zipper sequence significantly compromised the anti-endotoxin property of TempL. This is evident from the higher production of tumor necrosis factor-α and interleukin-6 in lipopolysaccharide (LPS)-stimulated rat bone-marrow-derived macrophage cells in the presence of its alanine-substituted analogs than TempL itself. However, replacement of these phenylalanine residues with leucine residues significantly augmented anti-endotoxin property of TempL. A single alanine-substituted TempL analog (F8A-TempL) showed significantly reduced cytotoxicity but retained the antibacterial activity of TempL, while the two single leucine-substituted analogs (F5L-TempL and F8L-TempL), although exhibiting lower cytotoxicity, were able to retain the antibacterial activity of the parent peptide. The results demonstrate how minor amino acid substitutions in the identified phenylalanine zipper sequence in TempL could yield analogs with better antibacterial and/or anti-endotoxin properties with their plausible mechanism of action.
Collapse
|
24
|
Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity. Antimicrob Agents Chemother 2016; 60:3687-99. [PMID: 27067326 DOI: 10.1128/aac.02341-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/27/2016] [Indexed: 12/16/2022] Open
Abstract
Piscidin-1 possesses significant antimicrobial and cytotoxic activities. To recognize the primary amino acid sequence(s) in piscidin-1 that could be important for its biological activity, a long heptad repeat sequence located in the region from amino acids 2 to 19 was identified. To comprehend the possible role of this motif, six analogs of piscidin-1 were designed by selectively replacing a single isoleucine residue at a d (5th) position or at an a (9th or 16th) position with either an alanine or a valine residue. Two more analogs, namely, I5F,F6A-piscidin-1 and V12I-piscidin-1, were designed for investigating the effect of interchanging an alanine residue at a d position with an adjacent phenylalanine residue and replacing a valine residue with an isoleucine residue at another d position of the heptad repeat of piscidin-1, respectively. Single alanine-substituted analogs exhibited significantly reduced cytotoxicity against mammalian cells compared with that of piscidin-1 but appreciably retained the antibacterial and antiendotoxin activities of piscidin-1. All the single valine-substituted piscidin-1 analogs and I5F,F6A-piscidin-1 showed cytotoxicity greater than that of the corresponding alanine-substituted analogs, antibacterial activity marginally greater than or similar to that of the corresponding alanine-substituted analogs, and also antiendotoxin activity superior to that of the corresponding alanine-substituted analogs. Interestingly, among these peptides, V12I-piscidin-1 showed the highest cytotoxicity and antibacterial and antiendotoxin activities. Lipopolysaccharide (12 mg/kg of body weight)-treated mice, further treated with I16A-piscidin-1, the piscidin-1 analog with the highest therapeutic index, at a single dose of 1 or 2 mg/kg of body weight, showed 80 and 100% survival, respectively. Structural and functional characterization of these peptides revealed the basis of their biological activity and demonstrated that nontoxic piscidin-1 analogs with significant antimicrobial and antiendotoxin activities can be designed by incorporating single alanine substitutions in the piscidin-1 heptad repeat.
Collapse
|
25
|
Mechanism of action of a novel recombinant peptide, MP1102, against Clostridium perfringens type C. Appl Microbiol Biotechnol 2016; 100:5045-57. [DOI: 10.1007/s00253-016-7387-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/25/2023]
|