1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Tsakiridis EE, Ahmadi E, Gautam J, Hannah She YR, Fayyazi R, Lally JS, Wang S, Di Pastena F, Valvano CM, Del Rosso D, Biziotis OD, Meyers B, Muti P, Tsakiridis T, Steinberg GR. Salsalate improves the anti-tumor efficacy of lenvatinib in MASH-driven hepatocellular carcinoma. JHEP Rep 2025; 7:101354. [PMID: 40276482 PMCID: PMC12018114 DOI: 10.1016/j.jhepr.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of hepatocellular carcinoma (HCC) worldwide. The complex microenvironment of these tumors, characterized by metabolic dysfunction, hypoxia, steatosis, and fibrosis, limits the effectiveness of standard-of-care therapies, such as the multi-tyrosine kinase inhibitor lenvatinib (LEN). Salsalate (SAL), is a rheumatoid arthritis therapy that enhances fatty acid oxidation and reduces de novo lipogenesis, fibrosis and cell proliferation pathways. We hypothesize that addition of SAL could improve the efficacy of LEN in MASH-HCC. Methods We assessed the efficacy of combination therapy using clinically relevant concentrations of LEN and SAL in human HCC cell models, orthotopic xenograft and MASH-HCC mouse models. In addition, assays assessing fatty acid oxidation and lipogenesis, protein immunoblotting and RNA-sequencing were used to understand mechanisms involved. Results LEN + SAL synergistically suppressed the proliferation and clonogenic survival of cells (p ≤0.0001), prolonged survival in an orthotopic xenograft model (p = 0.02), and reduced angiogenesis, fibrosis, and steatosis (p ≤0.05) in a MASH-HCC model. These effects were associated with activation of AMPK and inhibition of the mTOR-HIF1α and Erk1/2 signaling pathways. RNA-sequencing analysis in both Hep3B cells and livers of the MASH-HCC mouse model revealed that SAL enhanced fatty acid oxidation and suppressed fibrosis and cell cycle progression, while LEN reduced angiogenesis with regulatory network analysis, suggesting a potential role for activating transcription factor 3 (ATF3) and ETS-proto-oncogene-1 (ETS-1). Conclusions These data indicate that combining LEN and SAL, which exert distinct effects leading to improvements in the liver microenvironment (steatosis, angiogenesis, and fibrosis) and inhibition of tumor proliferation, may have therapeutic potential for MASH-driven HCC. Impact and implications Although rates of MASH-HCC are on the rise globally, standard-of-care multi-tyrosine kinase inhibitors and immunotherapy have limited efficacy in this HCC etiology. Metabolic targeting with SAL inhibits cancer growth kinetics while also alleviating drivers of MASH by increasing fatty acid oxidation and reducing de novo lipogenesis and fibrosis. Combined LEN and SAL improved survival and MASH-HCC pathology in mouse models without adverse effects. Given that SAL is a safe, economical, and approved medication, this concept holds great translational potential that could provide a new treatment avenue for patients with unresected MASH-HCC.
Collapse
Affiliation(s)
- Evangelia E. Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Yi Ran Hannah She
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Russta Fayyazi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - James S.V. Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Simon Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Fiorella Di Pastena
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Celina M. Valvano
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Daniel Del Rosso
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Brandon Meyers
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Paola Muti
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| |
Collapse
|
3
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
4
|
Wang G, Jin W, Zhang L, Dong M, Zhang X, Zhou Z, Wang X. SLC50A1 inhibits the doxorubicin sensitivity in hepatocellular carcinoma cells through regulating the tumor glycolysis. Cell Death Discov 2024; 10:495. [PMID: 39695152 DOI: 10.1038/s41420-024-02261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Metabolic reprogramming has been found to be closely associated with the occurrence and development of hepatocellular carcinoma (HCC). The relationship between SLC50A1, a member of the SLC family involved in glucose transmembrane transport, and HCC remains unclear. This study aims to investigate the function and underlying mechanisms of SLC50A1 in the occurrence and progression of HCC. Based on bioinformatics analysis and clinical sample testing, we observed a significant upregulation of SLC50A1 in HCC, which is correlated with unfavorable prognosis in HCC patients. Additionally, there is a noticeable correlation between the expressions of SLC50A1 and METTL3. Further in vitro and in vivo experiments confirmed that SLC50A1 can regulate cellular glycolysis and the cell cycle, thereby promoting the proliferation of HCC cells while reducing apoptosis. Moreover, our findings indicate that SLC50A1 enhances resistance of HCC cells to DOX and 2-DG. Furthermore, we discovered that the m6A methyltransferase METTL3 mediates the methylation modification of SLC50A1. The recognition and binding of the modified SLC50A1 by IGF2BP2 subsequently promote its stability and translational expression. Consequently, our research identifies the METTL3/SLC50A1 axis as a novel therapeutic target in the context of HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lianmei Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
5
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Liu D, Shan M, Zeng R, He M, Dai X, Lu L, Yang M, He H, Zhang Y, Xiang L, Chen A, Sun L, He F, Lian J. Inhibition of KIAA1429/HK1 axis enhances the sensitivity of liver cancer cells to sorafenib by regulating the Warburg effect. Biochem Pharmacol 2024; 227:116419. [PMID: 38996929 DOI: 10.1016/j.bcp.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
N6-methyladenosine (m6A) serves as the most abundant posttranscription modification. However, the role of m6A in tumorigenesis and chemotherapeutic drugs sensitivity remains largely unclear. Present research focuses on the potential function of the m6A writer KIAA1429 in tumor development and sorafenib sensitivity in liver cancer. We found that the level of KIAA1429 was significantly elevated in liver cancer tissues and cells and was closely associated with poorer prognosis. Functionally, KIAA1429 promoted the proliferation and Warburg effect of liver cancer cells in vitro and in vivo. RNA-seq and MeRIP-seq analysis revealed the glycolysis was one of the most affected pathways by KIAA1429, and m6A-modified HK1 was the most likely targeted gene to regulate the Warburg effect. KIAA1429 depletion decreased Warburg effect and increased sorafenib sensitivity in liver cancer. Mechanistically, KIAA1429 could affect the m6A level of HK1 mRNA through directly binding with it. Moreover, KIAA1429 cooperated with the m6A reader HuR to enhance HK1 mRNA stability, thereby upregulating its expression. These findings demonstrated that KIAA1429/HK1 axis decreases the sensitivity of liver cancer cells to sorafenib by regulating the Warburg effect, which may provide a novel therapeutic target for liver cancer treatment.
Collapse
Affiliation(s)
- Dong Liu
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Rong Zeng
- Department of Medicinal Chemistry, Army Medical University, Chongqing 400038, China
| | - Meng He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Xufang Dai
- College of Education Science, Chongqing Normal University, Chongqing 400047, China
| | - Lu Lu
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Haiyan He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Li Xiang
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - An Chen
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China.
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Jing F, Shi Y, Jiang D, Li X, Sun J, Zhang X, Guo Q. Deciphering the role of non-coding RNAs involved in sorafenib resistance. Heliyon 2024; 10:e29374. [PMID: 38644890 PMCID: PMC11031791 DOI: 10.1016/j.heliyon.2024.e29374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Sorafenib is an important treatment strategy for advanced hepatocellular carcinoma (HCC). Unfortunately, drug resistance has become a major obstacle in sorafenib application. In this study, whole transcriptome sequencing (WTS) was conducted to compare the paired differences between non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs, in sorafenib-resistant and parental cells. The overlap of differentially expressed ncRNAs (DENs) between the SMMC7721/S and Huh7/S cells and their parental cells was determined. 2 upregulated and 3 downregulated lncRNAs, 2 upregulated and 1 downregulated circRNAs, as well as 10 upregulated and 2 downregulated miRNAs, in both SMMC7721/S and Huh7/S cells, attracted more attention. The target genes of these DENs were then identified as the overlaps between the differentially expressed mRNAs achieved using the WTS analysis and the predicted genes of DENs obtained using the "co-localization" or "co-expression," miRanda, and RNAhybrid analysis. Consequently, the potential regulatory network between overlapping DENs and their target genes in both SMMC7721/S and Huh7/S cells was explored. The "lncRNA-miRNA-mRNA" and "circRNA-miRNA-mRNA" networks were constructed based on the competitive endogenous RNA (ceRNA) theory using the Cytoscape software. In particular, lncRNA MED17-203-miRNA (miR-193a-5p, miR-197-3p, miR-27a-5p, miR-320b, miR-767-3p, miR-767-5p, miR-92a-3p, let-7c-5p)-mRNA," "circ_0002874-miR-27a-5p-mRNA" and "circ_0078607-miR-320b-mRNA" networks were first introduced in sorafenib-resistant HCC. Furthermore, these networks were most probably connected to the process of metabolic reprogramming, where the activation of the PPAR, HIF-1, Hippo, and TGF-β signaling pathways is governed. Alternatively, the network "circ_0002874-miR-27a-5p-mRNA" was also involved in the regulation of the activation of TGF-β signaling pathways, thus advancing Epithelial-mesenchymal transition (EMT). These findings provide a theoretical basis for exploring the mechanisms underlying sorafenib resistance mediated by metabolic reprogramming and EMT in HCC.
Collapse
Affiliation(s)
- FanJing Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - YunYan Shi
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - Dong Jiang
- Navy Qingdao Special Service Rehabilitation Center, 266743, Qingdao, Shandong, 266003, PR China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - JiaLin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - XiaoLei Zhang
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| |
Collapse
|
8
|
Guo S, Zhang C, Zeng H, Xia Y, Weng C, Deng Y, Wang L, Wang H. Glycolysis maintains AMPK activation in sorafenib-induced Warburg effect. Mol Metab 2023; 77:101796. [PMID: 37696356 PMCID: PMC10550717 DOI: 10.1016/j.molmet.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second deadly cancer in the world and still lacks curative treatment. Aerobic glycolysis, or Warburg effect, is a major resistance mechanism induced by first-line treatment of HCC, sorafenib, and is regulated by the master regulator of metabolism, AMPK. Activation of AMPK is required for resistance; however, activation dynamics of AMPK and its regulation is rarely studied. Engineering cells to express an AMPK activity biosensor, we monitor AMPK activation in single HCC cells in a high throughput manner during sorafenib-induced drug resistance. Sorafenib induces transient activation of AMPK, duration of which is dependent on glucose. Inhibiting glycolysis shortens AMPK activation; whereas increasing glycolysis increases its activation duration. Our data highlight that activation duration of AMPK is important for cancer evasion of therapeutic treatment and glycolysis is a key regulator of activation duration of AMPK.
Collapse
Affiliation(s)
- Sijia Guo
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chenhao Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haiou Zeng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuit, Peking University, Beijing, 100871, China
| | - Yantao Xia
- University of California Los Angeles, Department of Chemical and Biomolecular Engineering, California, 90095, USA
| | - Chenghao Weng
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yichen Deng
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luda Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Integrated Circuit, Peking University, Beijing, 100871, China
| | - Huan Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
9
|
Gnocchi D, Sabbà C, Mazzocca A. Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance. Biochimie 2023; 208:180-185. [PMID: 36638953 DOI: 10.1016/j.biochi.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
10
|
Gnocchi D, Kurzyk A, Mintrone A, Lentini G, Sabbà C, Mazzocca A. Inhibition of LPAR6 overcomes sorafenib resistance by switching glycolysis into oxidative phosphorylation in hepatocellular carcinoma. Biochimie 2022; 202:180-189. [PMID: 35952946 DOI: 10.1016/j.biochi.2022.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most threatening tumours in the world today. Pharmacological treatments for HCC mainly rely on protein kinase inhibitors, such as sorafenib and regorafenib. Even so, these approaches exhibit side effects and acquired drug resistance, which is an obstacle to HCC treatment. We have previously shown that selective lysophosphatidic acid receptor 6 (LPAR6) chemical antagonists inhibit HCC growth. Here, we investigated whether LPAR6 mediates resistance to sorafenib by affecting energy metabolism in HCC. To uncover the role of LPAR6 in drug resistance and cancer energy metabolism, we used a gain-of-function and loss-of-function approach in 2D tissue and 3D spheroids. LPAR6 was ectopically expressed in HLE cells (HLE-LPAR6) and knocked down in HepG2 (HepG2 LPAR6-shRNA). Measurements of oxygen consumption and lactate and pyruvate production were performed to assess the energy metabolism response of HCC cells to sorafenib treatment. We found that LPAR6 mediates the resistance of HCC cells to sorafenib by promoting lactic acid fermentation at the expense of oxidative phosphorylation (OXPHOS) and that the selective LPAR6 antagonist 9-xanthenyl acetate (XAA) can effectively overcome this resistance. Our study shows for the first time that an LPAR6-mediated metabolic mechanism supports sorafenib resistance in HCC and proposes a pharmacological approach to overcome it.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy
| | - Agata Kurzyk
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Antonella Mintrone
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4 - 70125, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
11
|
Zhang Y, Xing Z, Liu T, Tang M, Mi L, Zhu J, Wu W, Wei T. Targeted therapy and drug resistance in thyroid cancer. Eur J Med Chem 2022; 238:114500. [DOI: 10.1016/j.ejmech.2022.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
12
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Broad Transcriptomic Impact of Sorafenib and Its Relation to the Antitumoral Properties in Liver Cancer Cells. Cancers (Basel) 2022; 14:cancers14051204. [PMID: 35267509 PMCID: PMC8909169 DOI: 10.3390/cancers14051204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the fourth most frequent cause of cancer-related mortality worldwide. While ablation, resection and orthotopic liver transplantation are indicated at an early stage of the disease, Sorafenib (Sfb) is the current most administrated first-line treatment for advanced HCC, even though its therapeutic benefit is limited due to the appearance of resistance. Deep knowledge on the molecular consequences of Sfb-treatment is essentially required for optimizing novel therapeutic strategies to improve the outcomes for patients with advanced HCC. In this study, we analyzed differential gene expression changes in two well characterized liver cancer cell lines upon a Sfb-treatment, demonstrating that both lines responded similarly to the treatment. Our results provide valuable information on the molecular action of Sfb on diverse cellular fundamental processes such as DNA repair, translation and proteostasis and identify rationalization issues that could provide a different therapeutic perspective to Sfb. Abstract Hepatocellular carcinoma (HCC) is one of the most frequent and essentially incurable cancers in its advanced stages. The tyrosine kinase inhibitor Sorafenib (Sfb) remains the globally accepted treatment for advanced HCC. However, the extent of its therapeutic benefit is limited. Sfb exerts antitumor activity through its cytotoxic, anti-proliferative and pro-apoptotic roles in HCC cells. To better understand the molecular mechanisms underlying these effects, we used RNA sequencing to generate comprehensive transcriptome profiles of HepG2 and SNU423, hepatoblastoma- (HB) and HCC-derived cell lines, respectively, following a Sfb treatment at a pharmacological dose. This resulted in similar alterations of gene expression in both cell lines. Genes functionally related to membrane trafficking, stress-responsible and unfolded protein responses, circadian clock and activation of apoptosis were predominantly upregulated, while genes involved in cell growth and cycle, DNA replication and repair, ribosome biogenesis, translation initiation and proteostasis were downregulated. Our results suggest that Sfb causes primary effects on cellular stress that lead to upregulation of selective responses to compensate for its negative effect and restore homeostasis. No significant differences were found specifically affecting each cell line, indicating the robustness of the Sfb mechanism of action despite the heterogeneity of liver cancer. We discuss our results on terms of providing rationalization for possible strategies to improve Sfb clinical outcomes.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), E-28029 Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), E-28029 Madrid, Spain
- Correspondence: (J.M.); (J.d.l.C.); Tel.: +34-955-923-122 (J.M.); +34-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (L.C.); (A.R.-G.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
- Correspondence: (J.M.); (J.d.l.C.); Tel.: +34-955-923-122 (J.M.); +34-923-126 (J.d.l.C.)
| |
Collapse
|
13
|
Sofer S, Lamkiewicz K, Armoza Eilat S, Partouche S, Marz M, Moskovits N, Stemmer SM, Shlomai A, Sklan EH. A genome-wide CRISPR activation screen reveals Hexokinase 1 as a critical factor in promoting resistance to multi-kinase inhibitors in hepatocellular carcinoma cells. FASEB J 2022; 36:e22191. [PMID: 35147243 DOI: 10.1096/fj.202101507rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/20/2022] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is often diagnosed at an advanced stage and is, therefore, treated with systemic drugs, such as tyrosine-kinase inhibitors (TKIs). These drugs, however, offer only modest survival benefits due to the rapid development of drug resistance. To identify genes implicated in TKI resistance, a cluster of regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 activation screen was performed in hepatoma cells treated with regorafenib, a TKI used as second-line therapy for advanced HCC. The screen results show that Hexokinase 1 (HK1), catalyzing the first step in glucose metabolism, is a top candidate for conferring TKI resistance. Compatible with this, HK1 was upregulated in regorafenib-resistant cells. Using several experimental approaches, both in vitro and in vivo, we show that TKI resistance correlates with HK1 expression. Furthermore, an HK inhibitor resensitized resistant cells to TKI treatment. Together, our data indicate that HK1 may function as a critical factor modulating TKI resistance in hepatoma cells and, therefore, may serve as a biomarker for treatment success.
Collapse
Affiliation(s)
- Summer Sofer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany.,European Virus Bioinformatics Center, Jena, Germany
| | - Shir Armoza Eilat
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany.,European Virus Bioinformatics Center, Jena, Germany.,Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | - Neta Moskovits
- PDX Laboratory, Felsenstein Medical Research Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Salomon M Stemmer
- PDX Laboratory, Felsenstein Medical Research Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Davidoff Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Amir Shlomai
- Felsenstein Medical Research Center and the Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Orlandi P, Solini A, Banchi M, Brunetto MR, Cioni D, Ghiadoni L, Bocci G. Antiangiogenic Drugs in NASH: Evidence of a Possible New Therapeutic Approach. Pharmaceuticals (Basel) 2021; 14:ph14100995. [PMID: 34681219 PMCID: PMC8539163 DOI: 10.3390/ph14100995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis, are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis, and HCC, the process of angiogenesis is a key mechanism influencing the disease progression. The relationship between the worsening of chronic liver disease and angiogenesis may suggest a possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the disorder. In this review, we highlight the available preclinical data supporting a role of known antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Anna Solini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Maurizia Rossana Brunetto
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Dania Cioni
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Lorenzo Ghiadoni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
- Correspondence: ; Tel.: +39-0502218756
| |
Collapse
|
15
|
Antioxidants Threaten Multikinase Inhibitor Efficacy against Liver Cancer by Blocking Mitochondrial Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10091336. [PMID: 34572967 PMCID: PMC8468105 DOI: 10.3390/antiox10091336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Sorafenib and regorafenib, multikinase inhibitors (MKIs) used as standard chemotherapeutic agents for hepatocellular carcinoma (HCC), generate reactive oxygen species (ROS) during cancer treatment. Antioxidant supplements are becoming popular additions to our diet, particularly glutathione derivatives and mitochondrial-directed compounds. To address their possible interference during HCC chemotherapy, we analyzed the effect of common antioxidants using hepatoma cell lines and tumor spheroids. In liver cancer cell lines, sorafenib and regorafenib induced mitochondrial ROS production and potent cell death after glutathione depletion. In contrast, cabozantinib only exhibited oxidative cell death in specific HCC cell lines. After sorafenib and regorafenib administration, antioxidants such as glutathione methyl ester and the superoxide scavenger MnTBAP decreased cell death and ROS production, precluding the MKI activity against hepatoma cells. Interestingly, sorafenib-induced mitochondrial damage caused PINK/Parkin-dependent mitophagy stimulation, altered by increased ROS production. Finally, in sorafenib-treated tumor spheroids, while ROS induction reduced tumor growth, antioxidant treatments favored tumor development. In conclusion, the anti-tumor activity of specific MKIs, such as regorafenib and sorafenib, is altered by the cellular redox status, suggesting that uncontrolled antioxidant intake during HCC treatment should be avoided or only endorsed to diminish chemotherapy-induced side effects, always under medical scrutiny.
Collapse
|
16
|
Metabolic Switch in Hepatocellular Carcinoma Patients Treated with Sorafenib: a Proof-of-Concept Trial. Mol Imaging Biol 2021; 22:1446-1454. [PMID: 32206991 DOI: 10.1007/s11307-020-01489-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sorafenib is a multikinase inhibitor used to treat advanced hepatocellular carcinoma (HCC). Recently, a preclinical trial has shown that response to sorafenib is associated with a metabolic shift towards aerobic glycolysis. To test this observation in humans, we decided to conduct a proof-of-concept trial investigating the role of metabolic shift detected on [18F]FDG PET/CT in predicting survival and tumor response in HCC patients treated with sorafenib. METHODS We prospectively enrolled advanced HCC patients candidate to sorafenib and undergoing [18F]FDG PET/CT at baseline, at 24 h, and at day 7 following treatment start. Response evaluation was obtained after 8 weeks according to Response Evaluation Criteria in Solid Tumors (RECIST). All clinical variables and metabolic parameters (i.e., SUVmax; metabolic tumor volume, MTV; total lesion glycolysis, TLG; and their variations, Δ) were compared with those of treatment response and correlated to progression-free (PFS) and overall survival (OS). RESULTS For this proof-of-concept trial, between August 2016 and August 2018, 13 patients (10 male, 3 female, median age 69) were enrolled. Considering the entire cohort, we demonstrated a significant negative correlation between ΔSUVmax at 24 h and 1 week (rho = - 0.733, p = 0.016). The metabolic shift, as expected, demonstrated median SUVmax, MTV, and TLG after 1 week lower in patients with a stable disease than a progressive disease (p = 0.019). Metabolic parameters and ECOG performance status (PS) resulted significantly correlated to PFS and OS at univariate analysis. On multivariate analysis, only median MTV at 1 week resulted as an independent prognostic factor for PFS (p = 0.033). CONCLUSIONS As hypothesized, [18F]FDG PET/CT resulted in able to evaluate metabolic shift at 24 h and early treatment response already 1 week after treatment start. Moreover, metabolic parameters and ECOG PS resulted in predictive and prognostic factors to PFS and OS, with MTV at 1 week appearing as an independent predictive factor for PFS.
Collapse
|
17
|
USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis 2021; 10:52. [PMID: 34272356 PMCID: PMC8285469 DOI: 10.1038/s41389-021-00338-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In hepatocellular carcinoma (HCC), aberrant expression of hypoxia-inducible factor 1 α (HIF1α) and increased aerobic glycolysis metabolism are drivers of resistance to therapy with the multi-kinase inhibitor Sorafenib. However, it has remained unknown how HIF1α is activated and how its activity and the subsequent induction of aerobic glycolysis promote Sorafenib resistance in HCC. Here, we report the ubiquitin-specific peptidase USP29 as a new regulator of HIF1α and of aerobic glycolysis during the development of Sorafenib resistance in HCC. In particular, we identified USP29 as a critical deubiquitylase (DUB) of HIF1α, which directly deubiquitylates and stabilizes HIF1α and, thus, promotes its transcriptional activity. Among the transcriptional targets of HIF1α is the gene encoding hexokinase 2 (HK2), a key enzyme of the glycolytic pathway. The absence of USP29, and thus of HIF1α transcriptional activity, reduces the levels of aerobic glycolysis and restores sensitivity to Sorafenib in Sorafenib-resistant HCC cells in vitro and in xenograft transplantation mouse models in vivo. Notably, the absence of USP29 and high HK2 expression levels correlate with the response of HCC patients to Sorafenib therapy. Together, the data demonstrate that, as a DUB of HIF1α, USP29 promotes Sorafenib resistance in HCC cells, in parts by upregulating glycolysis, thereby opening new avenues for therapeutically targeting Sorafenib-resistant HCC in patients.
Collapse
|
18
|
Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021; 10:cells10071715. [PMID: 34359884 PMCID: PMC8304710 DOI: 10.3390/cells10071715] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, low oxygen (O2) level, is a hallmark of solid cancers, especially hepatocellular carcinoma (HCC), one of the most common and fatal cancers worldwide. Hypoxia contributes to drug resistance in cancer through various molecular mechanisms. In this review, we particularly focus on the roles of hypoxia-inducible factor (HIF)-mediated metabolic reprogramming in drug resistance in HCC. Combination therapies targeting hypoxia-induced metabolic enzymes to overcome drug resistance will also be summarized. Acquisition of drug resistance is the major cause of unsatisfactory clinical outcomes of existing HCC treatments. Extra efforts to identify novel mechanisms to combat refractory hypoxic HCC are warranted for the development of more effective treatment regimens for HCC patients.
Collapse
|
19
|
Singh V, Kumar K, Purohit D, Verma R, Pandey P, Bhatia S, Malik V, Mittal V, Rahman MH, Albadrani GM, Arafah MW, El-Demerdash FM, Akhtar MF, Saleem A, Kamel M, Najda A, Abdel-Daim MM, Kaushik D. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer. Biomed Pharmacother 2021; 139:111584. [PMID: 34243623 DOI: 10.1016/j.biopha.2021.111584] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer is one of the most dreaded diseases characterized by uncontrolled proliferation of abnormal cells that occurs due to impairment of cell division and apoptosis process. Cancer is categorized into several types on the basis of affected organs and breast cancer (BC) is the most predominant cause of mortality among women. Although, several synthetic and semi-synthetic therapies have been developed for the treatment of BC but they exhibit numerous serious adverse effects therefore; pharmacological agents with fewer/no side effects need to be explored. Plants and phytoconstituents perhaps fulfill the aforementioned requirement and could serve as a potential and alternative therapy for BC treatment. The ongoing biomedical research, clinical trials and number of patents granted have further boosted the acceptance of the plants and plant-derived constituents in the effective treatment of BC. PURPOSE OF STUDY Various treatment strategies such as checkpoint inhibitors, targeting micro RNA, apoptotic pathway, BRCA-1 gene, P53 protein, P13K/Akt/mTOR pathway, notch signaling pathway, hedgehog/gli-1 signaling pathway, poly-ADP ribose polymerase inhibitors, mitogen-activated protein kinase inhibitors etc. are available for BC. In addition to these synthetic and semi-synthetic drug therapies, several natural constituents such as alkaloids, sesquiterpenes, polyphenols, flavonoids and diterpenoids from medicinal plants, vegetables and fruits are reported to possess promising anti-cancer activity. The purpose of the present review is to highlight the various signaling pathways through which plants/herbs show the anti-cancer potential especially against the BC. STUDY DESIGN The literature for the present study was collected from various databases such as Pubmed, Scopus, Chemical Abstracts, Medicinal and aromatic plant abstracts, Web of Science etc. The different patent databases were also reviewed for the anti-cancer (BC) potential of the particular herbs/plants and their formulations. RESULT AND CONCLUSION In this review, we have discussed the number of plants along with their patents of different herbal formulations which are being used for the treatment of BC and other types of cancers. We have also delineated the different signaling mechanisms through which they inhibit the growth of BC cells. In nutshell, we can conclude that large numbers of herbs or their extracts are reported for the treatment of BC. But still, there is further need for research in-depth to translate the use of natural products clinically BC treatment.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India; University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, Punjab, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Rewari 123401, Haryana, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Panchgaon, Haryana 122412, India; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohammed W Arafah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegtable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
20
|
Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021; 519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib and lenvatinib are approved first-line targeted therapies for advanced liver cancer, but most patients develop acquired resistance. Herein, we found that sorafenib induced extensive acetylation changes towards a more energetic metabolic phenotype. Metabolic adaptation was mediated via acetylation of the Lys-491 (K491) residue of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) (PCK2-K491) and Lys-473 (K473) residue of PCK1 (PCK1-K473) by the lysine acetyltransferase 8 (KAT8), resulting in isoenzyme transition from cytoplasmic PCK1 to mitochondrial PCK2. KAT8-catalyzed PCK2 acetylation at K491 impeded lysosomal degradation to increase the level of PCK2 in resistant cells. PCK2 inhibition in sorafenib-resistant cells significantly reversed drug resistance in vitro and in vivo. High levels of PCK2 predicted a shorter progression-free survival time in patients who received sorafenib treatment. Therefore, acetylation-induced isoenzyme transition from PCK1 to PCK2 contributes to resistance to systemic therapeutic drugs in liver cancer. PCK2 may be an emerging target for delaying tumor recurrence.
Collapse
Affiliation(s)
- Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangfei Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
21
|
Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SLD, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, Lopitz-Otsoa F, Juan VGD, McCain MV, Perugorria MJ, Mabe J, Navasa N, Rodrigues CMP, Fabregat I, Boix L, Sapena V, Anguita J, Lu SC, Mato JM, Banales JM, Villa E, Reeves HL, Bruix J, Reig M, Marin JJG, Delgado TC, Martínez-Chantar ML. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis 2021; 12:555. [PMID: 34050139 PMCID: PMC8163806 DOI: 10.1038/s41419-021-03827-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Barbier-Torres
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio López de Davalillo
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Elisa Herraez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Virginia Gutiérrez-de Juan
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Misti V McCain
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Maria J Perugorria
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jon Mabe
- Electronics and Communications Unit, IK4-Tekniker, Eibar, Spain
| | - Nicolás Navasa
- Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona, Barcelona, Spain
| | - Loreto Boix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Victor Sapena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Juan Anguita
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria and University of Modena and Reggio Emilia, Modena, Italy
| | - Helen L Reeves
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Freeman Road, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Jordi Bruix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Reig
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María L Martínez-Chantar
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Pan Y, Hu GY, Jiang S, Xia SJ, Maher H, Lin ZJ, Mao QJ, Zhao J, Cai LX, Xu YH, Xu JJ, Cai XJ. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021; 11:637971. [PMID: 34094917 PMCID: PMC8169983 DOI: 10.3389/fonc.2021.637971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly tumor with high heterogeneity. Aerobic glycolysis is a common indicator of tumor growth and plays a key role in tumorigenesis. Heterogeneity in distinct metabolic pathways can be used to stratify HCC into clinically relevant subgroups, but these have not yet been well-established. In this study, we constructed a model called aerobic glycolysis index (AGI) as a marker of aerobic glycolysis using genomic data of hepatocellular carcinoma from The Cancer Genome Atlas (TCGA) project. Our results showed that this parameter inferred enhanced aerobic glycolysis activity in tumor tissues. Furthermore, high AGI is associated with poor tumor differentiation and advanced stages and could predict poor prognosis including reduced overall survival and disease-free survival. More importantly, the AGI could accurately predict tumor sensitivity to Sorafenib therapy. Therefore, the AGI may be a promising biomarker that can accurately stratify patients and improve their treatment efficacy.
Collapse
Affiliation(s)
- Yu Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Geng-Yuan Hu
- Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Shi Jiang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun-Jie Xia
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Hendi Maher
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Jie Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Jiang Mao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Liu-Xin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Ying-Hua Xu
- Department of Oncology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jun-Jie Xu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
23
|
Zhao F, Feng G, Zhu J, Su Z, Guo R, Liu J, Zhang H, Zhai Y. 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocellular carcinoma cells by inhibiting autophagy. Anticancer Drugs 2021; 32:386-393. [PMID: 33395067 PMCID: PMC7952045 DOI: 10.1097/cad.0000000000001032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
As an effective targeted therapy for advanced hepatocellular carcinoma (HCC), sorafenib resistance has been frequently reported in recent years, with the activation of autophagy by cancer cells under drug stress being one of the crucial reasons. Sorafenib treatment could enhance autophagy in HCC cells and autophagy is also considered as an important mechanisms of drug resistance. Therefore, the inhibition of autophagy is a potential way to improve the sensitivity and eliminate drug resistance to restore their efficacy. To determine whether autophagy is involved in sorafenib resistance and investigate its role in the regulation of HepG2 cells' (an HCC cell line) chemosensitivity to sorafenib, we simultaneously treated HepG2 with sorafenib and 3-Methyladenine (3-MA) (a common autophagy inhibitor). First, by performing cell counting kit 8 cell viability assay, Hoechst 33342 apoptosis staining, and Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis kit detection, we found that both sorafenib and 3-MA effectively inhibitted the proliferative activity of HepG2 cells and induced their apoptosis to a certain extent. This effect was significantly enhanced after these two drugs were combined, which was also confirmed by the increased expression of apoptosis-related proteins. Subsequently, by using AAV-GFP-LC3 transfection methods and transmission electron microscopy, we found that both the number and activity of autophagosomes in HepG2 cells in sorafenib and 3-MA group were significantly reduced, suggesting that autophagy activity was inhibited, and this result was consistent with the expression results of autophagy-related proteins. Therefore, we conclude that 3-MA may attenuate the acquired drug resistance of sorafenib by counteracting its induction of autophagy activity, thus enhancing its sensitivity to advanced HCC therapy.
Collapse
Affiliation(s)
- Fangfang Zhao
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guohe Feng
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Junyao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhijun Su
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Ruyi Guo
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Jiangfu Liu
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Huatang Zhang
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Hsieh MH, Kao TY, Hsieh TH, Kao CC, Peng CY, Lai HC, Chuang PH, Kao JT. Prognostic roles of diabetes mellitus and hypertension in advanced hepatocellular carcinoma treated with sorafenib. PLoS One 2020; 15:e0244293. [PMID: 33382703 PMCID: PMC7775090 DOI: 10.1371/journal.pone.0244293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/08/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND & AIMS It remains limited whether diabetes mellitus (DM) and hypertension (HTN) affect the prognosis of advanced hepatocellular carcinoma (HCC) treated with sorafenib. Our study attempted to elucidate the roles of DM/HTN and the effects of diabetes medications among advanced HCC patients receiving sorafenib. METHODS From August 2012 to February 2018, 733 advanced HCC patients receiving sorafenib were enrolled at China Medical University, Taichung, Taiwan. According to the presence/absence of DM or HTN, they were divided into four groups: control [DM(-)/HTN(-), n = 353], DM-only [DM(+)/HTN(-), n = 91], HTN-only [DM(-)/HTN(+), n = 184] and DM+HTN groups [DM(+)/HTN(+), n = 105]. Based on the types of diabetes medications, there were three groups among DM patients (the combined cohort of DM-only and DM+HTN groups), including metformin (n = 63), non-metformin oral hypoglycemic agent (OHA) (n = 104) and regular insulin (RI)/neutral protamine hagedorn (NPH) groups (n = 29). We then assessed the survival differences between these groups. RESULTS DM-only and DM+HTN groups significantly presented longer overall survival (OS) than control group (control vs. DM-only, 7.70 vs. 11.83 months, p = 0.003; control vs. DM+HTN, 7.70 vs. 11.43 months, p = 0.008). However, there was no significant OS difference between control and HTN-only group (7.70 vs. 8.80 months, p = 0.111). Besides, all groups of DM patients showed significantly longer OS than control group (control vs. metformin, 7.70 vs. 12.60 months, p = 0.011; control vs. non-metformin OHA, 7.70 vs. 10.80 months, p = 0.016; control vs. RI/NPH, 7.70 vs. 15.20 months, p = 0.026). CONCLUSIONS Rather than HTN, DM predicts better prognosis in advanced HCC treated with sorafenib. Besides, metformin, non-metformin OHA and RI/NPH are associated with longer survival among DM-related advanced HCC patients receiving sorafenib.
Collapse
Affiliation(s)
- Ming-Han Hsieh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Yu Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Hui Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chi Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yuan Peng
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Heng Chuang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Ta Kao
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Wu S, Tseng IC, Huang WC, Su CW, Lai YH, Lin C, Lee AYL, Kuo CY, Su LY, Lee MC, Hsu TC, Yu CH. Establishment of an Immunocompetent Metastasis Rat Model with Hepatocyte Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12123721. [PMID: 33322441 PMCID: PMC7764036 DOI: 10.3390/cancers12123721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. Cancer stem cells (CSCs) are responsible for the maintenance, metastasis, and relapse of various tumors. The effects of CSCs on the tumorigenesis of HCC are still not fully understood, however. We have recently established two new rat HCC cell lines HTC and TW-1, which we isolated from diethylnitrosamine-induced rat liver cancer. Results showed that TW-1 expressed the genetic markers of CSCs, including CD133, GSTP1, CD44, CD90, and EpCAM. Moreover, TW-1 showed higher tolerance to sorafenib than HTC did. In addition, tumorigenesis and metastasis were observed in nude mice and wild-type rats with TW-1 xenografts. Finally, we combined highly expressed genes in TW-1/HTC with well-known biomarkers from recent HCC studies to predict HCC-related biomarkers and able to identify HCC with AUCs > 0.9 after machine learning. These results indicated that TW-1 was a novel rat CSC line, and the mice or rat models we established with TW-1 has great potential on HCC studies in the future.
Collapse
Affiliation(s)
- Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| | - I-Chieh Tseng
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Wen-Cheng Huang
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Cheng-Wen Su
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Che Lin
- Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Li-Yu Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taipei 30013, Taiwan;
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| |
Collapse
|
26
|
Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2020; 1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
27
|
Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother 2020; 131:110694. [PMID: 32920511 PMCID: PMC7451059 DOI: 10.1016/j.biopha.2020.110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.
Collapse
Affiliation(s)
- Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbri-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
28
|
Zhang Z, Tan X, Luo J, Yao H, Si Z, Tong JS. The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis 2020; 11:902. [PMID: 33097691 PMCID: PMC7584607 DOI: 10.1038/s41419-020-03123-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
HCC (hepatocellular carcinoma) is a major health threat for the Chinese population and has poor prognosis because of strong resistance to chemotherapy in patients. For instance, a considerable challenge for the treatment of HCC is sorafenib resistance. The aberrant glucose metabolism in cancer cells aerobic glycolysis is associated with resistance to chemotherapeutic agents. Drug-resistance cells and tumors were exposed to sorafenib to establish sorafenib-resistance cell lines and tumors. Western blotting and real-time PCR or IHC staining were used to analyze the level of CLCF1 in the sorafenib resistance cell lines or tumors. The aerobic glycolysis was analyzed by ECAR assay. The mechanism mediating the high expression of CLCF1 in sorafenib-resistant cells and its relationships with miR-130-5p was determined by bioinformatic analysis, dual luciferase reporter assays, real-time PCR, and western blotting. The in vivo effect was evaluated by xenografted with nude mice. The relation of CLCF1 and miR-30a-5p was determined in patients' samples. In this study, we report the relationship between sorafenib resistance and increased glycolysis in HCC cells. We also show the vital role of CLCF1 in promoting glycolysis by activating PI3K/AKT signaling and its downstream genes, thus participating in glycolysis in sorafenib-resistant HCC cells. Furthermore, we also show that miR-30a-5p directly targets CLCF1 and that sorafenib-mediated suppression of miR-30a-5p results in the upregulation of CLCF1 in HCC cells resistant to sorafenib. We also found that when a cholesterol modified agomiR-30a-5p was delivered systemically to mice harboring sorafenib-resistant HCC tumors, tumor growth decreased significantly. There is an uncharacterized mechanism of biochemical resistance to hormone therapies orchestrated by the miR-30a-5p/CLCF1 axis to mediate sorafenib resistance and aerobic glycolysis in HCC. Therefore, this study indicates that targeting the miR-30a-5p/CLCF1 axis may hold promise for therapeutic intervention in HCC sorafenib resistance patients.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of Liver Transplantation, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P.R. China
- Department of Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, Pittsburgh, PA, 15213, USA
| | - Xiao Tan
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Jing Luo
- Department of Liver Transplantation, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P.R. China
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P.R. China
| | - Zhongzhou Si
- Department of Liver Transplantation, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P.R. China.
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
29
|
Umar SM, Kashyap A, Kahol S, Mathur SR, Gogia A, Deo SVS, Prasad CP. Prognostic and therapeutic relevance of phosphofructokinase platelet-type (PFKP) in breast cancer. Exp Cell Res 2020; 396:112282. [PMID: 32919954 DOI: 10.1016/j.yexcr.2020.112282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
In the present study, we have explored the prognostic value of the Phosphofructokinase Platelet-type (PFKP) expression and its therapeutic relevance in metastatic breast cancer. PFKP immunohistochemistry was performed on Invasive ductal carcinomas (IDCs; n = 87) of breast, and its association with clinicopathological parameters were evaluated. Using online meta-analysis tools, PFKP's prognostic value was investigated in overall breast cancer as well as in triple negative subtype (TNBCs). For in vitro analysis, MDA-MB-231 cells model was used in order to elucidate mechanisms behind PFKP regulated glycolysis and its impact on cancer cell physiology. Therapeutic relevance of PFKP was further evaluated using PFKP siRNA and Quercetin. PFKP protein expression was found to be positively associated with nodal invasion (p = 0.009), receptor (ER & PR) negative status (p = 0.005 & p = 0.028) and reduced overall survival in breast cancer patients (p = 0.014). In MDA-MB-231 cells, quercetin treatment impaired PFKP-LDHA signaling axis thereby inhibiting aerobic glycolysis mediated increased migration of cancer cells. Our present study demonstrates that elevated PFKP levels are associated with basal cells/TNBC subtypes and might serve as prognostic indicator for TNBC patients. Ability of quercetin to inhibit aerobic glycolysis, cell migration and clonogenic potential of malignant breast cancer cells advocates possibility of quercetin in aggressive breast cancer treatment.
Collapse
Affiliation(s)
| | - Akanksha Kashyap
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Shruti Kahol
- Department of Pathology, AIIMS, New Delhi, 110029, India
| | | | - Ajay Gogia
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - S V S Deo
- Department of Surgical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | | |
Collapse
|
30
|
Crezee T, Rabold K, de Jong L, Jaeger M, Netea-Maier RT. Metabolic programming of tumor associated macrophages in the context of cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1028. [PMID: 32953828 PMCID: PMC7475452 DOI: 10.21037/atm-20-1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor associated macrophages (TAMs) are important components of the tumor microenvironment (TME). They are characterized by a remarkable functional plasticity, thereby mostly promoting cancer progression. Changes in immune cell metabolism are paramount for this functional adaptation. Here, we review the functional consequences of the metabolic programming of TAMs and the influence of local and systemic targeted therapies on the metabolic characteristics of the TME that shape the functional phenotype of the TAMs. Understanding these metabolic changes within the context of the cross-talk between the different components of the TME including the TAMs and the tumor cells is an essential step that can pave the way towards identifications of ways to improve responses to different treatments, to overcome resistance to treatments, tumor progression and reduce treatment-specific toxicity.
Collapse
Affiliation(s)
- Thomas Crezee
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Lisanne de Jong
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, Navarro-Villarán E, Requejo-Aguilar R, Castejón-Vega B, Negrete M, Gallego P, Vega-Ochoa Á, Victor VM, Cordero MD, Del Campo JA, Bárcena JA, Padilla CA, Muntané J. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol 2020; 36:101510. [PMID: 32593127 PMCID: PMC7322178 DOI: 10.1016/j.redox.2020.101510] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - P de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Mª José López-Grueso
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain
| | - María Negrete
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Paloma Gallego
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - Álvaro Vega-Ochoa
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Victor M Victor
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Service of Endocrinology and Nutrition, Hospital University "Doctor Peset", Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - José A Del Campo
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - J Antonio Bárcena
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - C Alicia Padilla
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
32
|
The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants (Basel) 2020; 9:antiox9050374. [PMID: 32365852 PMCID: PMC7278755 DOI: 10.3390/antiox9050374] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
Disturbed redox homeostasis represents a hallmark of cancer phenotypes, affecting cellular metabolism and redox signaling. Since reactive oxygen and nitrogen species (ROS/RNS) are involved in regulation of proliferation and apoptosis, they may play a double-faced role in cancer, entailing protumorigenic and tumor-suppressing effects in early and later stages, respectively. In addition, ROS and RNS impact the activity and communication of all tumor constituents, mediating their reprogramming from anti- to protumorigenic phenotypes, and vice versa. An important role in this dichotomic action is played by the variable amounts of O2 in the tumor microenvironment, which dictates the ultimate outcome of the influence of ROS/RNS on carcinogenesis. Moreover, ROS/RNS levels remarkably influence the cancer response to therapy. The relevance of ROS/RNS signaling in solid tumors is witnessed by the emergence of novel targeted treatments of solid tumors with compounds that target ROS/RNS action and production, such as tyrosine kinase inhibitors and monoclonal antibodies, which might contribute to the complexity of redox regulation in cancer. Prospectively, the dual role of ROS/RNS in the different stages of tumorigenesis through different impact on oxidation and nitrosylation may also allow development of tailored diagnostic and therapeutic approaches.
Collapse
|
33
|
Zhang X, Wu L, Xu Y, Yu H, Chen Y, Zhao H, Lei J, Zhou Y, Zhang J, Wang J, Peng J, Jiang L, Sheng H, Li Y. Microbiota-derived SSL6 enhances the sensitivity of hepatocellular carcinoma to sorafenib by down-regulating glycolysis. Cancer Lett 2020; 481:32-44. [PMID: 32246956 DOI: 10.1016/j.canlet.2020.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Enhancing the sensitivity of hepatocellular carcinoma (HCC) cells to sorafenib (SFN) is an essential clinical bottleneck to be solved. Here we report that the expression of CD47 negatively correlated with HCC sensitivity to SFN. The microbiota-derived Staphylococcal superantigen-like protein 6 (SSL6) inhibited CD47 and promoted SFN-induced apoptosis of HCC cells Huh-7 and MHCC97H. Mechanistically, the sensitivity of HCC cells to SFN was inhibited by elevated Warburg effect (glycolysis), and SSL6 down-regulated PI3K/Akt-mediated glycolysis by blocking CD47. Knockdown of CD47 also dampened glycolysis and sensitized HCC cells to SFN. Moreover, SFN-resistant HCC cells exhibited enhanced glycolysis and CD47 expression. SSL6 significantly re-sensitized the resistant HCC cells to SFN. More importantly, we identified the anti-tumor effect of SSL6 in combination with SFN in HCC-bearing mice. Our results clarify the mechanism by which SSL6 enhances SFN sensitivity in HCC cells, providing a molecular basis for combination targeted therapy with microbiota-derived SSL6 to treat HCC.
Collapse
Affiliation(s)
- Xiao Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lei Wu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hua Yu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yu Chen
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huakan Zhao
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Juan Lei
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yu Zhou
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiangang Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jingchun Wang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jin Peng
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lu Jiang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Halei Sheng
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
34
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
35
|
Gu L, Zhu Y, Lin X, Tan X, Lu B, Li Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene 2020; 39:2437-2449. [PMID: 31974474 DOI: 10.1038/s41388-020-1156-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Metabolic alteration for adaptation of the local environment has been recognized as a hallmark of cancer. GNPAT dysregulation has been implicated in hepatocellular carcinoma (HCC). However, the precise posttranslational regulation of GNPAT is still undiscovered. Here we show that ACAT1 is upregulated in response to extra palmitic acid (PA). ACAT1 acetylates GNPAT at K128, which represses TRIM21-mediated GNPAT ubiquitination and degradation. Conversely, GNPAT deacetylation by SIRT4 antagonizes ACAT1's function. GNPAT represses TRIM21-mediated FASN degradation and promotes lipid metabolism. Furthermore, shRNA-mediated ACAT1 ablation and acetylation deficiency of GNPAT repress lipid metabolism and tumor progression in xenograft and DEN/CCl4-induced HCC. Otherwise, ACAT1 inhibitor combination with sorafenib enormously retards tumor formation in mice. Collectively, we demonstrate that stabilization of FASN by ACAT1-mediated GNPAT acetylation plays a critical role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xingyu Tan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
36
|
Chang CW, Lo JF, Wang XW. Roles of mitochondria in liver cancer stem cells. Differentiation 2019; 107:35-41. [PMID: 31176254 DOI: 10.1016/j.diff.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and therapy resistance through particular molecular mechanisms. Energy metabolism and mitochondrial function play an important role in the regulation of cancer stemness and stem cell specifications. Since the role of mitochondrial function as central hubs in cell growth and survival, studies on the critical physiological mechanisms of the liver underlying their therapy-resistant phenotype is important. In this review, we focus on liver CSC-related mitochondrial metabolism that contributes to the liver CSC features, in terms of enhanced drug-resistance and increased tumorigenicity, and to discuss their roles on potential therapies windows for PLC therapies.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
37
|
Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, Chen J, Mao Y, Wang F, Dai W, Xu L, Wu J, Guo C. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:204. [PMID: 31101057 PMCID: PMC6525465 DOI: 10.1186/s13046-019-1194-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The treatment for advanced primary hepatocellular carcinoma (HCC) is sorafenib (SORA), while HCC has become increasingly drug resistant with enhanced aerobic glycolysis. The present study aimed to examine the chemotherapeutic effects of a flavonoid proanthocyanidin B2 (PB2) on HCC. METHODS Five kinds of HCC cell lines and LO2 were used to test the effect of PB2 on aerobic glycolysis. The proliferation, cell cycle, apoptosis and a xenograft mouse model were analyzed. Lentivirus overexpressed pyruvate kinase M2 (PKM2) or sh-PKM2 was used to verify the target of PB2. The detailed mechanism was investigated by immunofluorescence, co-immunoprecipitation, and western blotting. RESULTS PB2 inhibited the proliferation, induced cell cycle arrest, and triggered apoptosis of HCC cells in vivo and in vitro. PB2 also suppressed glucose uptake and lactate levels via the direct inhibition of the key glycolytic enzyme, PKM2. In addition, PKM2 inhibited the nuclear translocation of PKM2 and co-localization of PKM2/HIF-1α in the nucleus, leading to the inhibition of aerobic glycolysis. Co-treatment with PB2 was also effective in enhancing the chemosensitivity of SORA. CONCLUSIONS PB2 inhibited the expression and nuclear translocation of PKM2, therefore disrupting the interaction between PKM2/HSP90/HIF-1α, to suppress aerobic glycolysis and proliferation, and trigger apoptosis in HCC via HIF-1α-mediated transcription suppression.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032 China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032 China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336 China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, NO. 1291, Jiangning Road, Putuo District, Shanghai, 200060 China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, NO. 1291, Jiangning Road, Putuo District, Shanghai, 200060 China
| |
Collapse
|
38
|
Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, Cho EJ, Lee JH, Kim YJ, Youn H, Yoon JH. Hexokinase-II Inhibition Synergistically Augments the Anti-tumor Efficacy of Sorafenib in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20061292. [PMID: 30875800 PMCID: PMC6471302 DOI: 10.3390/ijms20061292] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to examine whether inhibition of hexokinase (HK)-II activity enhances the efficacy of sorafenib in in-vivo models of hepatocellular carcinoma (HCC), and to evaluate the prognostic implication of HK-II expression in patients with HCC. We used 3-bromopyruvate (3-BP), a HK-II inhibitor to target HK-II. The human HCC cell line was tested as both subcutaneous and orthotopic tumor xenograft models in BALB/c nu/nu mice. The prognostic role of HK-II was evaluated in data from HCC patients in The Cancer Genome Atlas (TCGA) database and validated in patients treated with sorafenib. Quantitative real-time PCR, western blot analysis, and immunohistochemical staining revealed that HK-II expression is upregulated in the presence of sorafenib. Further analysis of the endoplasmic reticulum-stress network model in two different murine HCC models showed that the introduction of additional stress by 3-BP treatment synergistically increased the in vivo/vitro efficacy of sorafenib. We found that HCC patients with increased HK-II expression in the TCGA database showed poor overall survival, and also confirmed similar results for TCGA database HCC patients who had undergone sorafenib treatment. These results suggest that HK-II is a promising therapeutic target to enhance the efficacy of sorafenib and that HK-II expression might be a prognostic factor in HCC.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do 14584, Korea.
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Juri Na
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Kyungmin Kim
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul 03080, Korea.
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| |
Collapse
|
39
|
Aminzadeh-Gohari S, Feichtinger RG, Kofler B. Energy Metabolism and Metabolic Targeting of Neuroblastoma. NEUROBLASTOMA 2019:113-132. [DOI: 10.1016/b978-0-12-812005-7.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Lee M, Ko H, Yun M. Cancer Metabolism as a Mechanism of Treatment Resistance and Potential Therapeutic Target in Hepatocellular Carcinoma. Yonsei Med J 2018; 59:1143-1149. [PMID: 30450847 PMCID: PMC6240564 DOI: 10.3349/ymj.2018.59.10.1143] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Various molecular targeted therapies and diagnostic modalities have been developed for the treatment of hepatocellular carcinoma (HCC); however, HCC still remains a difficult malignancy to cure. Recently, the focus has shifted to cancer metabolism for the diagnosis and treatment of various cancers, including HCC. In addition to conventional diagnostics, the measurement of enhanced tumor cell metabolism using F-18 fluorodeoxyglucose (18F-FDG) for increased glycolysis or C-11 acetate for fatty acid synthesis by positron emission tomography/computed tomography (PET/CT) is well established for clinical management of HCC. Unlike tumors displaying the Warburg effect, HCCs vary substantially in terms of 18F-FDG uptake, which considerably reduces the sensitivity for tumor detection. Accordingly, C-11 acetate has been proposed as a complementary radiotracer for detecting tumors that are not identified by 18F-FDG. In addition to HCC diagnosis, since the degree of 18F-FDG uptake converted to standardized uptake value (SUV) correlates well with tumor aggressiveness, 18F-FDG PET/CT scans can predict patient outcomes such as treatment response and survival with an inverse relationship between SUV and survival. The loss of tumor suppressor genes or activation of oncogenes plays an important role in promoting HCC development, and might be involved in the "metabolic reprogramming" of cancer cells. Mutations in various genes such as TERT, CTNNB1, TP53, and Axin1 are responsible for the development of HCC. Some microRNAs (miRNAs) involved in cancer metabolism are deregulated in HCC, indicating that the modulation of genes/miRNAs might affect HCC growth or metastasis. In this review, we will discuss cancer metabolism as a mechanism for treatment resistance, as well as an attractive potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Misu Lee
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Division of Life Science, College of Life Science and Bioengineering, Incheon National University, Incheon, Korea
| | - Haeyong Ko
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Samadi P, Saki S, Dermani FK, Pourjafar M, Saidijam M. Emerging ways to treat breast cancer: will promises be met? Cell Oncol (Dordr) 2018; 41:605-621. [PMID: 30259416 DOI: 10.1007/s13402-018-0409-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer among women and it is responsible for more than 40,000 deaths in the United States and more than 500,000 deaths worldwide each year. In previous decades, the development of improved screening, diagnosis and treatment methods has led to decreases in BC mortality rates. More recently, novel targeted therapeutic options, such as the use of monoclonal antibodies and small molecule inhibitors that target specific cancer cell-related components, have been developed. These components include ErbB family members (HER1, HER2, HER3 and HER4), Ras/MAPK pathway components (Ras, Raf, MEK and ERK), VEGF family members (VEGFA, VEGFB, VEGFC, VEGF and PGF), apoptosis and cell cycle regulators (BAK, BAX, BCL-2, BCL-X, MCL-1 and BCL-W, p53 and PI3K/Akt/mTOR pathway components) and DNA repair pathway components such as BRCA1. In addition, long noncoding RNA inhibitor-, microRNA inhibitor/mimic- and immunotherapy-based approaches are being developed for the treatment of BC. Finally, a novel powerful technique called CRISPR-Cas9-based gene editing is emerging as a precise tool for the targeted treatment of cancer, including BC. CONCLUSIONS Potential new strategies that are designed to specifically target BC are presented. Several clinical trials using these strategies are already in progress and have shown promising results, but inherent limitations such as off-target effects and low delivery efficiencies still have to be resolved. By improving the clinical efficacy of current therapies and exploring new ones, it is anticipated that novel ways to overcome BC may become attainable.
Collapse
Affiliation(s)
- Pouria Samadi
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Saki
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Karimi Dermani
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Pourjafar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
42
|
Renner K, Seilbeck A, Kauer N, Ugele I, Siska PJ, Brummer C, Bruss C, Decking SM, Fante M, Schmidt A, Hammon K, Singer K, Klobuch S, Thomas S, Gottfried E, Peter K, Kreutz M. Combined Metabolic Targeting With Metformin and the NSAIDs Diflunisal and Diclofenac Induces Apoptosis in Acute Myeloid Leukemia Cells. Front Pharmacol 2018; 9:1258. [PMID: 30450049 PMCID: PMC6224440 DOI: 10.3389/fphar.2018.01258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022] Open
Abstract
The accelerated metabolism of tumor cells, inevitable for maintaining high proliferation rates, is an emerging target for tumor therapy. Increased glucose and lipid metabolism as well as mitochondrial activity have been shown in solid tumors but also in leukemic cells. As tumor cells are able to escape the blockade of one metabolic pathway by a compensatory increase in other pathways, treatment strategies simultaneously targeting metabolism at different sites are currently developed. However, the number of clinically applicable anti-metabolic drugs is still limited. Here, we analyzed the impact of the anti-diabetic drug metformin alone or in combination with two non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac and diflunisal on acute myeloid leukemia (AML) cell lines and primary patient blasts. Diclofenac but not diflunisal reduced lactate secretion in different AML cell lines (THP-1, U937, and KG-1) and both drugs increased respiration at low concentrations. Despite these metabolic effects, both NSAIDs showed a limited effect on tumor cell proliferation and viability up to a concentration of 0.2 mM. In higher concentrations of 0.4–0.8 mM diflunisal alone exerted a clear effect on proliferation of AML cell lines and blocked respiration. Single treatment with the anti-diabetic drug metformin blocked mitochondrial respiration, but proliferation and viability were not affected. However, combining all three drugs exerted a strong cytostatic and cytotoxic effect on THP-1 cells. Comparable to the results obtained with THP-1 cells, the combination of all three drugs significantly reduced proliferation of primary leukemic blasts and induced apoptosis. Furthermore, NSAIDs supported the effect of low dose chemotherapy with cytarabine and reduced proliferation of primary AML blasts. Taken together we show that low concentrations of metformin and the two NSAIDs diclofenac and diflunisal exert a synergistic inhibitory effect on AML proliferation and induce apoptosis most likely by blocking tumor cell metabolism. Our results underline the feasibility of applying anti-metabolic drugs for AML therapy.
Collapse
Affiliation(s)
- Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Anton Seilbeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Nathalie Kauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ines Ugele
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Brummer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Fante
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Astrid Schmidt
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Hammon
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Eva Gottfried
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Peter
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
43
|
Dai J, Huang Q, Niu K, Wang B, Li Y, Dai C, Chen Z, Tao K, Dai J. Sestrin 2 confers primary resistance to sorafenib by simultaneously activating AKT and AMPK in hepatocellular carcinoma. Cancer Med 2018; 7:5691-5703. [PMID: 30311444 PMCID: PMC6247041 DOI: 10.1002/cam4.1826] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the malignancy derived from normal hepatocytes with increasing incidence and extremely poor prognosis worldwide. The only approved first‐line systematic treatment agent for HCC, sorafenib, is capable to effectively improve advanced HCC patients’ survival. However, it is gradually recognized that the therapeutic response to sorafenib could be drastically diminished after short‐term treatment, defined as primary resistance. The present study is aimed to explore the role of stress‐inducible protein Sestrin2 (SESN2), one of the most important sestrins family members, in sorafenib primary resistance. Herein, we initially found that SESN2 expression was significantly up‐regulated in both HCC cell lines and tissues compared to normal human hepatocytes and corresponding adjacent liver tissues, respectively. In addition, SESN2 expression was highly correlated with sorafenib IC50 of HCC cell lines. Thereafter, we showed that sorafenib treatment resulted in an increase of SESN2 expression and the knockdown of SESN2 exacerbated sorafenib‐induced proliferation inhibition and cell apoptosis. Further mechanistic study uncovered that SESN2 deficiency impaired both AKT and AMPK phosphorylation and activation after sorafenib treatment. Moreover, the correlations between SESN2 expression and both phosphor‐AKT and phosphor‐AMPK expression were illustrated in HCC tissues. Taken together, our study demonstrates that SESN2 activates AKT and AMPK signaling as a novel mechanism to induce sorafenib primary resistance in HCC.
Collapse
Affiliation(s)
- Jimin Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China.,The Cadet Team 6 (Regiment 6) of School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yijie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Chen Dai
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jingyao Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China.,Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| |
Collapse
|
44
|
Gómez de Cedrón M, Vargas T, Madrona A, Jiménez A, Pérez-Pérez MJ, Quintela JC, Reglero G, San-Félix A, Ramírez de Molina A. Novel Polyphenols That Inhibit Colon Cancer Cell Growth Affecting Cancer Cell Metabolism. J Pharmacol Exp Ther 2018; 366:377-389. [PMID: 29871992 DOI: 10.1124/jpet.118.248278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
New series of polyphenols with a hydrophilic galloyl-based head and a hydrophobic N-acyl tail, linked through a serinol moiety, have been synthesized and tested against colon cancer cell growth. Our structure activity relationship studies revealed that galloyl moieties are essential for growth inhibition. Moreover, the length of the N-acyl chain is crucial for the activity. Introduction of a (Z) double bond in the acyl chain increased the anticancer properties. Our findings demonstrate that 16, the most potent compound within this series, has inhibitory effects on colon cancer cell growth and metabolism (glycolysis and mitochondrial respiration) at the same time that it activates 5'AMP-activated kinase (AMPK) and induces apoptotic cell death. Based on these results, we propose that 16 might reprogram colon cancer cell metabolism through AMPK activation. This might lead to alterations on cancer cell bioenergy compromising cancer cell viability. Importantly, these antiproliferative and proapoptotic effects are selective for cancer cells. Accordingly, these results indicate that 16, with an unsaturated C18 chain, might be a useful prototype for the development of novel colon cancer cell growth inhibitors affecting cell metabolism.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Andrés Madrona
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Aranza Jiménez
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - María-Jesús Pérez-Pérez
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - José-Carlos Quintela
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Ana San-Félix
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain (M.G.d.C., T.V., G.R., A.R.d.M.); Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, Madrid, Spain (A.M., A.J., M.-J.P.-P., A.S.-F.); and Natac Biotech S.L., Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain (J.-C.Q.)
| |
Collapse
|
45
|
Damaraju VL, Kuzma M, Cass CE, Putman CT, Sawyer MB. Multitargeted kinase inhibitors imatinib, sorafenib and sunitinib perturb energy metabolism and cause cytotoxicity to cultured C2C12 skeletal muscle derived myotubes. Biochem Pharmacol 2018; 155:162-171. [PMID: 29983397 DOI: 10.1016/j.bcp.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have advanced cancer treatment and prognosis but have also resulted in adverse effects such as fatigue, diarrhea, hypothyroidism, and other toxicities. We investigated TKI effects on skeletal muscle as a possible explanation of TKI induced fatigue. Changes in mitochondrial function due to inhibition of oxidative phosphorylation complexes, generation of superoxides, and inhibition of key transporters involved in uptake of glucose and/or nucleosides may result in alteration of energy metabolism and/or mitochondrial function. We investigated effects of imatinib, sorafenib and sunitinib on these processes in cultured C2C12 murine skeletal muscle cells. Imatinib, sorafenib and sunitinib were cytotoxic to C2C12 cells with IC50 values of 20, 8 and 8 µM, respectively. Imatinib stimulated glucose uptake and inhibited complex V activity by 35% at 50 µM. Sorafenib inhibited complex II/III and V with IC50 values of 32 and 28 µM, respectively. Sorafenib caused activation of caspase 3/7 and depolarization of mitochondrial membranes occurred very rapidly with complete loss at 5-10 µM. Sunitinib inhibited Complex I with an IC50 value of 38 µM and caused ATP depletion, caspase 3/7 activation, an increase in reactive oxygen species (ROS), and decreased nucleoside and glucose uptake. In conclusion, imatinib, sunitinib and sorafenib caused changes in mitochondrial complex activities, glucose and nucleoside uptake leading to decreased energy production and mitochondrial function in a skeletal muscle cell model, suggesting that these changes may play a role in fatigue, one of the most common adverse effects of TKIs.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G1Z2, Canada.
| | - Michelle Kuzma
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G1Z2, Canada.
| | - Carol E Cass
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G1Z2, Canada.
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation
- Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G2H9, Canada.
| | - Michael B Sawyer
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G1Z2, Canada; Department of Medical Oncology, Cross Cancer Institute, 11560 University Avenue NW, Edmonton, Alberta T6G1Z2, Canada.
| |
Collapse
|
46
|
Vela D, Sopi RB, Mladenov M. Low Hepcidin in Type 2 Diabetes Mellitus: Examining the Molecular Links and Their Clinical Implications. Can J Diabetes 2018; 42:179-187. [DOI: 10.1016/j.jcjd.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/14/2023]
|
47
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
48
|
Poliaková M, Aebersold DM, Zimmer Y, Medová M. The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer 2018; 17:27. [PMID: 29455660 PMCID: PMC5817809 DOI: 10.1186/s12943-018-0798-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor metabolism is a thrilling discipline that focuses on mechanisms used by cancer cells to earn crucial building blocks and energy to preserve growth and overcome resistance to various treatment modalities. At the same time, therapies directed specifically against aberrant signalling pathways driven by protein tyrosine kinases (TKs) involved in proliferation, metastasis and growth count for several years to promising anti-cancer approaches. In this respect, small molecule inhibitors are the most widely used clinically relevant means for targeted therapy, with a rising number of approvals for TKs inhibitors. In this review, we discuss recent observations related to TKs-associated metabolism and to metabolic feedback that is initialized as cellular response to particular TK-targeted therapies. These observations provide collective evidence that therapeutic responses are primarily linked to such pathways as regulation of lipid and amino acid metabolism, TCA cycle and glycolysis, advocating therefore the development of further effective targeted therapies against a broader spectrum of TKs to treat patients whose tumors display deregulated signalling driven by these proteins.
Collapse
Affiliation(s)
- Michaela Poliaková
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. .,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
49
|
Makol A, Kanthaje S, Dhiman RK, Kalra N, Chawla YK, Chakraborti A. Association of liver cirrhosis severity with type 2 diabetes mellitus in hepatocellular carcinoma. Exp Biol Med (Maywood) 2017; 243:323-326. [PMID: 29186978 DOI: 10.1177/1535370217744511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major risk factor associated with hepatocellular carcinoma (HCC). However, the association of T2DM with liver cirrhosis and therapy response in HCC patients is not clear. Hence, in this study, we have evaluated the influence of T2DM on liver cirrhosis severity of HCC and sorafenib response. HCC patients were divided in two groups: T2DM (n = 20) and non-T2DM (nT2DM; n = 50). We found significantly higher number of patients in T2DM group had decompensated liver disease with Child-Turcotte-Pugh score ≥ 7. Additionally, 71.4% patients were observed to be sorafenib sensitive in T2DM group which was significantly higher as compared to 30% in nT2DM group. This study has highlighted the predisposition of HCC patients with T2DM toward more severe liver disease who were found to be better respondents of sorafenib. Impact statement We have explored the association of type 2 diabetes mellitus (T2DM) on liver cirrhosis severity along with response toward sorafenib in hepatocellular carcinoma (HCC). Most HCC patients exhibit prior history of liver cirrhosis that results following long span of chronic liver disease. T2DM constitutes as an important risk factor for HCC development which is known to elevate its incidence. Further, sorafenib is the FDA approved therapy for HCC whose therapeutic outcome is not investigated in HCC patients with T2DM till date. This observation-based study has unveiled a positive association between T2DM and severity of liver cirrhosis as well as sorafenib response in HCC as examined in a clinical setting.
Collapse
Affiliation(s)
- Ankita Makol
- 1 Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shruthi Kanthaje
- 1 Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Radha K Dhiman
- 2 Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naveen Kalra
- 3 Department of Radio Diagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Yogesh K Chawla
- 2 Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- 1 Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
50
|
Lo Re O, Panebianco C, Porto S, Cervi C, Rappa F, Di Biase S, Caraglia M, Pazienza V, Vinciguerra M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells. J Cell Physiol 2017; 233:1202-1212. [PMID: 28471474 DOI: 10.1002/jcp.25987] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.
Collapse
Affiliation(s)
- Oriana Lo Re
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Masaryk University, Brno, Czech Republic
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Carlo Cervi
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Di Biase
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), California
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| |
Collapse
|