1
|
Klumpe HE, Garcia-Ojalvo J, Elowitz MB, Antebi YE. The computational capabilities of many-to-many protein interaction networks. Cell Syst 2023; 14:430-446. [PMID: 37348461 PMCID: PMC10318606 DOI: 10.1016/j.cels.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Many biological circuits comprise sets of protein variants that interact with one another in a many-to-many, or promiscuous, fashion. These architectures can provide powerful computational capabilities that are especially critical in multicellular organisms. Understanding the principles of biochemical computations in these circuits could allow more precise control of cellular behaviors. However, these systems are inherently difficult to analyze, due to their large number of interacting molecular components, partial redundancies, and cell context dependence. Here, we discuss recent experimental and theoretical advances that are beginning to reveal how promiscuous circuits compute, what roles those computations play in natural biological contexts, and how promiscuous architectures can be applied for the design of synthetic multicellular behaviors.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science 76100, Rehovot, Israel.
| |
Collapse
|
2
|
Abstract
Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous to those in computer science. Frequently, biological systems need to respond to multiple, sometimes conflicting, inputs to provide the correct output. The language of logic gates can then be used to model complex signal transduction and metabolic processes. Advances in synthetic biology in turn can be used to construct new logic gates, which find a variety of biotechnology applications including in the production of high value chemicals, biosensing, and drug delivery. In this review, we focus on advances in the construction of logic gates that take advantage of biological catalysts, including both protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can read a variety of molecular inputs and provide chemical, optical, and electrical outputs, allowing them to interface with other types of biomolecular logic gates or even extend to inorganic systems. Continued advances in molecular modeling and engineering will facilitate the construction of new logic gates, further expanding the utility of biomolecular computing.
Collapse
|
3
|
Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS APPLIED BIO MATERIALS 2020; 3:5552-5573. [DOI: 10.1021/acsabm.0c00791] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Youngnam Kang
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Santhanam Shanmughapriya
- Department of Medicine, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Heart and Vascular Institute, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, Penn State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
4
|
Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, Nisticò P. 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:117. [PMID: 30898166 PMCID: PMC6429763 DOI: 10.1186/s13046-019-1086-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitor therapy has changed clinical practice for patients with different cancers, since these agents have demonstrated a significant improvement of overall survival and are effective in many patients. However, an intrinsic or acquired resistance frequently occur and biomarkers predictive of responsiveness should help in patient selection and in defining the adequate treatment options. A deep analysis of the complexity of the tumor microenvironment is likely to further advance the field and hopefully identify more effective combined immunotherapeutic strategies. Here we review the current knowledge on tumor microenvironment, focusing on T cells, cancer associated fibroblasts and extracellular matrix. The use of 3D cell culture models to resemble tumor microenvironment landscape and to screen immunomodulatory drugs is also reviewed.
Collapse
Affiliation(s)
- Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| | - Cristina Colosi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Trono
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Antonacci
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
5
|
Galstyan V, Funk L, Einav T, Phillips R. Combinatorial Control through Allostery. J Phys Chem B 2019; 123:2792-2800. [PMID: 30768906 DOI: 10.1021/acs.jpcb.8b12517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many instances of cellular signaling and transcriptional regulation involve switch-like molecular responses to the presence or absence of input ligands. To understand how these responses come about and how they can be harnessed, we develop a statistical mechanical model to characterize the types of Boolean logic that can arise from allosteric molecules following the Monod-Wyman-Changeux (MWC) model. Building upon previous work, we show how an allosteric molecule regulated by two inputs can elicit AND, OR, NAND, and NOR responses but is unable to realize XOR or XNOR gates. Next, we demonstrate the ability of an MWC molecule to perform ratiometric sensing-a response behavior where activity depends monotonically on the ratio of ligand concentrations. We then extend our analysis to more general schemes of combinatorial control involving either additional binding sites for the two ligands or an additional third ligand and show how these additions can cause a switch in the logic behavior of the molecule. Overall, our results demonstrate the wide variety of control schemes that biological systems can implement using simple mechanisms.
Collapse
Affiliation(s)
| | - Luke Funk
- Harvard-MIT Division of Health Sciences and Technology and the Broad Institute of MIT and Harvard , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | |
Collapse
|
6
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
7
|
Katz E, Poghossian A, Schöning MJ. Enzyme-based logic gates and circuits-analytical applications and interfacing with electronics. Anal Bioanal Chem 2016; 409:81-94. [PMID: 27900435 DOI: 10.1007/s00216-016-0079-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022]
Abstract
The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Graphical Abstract Various applications and signal-transduction methods are reviewed for enzyme-based logic systems.
Collapse
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA.
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany. .,Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany. .,Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
8
|
Agliari E, Barra A, Dello Schiavo L, Moro A. Complete integrability of information processing by biochemical reactions. Sci Rep 2016; 6:36314. [PMID: 27812018 PMCID: PMC5095661 DOI: 10.1038/srep36314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/06/2016] [Indexed: 11/13/2022] Open
Abstract
Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-) cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling - based on spin systems - has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis-Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy - based on completely integrable hydrodynamic-type systems of PDEs - which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions.
Collapse
Affiliation(s)
- Elena Agliari
- Dipartimento di Matematica, Sapienza Università di Roma, Italy
- Istituto Nazionale d’Alta Matematica (GNFM-INdAM), Rome (IT)
| | - Adriano Barra
- Department of Computer Science, Sapienza Università di Roma, Italy
- Istituto Nazionale d’Alta Matematica (GNFM-INdAM), Rome (IT)
| | - Lorenzo Dello Schiavo
- Institut für Angewandte Mathematik, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | - Antonio Moro
- Department of Mathematics and Information Science, University of Northumbria Newcastle, United Kingdom
| |
Collapse
|
9
|
Reuel NF, McAuliffe JC, Becht GA, Mehdizadeh M, Munos JW, Wang R, Delaney WJ. Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Joseph C. McAuliffe
- Industrial
Biosciences, E. I. du Pont de Nemours and Company, Palo Alto, California 94304, United States
| | | | | | - Jeffrey W. Munos
- Industrial
Biosciences, E. I. du Pont de Nemours and Company, Palo Alto, California 94304, United States
| | | | | |
Collapse
|