1
|
Upadhyay C, Rao PG, Feyznezhad R. Dual Role of HIV-1 Envelope Signal Peptide in Immune Evasion. Viruses 2022; 14:v14040808. [PMID: 35458538 PMCID: PMC9030904 DOI: 10.3390/v14040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 Env signal peptide (SP) is an important contributor to Env functions. Env is generated from Vpu/Env encoded bicistronic mRNA such that the 5′ end of Env-N-terminus, that encodes for Env-SP overlaps with 3′ end of Vpu. Env SP displays high sequence diversity, which translates into high variability in Vpu sequence. This study aimed to understand the effect of sequence polymorphism in the Vpu-Env overlapping region (VEOR) on the functions of two vital viral proteins: Vpu and Env. We used infectious molecular clone pNL4.3-CMU06 and swapped its SP (or VEOR) with that from other HIV-1 isolates. Swapping VEOR did not affect virus production in the absence of tetherin however, presence of tetherin significantly altered the release of virus progeny. VEOR also altered Vpu’s ability to downregulate CD4 and tetherin. We next tested the effect of these swaps on Env functions. Analyzing the binding of monoclonal antibodies to membrane embedded Env revealed changes in the antigenic landscape of swapped Envs. These swaps affected the oligosaccharide composition of Env-N-glycans as shown by changes in DC-SIGN-mediated virus transmission. Our study suggests that genetic diversity in VEOR plays an important role in the differential pathogenesis and also assist in immune evasion by altering Env epitope exposure.
Collapse
|
2
|
Khan N, Geiger JD. Role of Viral Protein U (Vpu) in HIV-1 Infection and Pathogenesis. Viruses 2021; 13:1466. [PMID: 34452331 PMCID: PMC8402909 DOI: 10.3390/v13081466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 and HIV-2 originated from cross-species transmission of simian immunodeficiency viruses (SIVs). Most of these transfers resulted in limited spread of these viruses to humans. However, one transmission event involving SIVcpz from chimpanzees gave rise to group M HIV-1, with M being the principal strain of HIV-1 responsible for the AIDS pandemic. Vpu is an HIV-1 accessory protein generated from Env/Vpu encoded bicistronic mRNA and localized in cytosolic and membrane regions of cells capable of being infected by HIV-1 and that regulate HIV-1 infection and transmission by downregulating BST-2, CD4 proteins levels, and immune evasion. This review will focus of critical aspects of Vpu including its zoonosis, the adaptive hurdles to cross-species transmission, and future perspectives and broad implications of Vpu in HIV-1 infection and dissemination.
Collapse
Affiliation(s)
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline Street, Room 110, Grand Forks, ND 58203, USA;
| |
Collapse
|
3
|
Ramirez PW, Sharma S, Singh R, Stoneham CA, Vollbrecht T, Guatelli J. Plasma Membrane-Associated Restriction Factors and Their Counteraction by HIV-1 Accessory Proteins. Cells 2019; 8:E1020. [PMID: 31480747 PMCID: PMC6770538 DOI: 10.3390/cells8091020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane is a site of conflict between host defenses and many viruses. One aspect of this conflict is the host's attempt to eliminate infected cells using innate and adaptive cell-mediated immune mechanisms that recognize features of the plasma membrane characteristic of viral infection. Another is the expression of plasma membrane-associated proteins, so-called restriction factors, which inhibit enveloped virions directly. HIV-1 encodes two countermeasures to these host defenses: The membrane-associated accessory proteins Vpu and Nef. In addition to inhibiting cell-mediated immune-surveillance, Vpu and Nef counteract membrane-associated restriction factors. These include BST-2, which traps newly formed virions at the plasma membrane unless counteracted by Vpu, and SERINC5, which decreases the infectivity of virions unless counteracted by Nef. Here we review key features of these two antiviral proteins, and we review Vpu and Nef, which deplete them from the plasma membrane by co-opting specific cellular proteins and pathways of membrane trafficking and protein-degradation. We also discuss other plasma membrane proteins modulated by HIV-1, particularly CD4, which, if not opposed in infected cells by Vpu and Nef, inhibits viral infectivity and increases the sensitivity of the viral envelope glycoprotein to host immunity.
Collapse
Affiliation(s)
- Peter W Ramirez
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Shilpi Sharma
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Rajendra Singh
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Charlotte A Stoneham
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Thomas Vollbrecht
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - John Guatelli
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
- VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
4
|
Sharma S, Jafari M, Bangar A, William K, Guatelli J, Lewinski MK. The C-Terminal End of HIV-1 Vpu Has a Clade-Specific Determinant That Antagonizes BST-2 and Facilitates Virion Release. J Virol 2019; 93:e02315-18. [PMID: 30867310 PMCID: PMC6532089 DOI: 10.1128/jvi.02315-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
The cellular protein bone marrow stromal antigen-2 (BST-2)/tetherin acts against a variety of enveloped viruses by restricting their release from the plasma membrane. The HIV-1 accessory protein Vpu counteracts BST-2 by downregulating it from the cell surface and displacing it from virion assembly sites. Previous comparisons of Vpus from transmitted/founder viruses and between viruses isolated during acute and chronic infection led to the identification of a tryptophan at position 76 in Vpu (W76) as a key determinant for the displacement of BST-2 from virion assembly sites. Although present in Vpus from clades B, D, and G, W76 is absent from Vpus from clades A, C, and H. Mutagenesis of the C-terminal region of Vpu from two clade C viruses led to the identification of a conserved LL sequence that is functionally analogous to W76 of clade B. Alanine substitution of these leucines partially impaired virion release. This impairment was even greater when the mutations were combined with mutations of the Vpu β-TrCP binding site, resulting in Vpu proteins that induced high surface levels of BST-2 and reduced the efficiency of virion release to less than that of virus lacking vpu Microscopy confirmed that these C-terminal leucines in clade C Vpu, like W76 in clade B, contribute to virion release by supporting the displacement of BST-2 from virion assembly sites. These results suggest that although encoded differently, the ability of Vpu to displace BST-2 from sites of virion assembly on the plasma membrane is evolutionarily conserved among clade B and C HIV-1 isolates.IMPORTANCE Although targeted by a variety of restriction mechanisms, HIV-1 establishes chronic infection in most cases, in part due to the counteraction of these host defenses by viral accessory proteins. Using conserved motifs, the accessory proteins exploit the cellular machinery to degrade or mistraffic host restriction factors, thereby counteracting them. The Vpu protein counteracts the virion-tethering factor BST-2 in part by displacing it from virion assembly sites along the plasma membrane, but a previously identified determinant of that activity is clade specific at the level of protein sequence and not found in the clade C viruses that dominate the pandemic. Here, we show that clade C Vpu provides this activity via a leucine-containing sequence rather than the tryptophan-containing sequence found in clade B Vpu. This difference seems likely to reflect the different evolutionary paths taken by clade B and clade C HIV-1 in human populations.
Collapse
Affiliation(s)
- Shilpi Sharma
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Moein Jafari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Amandip Bangar
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Karen William
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - John Guatelli
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - Mary K Lewinski
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
5
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
FRET Analysis of the Promiscuous yet Specific Interactions of the HIV-1 Vpu Transmembrane Domain. Biophys J 2017; 113:1992-2003. [PMID: 29117523 DOI: 10.1016/j.bpj.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
The Vpu protein of HIV-1 functions to downregulate cell surface localization of host proteins involved in the innate immune response to viral infection. For several target proteins, including the NTB-A and PVR receptors and the host restriction factor tetherin, this antagonism is carried out via direct interactions between the transmembrane domains (TMDs) of Vpu and the target. The Vpu TMD also modulates homooligomerization of this protein, and the tetherin TMD forms homodimers. The mechanism through which a single transmembrane helix is able to recognize and interact with a wide range of select targets that do not share known interaction motifs is poorly understood. Here we use Förster resonance energy transfer to characterize the energetics of homo- and heterooligomer interactions between the Vpu TMD and several target proteins. Our data show that target TMDs compete for interaction with Vpu, and that formation of each heterooligomer has a similar dissociation constant (Kd) and free energy of association to the Vpu homooligomer. This leads to a model in which Vpu monomers, Vpu homooligomers, and Vpu-target heterooligomers coexist, and suggests that the conserved binding surface of Vpu TMD has been selected for weak binding to multiple targets.
Collapse
|
7
|
Romani B, Kavyanifard A, Allahbakhshi E. Functional conservation and coherence of HIV-1 subtype A Vpu alleles. Sci Rep 2017; 7:44894. [PMID: 28317943 PMCID: PMC5357900 DOI: 10.1038/srep44894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Functional studies of HIV-1 proteins are normally conducted using lab adapted strains of HIV-1. The extent of those functions in clinical strains is sometimes unknown. In this study, we amplified and sequenced HIV-1 Vpu from 10 Iranian patients infected with HIV-1. Phylogenetic analysis indicated that the Vpu alleles were closely related to the CRF35_AD from Iran and subtype A Vpu. We addressed some of the well-established functions of the HIV-1 Vpu, as well as some of its recently reported functions. Ability of the clinical strains of subtype A Vpu alleles for downregulation of CD4 was similar to that of the lab adapted NL4.3 Vpu. Majority of the subtype A Vpu alleles performed stronger than NL4.3 Vpu for downregulation of SNAT1. The Vpu alleles differentially induced downregulation of HLA-C, ranging from no effect to 88% downregulation of surface HLA-C. Downregulation of tetherin and enhancement of virus release was similar for the subtype A Vpu alleles and NL4.3. Subtype A Vpu alleles were more potent when compared with NL4.3 for inhibition of NF-κB activation. Our study shows that subtype A Vpu alleles exert the classical functions of HIV-1 Vpu.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran
| |
Collapse
|
8
|
Romani B, Kavyanifard A, Allahbakhshi E. Functional conservation and coherence of HIV-1 subtype A Vpu alleles. Sci Rep 2017; 7:87. [PMID: 28273896 PMCID: PMC5428049 DOI: 10.1038/s41598-017-00222-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Functional studies of HIV-1 proteins are normally conducted using lab adapted strains of HIV-1. The extent of those functions in clinical strains is sometimes unknown. In this study, we amplified and sequenced HIV-1 Vpu from 10 Iranian patients infected with HIV-1. Phylogenetic analysis indicated that the Vpu alleles were closely related to the CRF35_AD from Iran and subtype A Vpu. We addressed some of the well-established functions of the HIV-1 Vpu, as well as some of its recently reported functions. Ability of the clinical strains of subtype A Vpu alleles for downregulation of CD4 was similar to that of the lab adapted NL4.3 Vpu. Majority of the subtype A Vpu alleles performed stronger than NL4.3 Vpu for downregulation of SNAT1. The Vpu alleles differentially induced downregulation of HLA-C, ranging from no effect to 88% downregulation of surface HLA-C. Downregulation of tetherin and enhancement of virus release was similar for the subtype A Vpu alleles and NL4.3. Subtype A Vpu alleles were more potent when compared with NL4.3 for inhibition of NF-κB activation. Our study shows that subtype A Vpu alleles exert the classical functions of HIV-1 Vpu.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.
| |
Collapse
|
9
|
Soper A, Juarez-Fernandez G, Aso H, Moriwaki M, Yamada E, Nakano Y, Koyanagi Y, Sato K. Various plus unique: Viral protein U as a plurifunctional protein for HIV-1 replication. Exp Biol Med (Maywood) 2017; 242:850-858. [PMID: 28346011 DOI: 10.1177/1535370217697384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome, encodes four accessory genes, one of which is viral protein U (Vpu). Recently, the study of Vpu has been of great interest. For instance, various cellular proteins are degraded (e.g. CD4) and down-modulated (e.g. tetherin) by Vpu. Vpu also antagonizes the function of tetherin and inhibits NF-κB. Moreover, Vpu is a viroporin forming ion channels and may represent a promising target for anti-HIV-1 drugs. In this review, we summarize the domains/residues that are responsible for Vpu's functions, describe the current understanding of the role of Vpu in HIV-1-infected cells, and review the effect of Vpu on HIV-1 in replication and pathogenesis. Future investigations that simultaneously assess a combination of Vpu functions are required to clearly delineate the most important functions for viral replication. Impact statement Viral protein U (Vpu) is a unique protein encoded by human immunodeficiency virus type 1 (HIV-1) and related lentiviruses, playing multiple roles in viral replication and pathogenesis. In this review, we briefly summarize the most up-to-date knowledge of HIV-1 Vpu.
Collapse
Affiliation(s)
- Andrew Soper
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Guillermo Juarez-Fernandez
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Hirofumi Aso
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,2 Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Miyu Moriwaki
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,3 Graduate School of Biostudies, Kyoto University, Kyoto 6068315, Japan
| | - Eri Yamada
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Nakano
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshio Koyanagi
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Kei Sato
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,4 CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| |
Collapse
|
10
|
Paquin-Proulx D, Gibbs A, Bächle SM, Checa A, Introini A, Leeansyah E, Wheelock CE, Nixon DF, Broliden K, Tjernlund A, Moll M, Sandberg JK. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1843-51. [PMID: 27481843 DOI: 10.4049/jimmunol.1600556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Anna Gibbs
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Susanna M Bächle
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Andrea Introini
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Kristina Broliden
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Annelie Tjernlund
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| |
Collapse
|
11
|
Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence. Viruses 2016; 8:67. [PMID: 26950141 PMCID: PMC4810257 DOI: 10.3390/v8030067] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.
Collapse
|
12
|
Vpu Protein: The Viroporin Encoded by HIV-1. Viruses 2015; 7:4352-68. [PMID: 26247957 PMCID: PMC4576185 DOI: 10.3390/v7082824] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023] Open
Abstract
Viral protein U (Vpu) is a lentiviral viroporin encoded by human immunodeficiency virus type 1 (HIV-1) and some simian immunodeficiency virus (SIV) strains. This small protein of 81 amino acids contains a single transmembrane domain that allows for supramolecular organization via homoligomerization or interaction with other proteins. The topology and trafficking of Vpu through subcellular compartments result in pleiotropic effects in host cells. Notwithstanding the high variability of its amino acid sequence, the functionality of Vpu is well conserved in pandemic virus isolates. This review outlines our current knowledge on the interactions of Vpu with the host cell. The regulation of cellular physiology by Vpu and the validity of this viroporin as a therapeutic target are also discussed.
Collapse
|
13
|
Ramirez PW, DePaula-Silva AB, Szaniawski M, Barker E, Bosque A, Planelles V. HIV-1 Vpu utilizes both cullin-RING ligase (CRL) dependent and independent mechanisms to downmodulate host proteins. Retrovirology 2015. [PMID: 26215564 PMCID: PMC4517359 DOI: 10.1186/s12977-015-0192-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Hijacking of the cullin-RING E3 ubiquitin ligase (CRL) machinery is a common mechanism employed by diverse groups of viruses for the efficient counteraction and degradation of host proteins. In particular, HIV-1 Vpu usurps the SCFβ-TrCP E3 ubiquitin ligase complex to mark CD4 for degradation by the 26S proteasome. Vpu also interacts with and downmodulates a number of other host proteins, including the restriction factor BST-2. However, whether Vpu primarily relies on a cullin-dependent or -independent mechanism to antagonize its cellular targets has not been fully elucidated. Results We utilized a sulphamate AMP analog, MLN4924, to effectively block the activation of CRLs within infected primary CD4+ T cells. MLN4924 treatment, in a dose dependent manner, efficiently relieved surface downmodulation and degradation of CD4 by NL4-3 Vpu. MLN4924 inhibition was highly specific, as this inhibitor had no effect on Nef’s ability to downregulate CD4, which is accomplished by a CRL-independent mechanism. In contrast, NL4-3 Vpu’s capacity to downregulate BST-2, NTB-A and CCR7 was not inhibited by the drug. Vpu’s from both a transmitted founder (T/F) and chronic carrier (CC) virus preserved the ability to downregulate BST-2 in the presence of MLN4924. Finally, depletion of cellular pools of cullin 1 attenuated Vpu’s ability to decrease CD4 but not BST-2 surface levels. Conclusions We conclude that Vpu employs both CRL-dependent and CRL-independent modes of action against host proteins. Notably, we also establish that Vpu-mediated reduction of BST-2 from the cell surface is independent of β-TrCP and the CRL- machinery and this function is conserved by Vpu’s from primary isolates. Therefore, potential therapies aimed at antagonizing the activities of Vpu may need to address these distinct mechanisms of action in order to achieve a maximal effect.
Collapse
Affiliation(s)
- Peter W Ramirez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Ana Beatriz DePaula-Silva
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Matt Szaniawski
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Edward Barker
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Alberto Bosque
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|