1
|
Gu C, Chen Y, Li H, Wang J, Liu S. Considerations when treating influenza infections with oseltamivir. Expert Opin Pharmacother 2024; 25:1301-1316. [PMID: 38995220 DOI: 10.1080/14656566.2024.2376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Since the coronavirus disease 2019-mandated social distancing policy has been lifted worldwide, the circulation of influenza is expected to resume. Currently, oseltamivir is approved as the first-line agent for influenza prevention and treatment. AREAS COVERED This paper reviews the updated evidence in the pharmacology, resistance mechanisms, clinical pharmacy management, and real-world data on oseltamivir for influenza. EXPERT OPINION Oseltamivir is an oral prodrug of oseltamivir carboxylate, an influenza A and B neuraminidase inhibitor. Recently, the therapeutic efficacy of oseltamivir has been demonstrated in several trials. Oseltamivir is generally well-tolerated but may lead to neuropsychiatric events and bleeding. Oseltamivir-resistant influenza virus has been associated with the H275Y mutation in the influenza A(H1N1)pdm09 virus, while most strains are still sensitive to oseltamivir. Dose adjustment for oseltamivir should be based on creatinine clearance and body weight in pediatric patients with renal failure. According to real-world data from Nanfang Hospital, the annual number of patients prescribed oseltamivir declined from 35,711 in 2019 to 8,971 in 2020, with marked increases in 2022 (20,213) and 2023 (18,071). Among the 206 inpatients, children aged < 6 years who were treated with oseltamivir had the shortest duration to defervescence.
Collapse
Affiliation(s)
- Chunping Gu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Haobin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
- MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Saeki K, Sasaki A. Cell-to-cell transmission promotes the emergence of double-drug resistance. Virus Evol 2023; 9:vead017. [PMID: 37744652 PMCID: PMC10517696 DOI: 10.1093/ve/vead017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/13/2023] [Accepted: 03/08/2023] [Indexed: 09/26/2023] Open
Abstract
The use of multiple antivirals in a single patient increases the risk of emergence of multidrug-resistant viruses, posing a public health challenge and limiting management options. Cell-to-cell viral transmission allows a pair of viruses that are each resistant to a single drug to persist for a prolonged period of passages although neither can survive alone under double-drug treatment. This pair should then persist until they accumulate a second mutation to generate resistance to both drugs. Accordingly, we here propose a hypothesis that viruses have a much higher probability of developing double-drug resistance when they are transmitted via a cell-to-cell mode than when they are transmitted via a cell-free mode through released virions. By using a stochastic model describing the changes in the frequencies of viral genotypes over successive infections, we analytically demonstrate that the emergence probability of double resistance is approximately the square of the number of viral genomes that establish infection times greater in cell-to-cell transmission than in cell-free transmission. Our study suggests the importance of inhibiting cell-to-cell transmission during multidrug treatment.
Collapse
Affiliation(s)
- Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School for Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
| | - Akira Sasaki
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg A-2361, Austria
| |
Collapse
|
3
|
Smet A, Catani JPP, Ysenbaert T, Gonçalves A, Kleanthous H, Vogel TU, Saelens X, Job ER. Antibodies directed towards neuraminidase restrict influenza virus replication in primary human bronchial epithelial cells. PLoS One 2022; 17:e0262873. [PMID: 35100294 PMCID: PMC8803191 DOI: 10.1371/journal.pone.0262873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza neuraminidase (NA) is implicated in various aspects of the virus replication cycle and therefore is an attractive target for vaccination and antiviral strategies. Here we investigated the potential for NA-specific antibodies to interfere with A(H1N1)pdm09 replication in primary human airway epithelial (HAE) cells. Mouse polyclonal anti-NA sera and a monoclonal antibody could block initial viral entry into HAE cells as well as egress from the cell surface. NA-specific polyclonal serum also reduced virus replication across multiple rounds of infection. Restriction of virus entry correlated with the ability of the serum or monoclonal antibody to mediate neuraminidase inhibition (NI). Finally, human sera with NI activity against the N1 of A(H1N1)pdm09 could decrease H6N1 virus infection of HAE cells, highlighting the potential contribution of anti-NA antibodies in the control of influenza virus infection in humans.
Collapse
Affiliation(s)
- Anouk Smet
- VIB-UGent Medical Biotechnology Centre, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Joao Paulo Portela Catani
- VIB-UGent Medical Biotechnology Centre, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Tine Ysenbaert
- VIB-UGent Medical Biotechnology Centre, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- VIB BioImaging Core, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Harry Kleanthous
- Sanofi Pasteur, Research North America, Cambridge, Massachusetts, United States of America
| | - Thorsten U. Vogel
- Sanofi Pasteur, Research North America, Cambridge, Massachusetts, United States of America
| | - Xavier Saelens
- VIB-UGent Medical Biotechnology Centre, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Emma R. Job
- VIB-UGent Medical Biotechnology Centre, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Development of a Genetically Stable Live Attenuated Influenza Vaccine Strain Using an Engineered High-Fidelity Viral Polymerase. J Virol 2021; 95:JVI.00493-21. [PMID: 33827947 DOI: 10.1128/jvi.00493-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
RNA viruses demonstrate a vast range of variants, called quasispecies, due to error-prone replication by viral RNA-dependent RNA polymerase. Although live attenuated vaccines are effective in preventing RNA virus infection, there is a risk of reversal to virulence after their administration. To test the hypothesis that high-fidelity viral polymerase reduces the diversity of influenza virus quasispecies, resulting in inhibition of reversal of the attenuated phenotype, we first screened for a high-fidelity viral polymerase using serial virus passages under selection with a guanosine analog ribavirin. Consequently, we identified a Leu66-to-Val single amino acid mutation in polymerase basic protein 1 (PB1). The high-fidelity phenotype of PB1-L66V was confirmed using next-generation sequencing analysis and biochemical assays with the purified influenza viral polymerase. As expected, PB1-L66V showed at least two-times-lower mutation rates and decreased misincorporation rates, compared to the wild type (WT). Therefore, we next generated an attenuated PB1-L66V virus with a temperature-sensitive (ts) phenotype based on FluMist, a live attenuated influenza vaccine (LAIV) that can restrict virus propagation by ts mutations, and examined the genetic stability of the attenuated PB1-L66V virus using serial virus passages. The PB1-L66V mutation prevented reversion of the ts phenotype to the WT phenotype, suggesting that the high-fidelity viral polymerase could contribute to generating an LAIV with high genetic stability, which would not revert to the pathogenic virus.IMPORTANCE The LAIV currently in use is prescribed for actively immunizing individuals aged 2 to 49 years. However, it is not approved for infants and elderly individuals, who actually need it the most, because it might prolong virus propagation and cause an apparent infection in these individuals, due to their weak immune systems. Recently, reversion of the ts phenotype of the LAIV strain currently in use to a pathogenic virus was demonstrated in cultured cells. Thus, the generation of mutations associated with enhanced virulence in LAIV should be considered. In this study, we isolated a novel influenza virus strain with a Leu66-to-Val single amino acid mutation in PB1 that displayed a significantly higher fidelity than the WT. We generated a novel LAIV candidate strain harboring this mutation. This strain showed higher genetic stability and no ts phenotype reversion. Thus, our high-fidelity strain might be useful for the development of a safer LAIV.
Collapse
|
5
|
Kongsomros S, Manopwisedjaroen S, Chaopreecha J, Wang SF, Borwornpinyo S, Thitithanyanont A. Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis. Pathogens 2021; 10:483. [PMID: 33923524 PMCID: PMC8074074 DOI: 10.3390/pathogens10040483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses have developed direct cell-to-cell transfer strategies to enter target cells without being released to escape host immune responses and antiviral treatments. These strategies are more rapid and efficient than transmission through indirect mechanisms of viral infection between cells. Here, we demonstrate that an H5N1 influenza virus can spread via direct cell-to-cell transfer in Madin-Darby canine kidney (MDCK) cells. We compared cell-to-cell transmission of the H5N1 virus to that of a human influenza H1N1 virus. The H5N1 virus has been found to spread to recipient cells faster than the human influenza H1N1 virus. Additionally, we showed that plasma membrane exchange (trogocytosis) occurs between co-cultured infected donor cells and uninfected recipient cells early point, allowing the intercellular transfer of viral material to recipient cells. Notably, the H5N1 virus induced higher trogocytosis levels than the H1N1 virus, which could explain the faster cell-to-cell transmission rate of H5N1. Importantly, this phenomenon was also observed in A549 human lung epithelial cells, which are representative cells in the natural infection site. Altogether, our results provide evidence demonstrating that trogocytosis could be the additional mechanism utilized by the H5N1 virus for rapid and efficient cell-to-cell transmission.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Sheng-Fan Wang
- Department of Medical Laboratory Sciences and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| |
Collapse
|
6
|
Luo S, Guo L, Sheng C, Zhao Y, Chen L, Li C, Jiang Z, Tian H. Rapid identification and isolation of neuraminidase inhibitors from mockstrawberry ( Duchesnea indica Andr.) based on ligand fishing combined with HR-ESI-Q-TOF-MS. Acta Pharm Sin B 2020; 10:1846-1855. [PMID: 33163339 PMCID: PMC7606179 DOI: 10.1016/j.apsb.2020.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) are the mainstay antiviral drugs against influenza infection. In this study, a ligand fishing protocol was developed to screen NAIs using neuraminidase immobilized magnetic beads (NA-MB). After verifying the feasibility of NA-MB with an artificial mixture including NA inhibitors and non-inhibitors, the developed ligand fishing protocol was applied to screen NAIs from the crude extracts of Duchesnea indica Andr. Twenty-four NA binding compounds were identified from the normal butanol (n-BuOH) extract of D. indica as potential NAIs by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC–Q-TOF-MS) assisted with Compound Structure Identification (CSI):FingerID, including 12 ellagitannins, 4 brevifolin derivatives, 3 ellagic acid derivatives, and 4 flavonoids. Among them, 9 compounds were isolated and tested for in vitro NA inhibitory activities against NA from Clostridium perfringens, and from oseltamivir sensitive and resistant influenza A virus strains. The results indicate that compound B23 has the NA inhibitory activities in both the oseltamivir sensitive and resistant viral NA, with half maximal inhibitory concentration (IC50) values of 197.9 and 125.4 μmol/L, respectively. Moreover, B23 can obviously reduce the replication of oseltamivir sensitive and resistant viruses in Madin–Darby canine kidney (MDCK) cells at the concentrations of 40 and 200 μmol/L. An efficient ligand fishing protocol was developed to rapidly screen the neuraminidase inhibitors from natural sources. 24 potential neuraminidase inhibitors were identified from Duchesnea indica as potential NAIs by HPLC-Q-TOF-MS. One compound can inhibit neuraminidase activities in both the oseltamivir sensitive and resistant virus strains.
Collapse
|
7
|
They are what you eat: Shaping of viral populations through nutrition and consequences for virulence. PLoS Pathog 2020; 16:e1008711. [PMID: 32790755 PMCID: PMC7425860 DOI: 10.1371/journal.ppat.1008711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Tyr82 Amino Acid Mutation in PB1 Polymerase Induces an Influenza Virus Mutator Phenotype. J Virol 2019; 93:JVI.00834-19. [PMID: 31462570 DOI: 10.1128/jvi.00834-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023] Open
Abstract
In various positive-sense single-stranded RNA viruses, a low-fidelity viral RNA-dependent RNA polymerase (RdRp) confers attenuated phenotypes by increasing the mutation frequency. We report a negative-sense single-stranded RNA virus RdRp mutant strain with a mutator phenotype. Based on structural data of RdRp, rational targeting of key residues, and screening of fidelity variants, we isolated a novel low-fidelity mutator strain of influenza virus that harbors a Tyr82-to-Cys (Y82C) single-amino-acid substitution in the PB1 polymerase subunit. The purified PB1-Y82C polymerase indeed showed an increased frequency of misincorporation compared with the wild-type PB1 in an in vitro biochemical assay. To further investigate the effects of position 82 on PB1 polymerase fidelity, we substituted various amino acids at this position. As a result, we isolated various novel mutators other than PB1-Y82C with higher mutation frequencies. The structural model of influenza virus polymerase complex suggested that the Tyr82 residue, which is located at the nucleoside triphosphate entrance tunnel, may influence a fidelity checkpoint. Interestingly, although the PB1-Y82C variant replicated with wild-type PB1-like kinetics in tissue culture, the 50% lethal dose of the PB1-Y82C mutant was 10 times lower than that of wild-type PB1 in embryonated chicken eggs. In conclusion, our data indicate that the Tyr82 residue of PB1 has a crucial role in regulating polymerase fidelity of influenza virus and is closely related to attenuated pathogenic phenotypes in vivo IMPORTANCE Influenza A virus rapidly acquires antigenic changes and antiviral drug resistance, which limit the effectiveness of vaccines and drug treatments, primarily owing to its high rate of evolution. Virus populations formed by quasispecies can contain resistance mutations even before a selective pressure is applied. To study the effects of the viral mutation spectrum and quasispecies, high- and low-fidelity variants have been isolated for several RNA viruses. Here, we report the discovery of a low-fidelity RdRp variant of influenza A virus that contains a substitution at Tyr82 in PB1. Viruses containing the PB1-Y82C substitution showed growth kinetics and viral RNA synthesis levels similar to those of the wild-type virus in cell culture; however, they had significantly attenuated phenotypes in a chicken egg infection experiment. These data demonstrated that decreased RdRp fidelity attenuates influenza A virus in vivo, which is a desirable feature for the development of safer live attenuated vaccine candidates.
Collapse
|
9
|
Gong YN, Tsao KC, Chen GW, Wu CJ, Chen YH, Liu YC, Yang SL, Huang YC, Shih SR. Population dynamics at neuraminidase position 151 of influenza A (H1N1)pdm09 virus in clinical specimens. J Gen Virol 2019; 100:752-759. [PMID: 30994443 DOI: 10.1099/jgv.0.001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus mutates rapidly, allowing it to escape natural and vaccine-induced immunity. Neuraminidase (NA) is a surface protein capable of cleaving the glycosidic linkages of neuraminic acids to release newly formed virions from infected cells. Genetic variants within a viral population can influence the emergence of pandemic viruses as well as drug susceptibility and vaccine effectiveness. In the present study, 55 clinical specimens from patients infected with the 2009 pandemic influenza A/H1N1 virus, abbreviated as A(H1N1)pdm09, during the 2015-2016 outbreak season in Taiwan were collected. Whole genomes were obtained through next-generation sequencing. Based on the published sequences from A(H1N1)pdm09 strains worldwide, a mixed population of two distinct variants at NA position 151 was revealed. We initially reasoned that such a mixed population may have emerged during cell culture. However, additional investigations confirmed that these mixed variants were detectable in the specimens of patients. To further investigate the role of the two NA-151 variants in a dynamic population, a reverse genetics system was employed to generate recombinant A(H1N1)pdm09 viruses. It was observed that the mixture of the two distinct variants was characterized by a higher replication rate compared to the recombinant viruses harbouring a single variant. Moreover, an NA inhibition assay revealed that a high frequency of the minor NA-151 variant in A(H1N1)pdm09 was associated with a reduced susceptibility to NA inhibitors. We conclude that two distinct NA-151 variants can be identified in patient specimens and that such variants may increase viral replication and NA activity.
Collapse
Affiliation(s)
- Yu-Nong Gong
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Kuo-Chien Tsao
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,3Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Guang-Wu Chen
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,4Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chung-Jung Wu
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yi-Hsiang Chen
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yi-Chun Liu
- 2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Shu-Li Yang
- 2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,3Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yhu-Chering Huang
- 5Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,6College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shin-Ru Shih
- 2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,7Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC.,1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,3Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
10
|
Whole Genome Sequencing of A(H3N2) Influenza Viruses Reveals Variants Associated with Severity during the 2016⁻2017 Season. Viruses 2019; 11:v11020108. [PMID: 30695992 PMCID: PMC6410005 DOI: 10.3390/v11020108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza viruses cause a remarkable disease burden and significant morbidity and mortality worldwide, and these impacts vary between seasons. To understand the mechanisms associated with these differences, a comprehensive approach is needed to characterize the impact of influenza genomic traits on the burden of disease. During 2016–2017, a year with severe A(H3N2), we sequenced 176 A(H3N2) influenza genomes using next generation sequencing (NGS) for routine surveillance of circulating influenza viruses collected via the French national influenza community-based surveillance network or from patients hospitalized in the intensive care units of the University Hospitals of Lyon, France. Taking into account confounding factors, sequencing and clinical data were used to identify genomic variants and quasispecies associated with influenza severity or vaccine failure. Several amino acid substitutions significantly associated with clinical traits were found, including NA V263I and NS1 K196E which were associated with severity and co-occurred only in viruses from the 3c.2a1 clade. Additionally, we observed that intra-host diversity as a whole and on a specific set of gene segments increased with severity. These results support the use of whole genome sequencing as a tool for the identification of genetic traits associated with severe influenza in the context of influenza surveillance.
Collapse
|
11
|
Pichon M, Picard C, Simon B, Gaymard A, Renard C, Massenavette B, Malcus C, Monneret G, Morfin-Sherpa F, Valette M, Javouhey E, Millat G, Lina B, Josset L, Escuret V. Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Res 2018; 160:1-9. [DOI: 10.1016/j.antiviral.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
|
12
|
The role of spatial heterogeneity in the evolution of local and global infections of viruses. PLoS Comput Biol 2018; 14:e1005952. [PMID: 29370194 PMCID: PMC5800656 DOI: 10.1371/journal.pcbi.1005952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/06/2018] [Accepted: 01/05/2018] [Indexed: 11/20/2022] Open
Abstract
Viruses have two modes spread in a host body, one is to release infectious particles from infected cells (global infection) and the other is to infect directly from an infected cell to an adjacent cell (local infection). Since the mode of spread affects the evolution of life history traits, such as virulence, it is important to reveal what level of global and local infection is selected. Previous studies of the evolution of global and local infection have paid little attention to its dependency on the measures of spatial configuration. Here we show the evolutionarily stable proportion of global and local infection, and how it depends on the distribution of target cells. Using an epidemic model on a regular lattice, we consider the infection dynamics by pair approximation and check the evolutionarily stable strategy. We also conduct the Monte-Carlo simulation to observe evolutionary dynamics. We show that a higher local infection is selected as target cells become clustered. Surprisingly, the selected strategy depends not only on the degree of clustering but also the abundance of target cells per se. Viruses such as human immunodeficiency virus and measles virus can spread through physical contact between infected and susceptible cells (cell-to-cell infection), as well as normal cell-free infection through virions. Some experimental evidences support the possibility that high ability of cell-to-cell infection is selected in the host. Since the mode of spread affects the evolution of life history traits, it is important to reveal what condition favors high ability of cell-to-cell infection. Here we address what level of cell-to-cell infection is selected in different target cell distributions. Analysis of ordinary differential equations that keep track of dynamics for spatial configuration of infected cells and the Monte-Carlo simulations show that higher proportion of local infection is selected as target cells become clustered. The selected strategy depends not only on the degree of clustering but also the abundance of target cells per se. Our results suggest viruses have more chances to evolve the ability of local infection in a host body than previously thought. In particular, this may explain the emergence of measles virus strains that gained the ability to infect the central nervous system.
Collapse
|
13
|
Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain. J Virol 2017; 91:JVI.01073-16. [PMID: 28053101 DOI: 10.1128/jvi.01073-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/24/2016] [Indexed: 12/20/2022] Open
Abstract
Vaccination is considered the most effective preventive means for influenza control. The development of a master virus with high growth and genetic stability, which may be used for the preparation of vaccine viruses by gene reassortment, is crucial for the enhancement of vaccine performance and efficiency of production. Here, we describe the generation of a high-fidelity and high-growth influenza vaccine master virus strain with a single V43I amino acid change in the PB1 polymerase of the high-growth A/Puerto Rico/8/1934 (PR8) master virus. The PB1-V43I mutation was introduced to increase replication fidelity in order to design an H1N1 vaccine strain with a low error rate. The PR8-PB1-V43I virus exhibited good replication compared with that of the parent PR8 virus. In order to compare the efficiency of egg adaptation and the occurrence of gene mutations leading to antigenic alterations, we constructed 6:2 genetic reassortant viruses between the A(H1N1)pdm09 and the PR8-PB1-V43I viruses; hemagglutinin (HA) and neuraminidase (NA) were from the A(H1N1)pdm09 virus, and the other genes were from the PR8 virus. Mutations responsible for egg adaptation mutations occurred in the HA of the PB1-V43I reassortant virus during serial egg passages; however, in contrast, antigenic mutations were introduced into the HA gene of the 6:2 reassortant virus possessing the wild-type PB1. This study shows that the mutant PR8 virus possessing the PB1 polymerase with the V43I substitution may be utilized as a master virus for the generation of high-growth vaccine viruses with high polymerase fidelity, low error rates of gene replication, and reduced antigenic diversity during virus propagation in eggs for vaccine production.IMPORTANCE Vaccination represents the most effective prophylactic option against influenza. The threat of emergence of influenza pandemics necessitates the ability to generate vaccine viruses rapidly. However, as the influenza virus exhibits a high mutation rate, vaccines must be updated to ensure a good match of the HA and NA antigens between the vaccine and the circulating strain. Here, we generated a genetically stable master virus of the A/Puerto Rico/8/1934 (H1N1) backbone encoding an engineered high-fidelity viral polymerase. Importantly, following the application of the high-fidelity PR8 backbone, no mutation resulting in antigenic change was introduced into the HA gene during propagation of the A(H1N1)pdm09 candidate vaccine virus. The low error rate of the present vaccine virus should decrease the risk of generating mutant viruses with increased virulence. Therefore, our findings are expected to be useful for the development of prepandemic vaccines and live attenuated vaccines with higher safety than that of the present candidate vaccines.
Collapse
|
14
|
Barba M, Daly JM. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis? Pathogens 2016; 5:pathogens5030057. [PMID: 27589809 PMCID: PMC5039437 DOI: 10.3390/pathogens5030057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1) has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.
Collapse
Affiliation(s)
- Marta Barba
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|