1
|
Baindara P, Kumari S, Dinata R, Mandal SM. Antimicrobial peptides: evolving soldiers in the battle against drug-resistant superbugs. Mol Biol Rep 2025; 52:432. [PMID: 40293554 DOI: 10.1007/s11033-025-10533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The discovery of antibiotics was one of the greatest achievements in human history, however, antibiotic resistance evolved no later than the introduction of antibiotics. The rapid evolution of antibiotic-resistant pathogens soon became frightening and remained a global healthcare threat. There is an urgent need to have new alternatives or new strategies to combat the multi-drug resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Pseudomonas aeruginosa (CR-PA), extended-spectrum β-lactamases (ESBL) bearing multidrug-resistant Acinetobacter baumannii (MDR-AB), Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). Antimicrobial peptides (AMPs) have been considered promising agents equipped with unique mechanisms of action along with several other benefits to fight the battle against drug-resistant superbugs. Overall, the current review summarizes the mechanisms of drug-resistant development, the mechanism of action adopted by AMPs to combat drug-resistant pathogens, and the immunomodulatory properties of AMPs. Additionally, we have also reviewed the synergistic potential of AMPs with conventional antibiotics along with the associated challenges and limitations of AMPs in the way of pharmacological development for therapeutic applications in clinical settings.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Sumeeta Kumari
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, Buffalo, NY, 14214, USA
| | - Roy Dinata
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Santi M Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Bao M, Liang Y, Jia R, Wang Q, Liu N, Chu KH, Zhang Z, Wang L. Functional analysis and modification of anti-lipopolysaccharide factor (ALF) from the freshwater crab Sinopotamon henanense and preparation of a novel ShALF6-2 K-AgNPs complex. Int J Biol Macromol 2025; 302:139874. [PMID: 39855509 DOI: 10.1016/j.ijbiomac.2025.139874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Overuse of antibiotics has led to the emergence of drug-resistant bacteria and environmental problems. Antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs) can potentially replace antibiotics. Therefore, it is possible to create composite nanostructures with synergistic bactericidal properties by combining AgNPs and AMPs. In this study, a novel anti-lipopolysaccharide factor 6, named ShALF6, was identified in the freshwater crab Sinopotamon henanense. Full-length ShALF6 is 654 bp long and contains a typical lipopolysaccharide-binding domain spanning from Cys51 to Lys72. ShALF6 is highly expressed in hemocytes and responds to infection by the gram-negative bacterium Aeromonas hydrophila. ShALF6 inhibited the growth of gram-negative bacteria by binding to them and disrupting their cell membranes. To alter the charge of ShALF6, the negatively charged glutamic acid (E) in the sequence was replaced with a positively charged lysine (K) and the modified protein was named ShALF6-2 K. The bacteriostatic activity of ShALF6-2 K was significantly enhanced by an increase in the protein's cations. ShALF6-2 K showed high binding efficiency after 36 h of co-incubation with AgNPs and modifying the surface potential of the AgNPs. ShALF6-2 K-AgNPs exhibited synergistic inhibition with enhanced effectiveness against gram-negative bacteria. Finally, the cytotoxicity of ShALF6-2 K-AgNPs was investigated. The combination of ShALF6-2 K and AgNPs significantly reduced the toxic effects of AgNPs on the cells. This study provides theoretical and experimental bases for the development of novel bioactive AMP-coated composite AgNPs.
Collapse
Affiliation(s)
- Minnan Bao
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Yue Liang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Ru Jia
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Qian Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Ka-Hou Chu
- School of Life Science, Chinese University of Hong Kong, Hong Kong, China
| | - Zuobing Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
Hyun JE, Hwang CY. Antimicrobial Peptide Reduces Cytotoxicity and Inflammation in Canine Epidermal Keratinocyte Progenitor Cells Induced by Pseudomonas aeruginosa Infection. Vet Sci 2024; 11:235. [PMID: 38921982 PMCID: PMC11209461 DOI: 10.3390/vetsci11060235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The direct effects and antimicrobial activity of synthetic antimicrobial peptides (AMPs) obtained from dogs, including cBD, cBD103, and cCath, against P. aeruginosa wild-type strain PAO1 and canine keratinocytes were analyzed. Antibacterial effects on planktonic bacteria were assessed by determining the minimum bactericidal concentrations (MBCs) of AMPs and by a time-kill assay. Antibiofilm effects were assessed using the microtiter plate assay. We also evaluated the effects of AMPs on cell cytotoxicity and host immune response induced by stimulating canine epidermal keratinocyte progenitor (CPEK) cells with PAO1 and its LPS. cBD, cBD103, and cCath all exhibited dose-dependent antimicrobial and antibiofilm effects. In particular, 25 μg/mL cBD103 showed rapid bactericidal activity within 60 min and inhibited biofilm formation. In addition, pretreatment with cBD103 (25 µg/mL) and cCath (50 µg/mL) 1 h before stimulation significantly reduced the cytotoxicity of the CPEK cells by PAO1 and LPS-induced IL-6 and TNF-a expressions. cBD had little effect on the response to PAO1 and LPS in the cells. These results indicate the therapeutic potential of AMPs in P. aeruginosa skin infections. However, further studies on the mechanism of action of AMPs in keratinocytes and clinical trials are needed.
Collapse
Affiliation(s)
- Jae-Eun Hyun
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
5
|
Yuan C, Zheng X, Liu K, Yuan W, Zhang Y, Mao F, Bao Y. Functional Characterization, Antimicrobial Effects, and Potential Antibacterial Mechanisms of NpHM4, a Derived Peptide of Nautilus pompilius Hemocyanin. Mar Drugs 2022; 20:md20070459. [PMID: 35877752 PMCID: PMC9317327 DOI: 10.3390/md20070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Hemocyanins present in the hemolymph of invertebrates are multifunctional proteins that are responsible for oxygen transport and play crucial roles in the immune system. They have also been identified as a source of antimicrobial peptides during infection in mollusks. Hemocyanin has also been identified in the cephalopod ancestor Nautilus, but antimicrobial peptides derived from the hemocyanin of Nautilus pompilius have not been reported. Here, the bactericidal activity of six predicted peptides from N. pompilius hemocyanin and seven mutant peptides was analyzed. Among those peptides, a mutant peptide with 15 amino acids (1RVFAGFLRHGIKRSR15), NpHM4, showed relatively high antibacterial activity. NpHM4 was determined to have typical antimicrobial peptide characteristics, including a positive charge (+5.25) and a high hydrophobic residue ratio (40%), and it was predicted to form an alpha-helical structure. In addition, NpHM4 exhibited significant antibacterial activity against Gram-negative bacteria (MBC = 30 μM for Vibrio alginolyticus), with no cytotoxicity to mammalian cells even at a high concentration of 180 µM. Upon contact with V. alginolyticus cells, we confirmed that the bactericidal activity of NpHM4 was coupled with membrane permeabilization, which was further confirmed via ultrastructural images using a scanning electron microscope. Therefore, our study provides a rationalization for the development and optimization of antimicrobial peptide from the cephalopod ancestor Nautilus, paving the way for future novel AMP development with broad applications.
Collapse
Affiliation(s)
- Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Xiaoying Zheng
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Wenbin Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
- Correspondence: (F.M.); (Y.B.); Tel.: +86-20-8910-2507 (F.M.)
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
- Correspondence: (F.M.); (Y.B.); Tel.: +86-20-8910-2507 (F.M.)
| |
Collapse
|
6
|
Raju SV, Sarkar P, Pasupuleti M, Abbasi AM, Al-Farraj DA, Elshikh MS, Elumalai P, Harikrishnan R, Rahman MA, Arockiaraj J. Antibacterial Activity of RM12, a Tachykinin Derivative, Against Pseudomonas aeruginosa. Int J Pept Res Ther 2021; 27:2571-2581. [DOI: 10.1007/s10989-021-10274-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/31/2022]
|
7
|
Steroid-Functionalized Imidazolium Salts with an Extended Spectrum of Antifungal and Antibacterial Activity. Int J Mol Sci 2021; 22:ijms222212180. [PMID: 34830061 PMCID: PMC8623970 DOI: 10.3390/ijms222212180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
It is established that high rates of morbidity and mortality caused by fungal infections are related to the current limited number of antifungal drugs and the toxicity of these agents. Imidazolium salts as azole derivatives can be successfully used in the treatment of fungal infections in humans. Steroid-functionalized imidazolium salts were synthesized using a new, more efficient method. As a result, 20 salts were obtained with high yields, 12 of which were synthesized and characterized for the first time. They were derivatives of lithocholic acid and 3-oxo-23,24-dinorchol-4-ene-22-al and were fully characterized by 1H and 13C nuclear magnetic resonance (NMR), infrared spectroscopy (IR), and high resolution mass spectrometry (HRMS). Due to the excellent activity against bacteria and Candida albicans, new research was extended to include tests on five species of pathogenic fungi and molds: Aspergillus niger ATCC 16888, Aspergillus fumigatus ATCC 204305, Trichophyton mentagrophytes ATCC 9533, Cryptococcus neoformans ATCC 14116, and Microsporum canis ATCC 11621. The results showed that the new salts are almost universal antifungal agents and have a broad spectrum of activity against other human pathogens. To initially assess the safety of the synthesized salts, hemocompatibility with host cells and cytotoxicity were also examined. No toxicity was observed at the concentration at which the compounds were active against pathogens.
Collapse
|
8
|
Raju SV, Mukherjee A, Sarkar P, Issac PK, Lite C, Paray BA, Al-Sadoon MK, Al-Mfarij AR, Arockiaraj J. RM12 similar to substance P from tachykinin of freshwater murrel Channa striatus influence intracellular ROS in vitro fish erythrocytes and developmental toxicity and antioxidant enzymes in vivo zebrafish embryo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1073-1085. [PMID: 34021418 PMCID: PMC8139370 DOI: 10.1007/s10695-021-00950-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 05/18/2023]
Abstract
In this study, substance P, an antioxidant peptide of tachykinin, was identified using bioinformatics tools from the earlier established muscle transcriptome of a freshwater murrel Channa striatus and the peptide was named RM12. The antioxidant properties of RM12 were screened using various colorimetric assays. The toxicity of RM12 was experimented using fish erythrocytes, and it is observed that the maximum concentration (320 μM) of RM12 was found to have 15 or 20% of hemolytic activity; however, it was not significant with other tested concentrations (10, 20, 40, 80, and 160 μM). Further, the in vivo antioxidant properties of RM12 were experimented on zebrafish embryo, the intracellular ROS level was estimated by 5 mM H2O2 stress in the zebrafish embryo, and inhibition of apoptosis was evaluated. The antioxidant enzymes were extracted from the H2O2-stressed zebrafish embryo, and the intracellular ROS was eliminated due to RM12. Collectively, the experiment showed that the substance P from the freshwater murrel C. striatus possessed potent antioxidant properties; thus, it can further be focused to develop it as antioxidant molecule in aquaculture organisms.
Collapse
Affiliation(s)
- Stefi V Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Arnab Mukherjee
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, Tamil Nadu, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdul Rahman Al-Mfarij
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Gayathri KV, Aishwarya S, Kumar PS, Rajendran UR, Gunasekaran K. Metabolic and molecular modelling of zebrafish gut biome to unravel antimicrobial peptides through metagenomics. Microb Pathog 2021; 154:104862. [PMID: 33781870 DOI: 10.1016/j.micpath.2021.104862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023]
Abstract
Recently efforts have been taken for unravelling mysteries between host-microbe interactions in gut microbiome studies of model organisms through metagenomics. Co-existence and the co-evolution of the microorganisms is the significant cause of the growing antimicrobial menace. There needs a novel approach to develop potential antimicrobials with capabilities to act directly on the resistant microbes with reduced side effects. One such is to tap them from the natural resources, preferably the gut of the most closely related animal model. In this study, we employed metagenomics approaches to identify the large taxonomic genomes of the zebra fish gut. About 256 antimicrobial peptides were identified using gene ontology predictions from Macrel and Pubseed servers. Upon the property predictions, the top 10 antimicrobial peptides were screened based on their action against many resistant bacterial species, including Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, E. coli, and Bacillus cereus. Metabolic modelling and flux balance analysis (FBA) were computed to conclude the antibiotic such as tetracycline, cephalosporins, puromycin, neomycin biosynthesis pathways were adopted by the microbiome as protection strategies. Molecular modelling strategies, including molecular docking and dynamics, were performed to estimate the antimicrobial peptides' binding against the target-putative nucleic acid binding lipoprotein and confirm stable binding. One specific antimicrobial peptide with the sequence "MPPYLHEIQPHTASNCQTELVIKL" showed promising results with 53% hydrophobic residues and a net charge +2.5, significant for the development of antimicrobial peptides. The said peptide also showed promising interactions with the target protein and expressed stable binding with docking energy of -429.34 kcal/mol and the average root mean square deviation of 1 A0. The study is a novel approach focusing on tapping out potential antimicrobial peptides to be developed against most resistant bacterial species.
Collapse
Affiliation(s)
- K Veena Gayathri
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, 600086, India.
| | - S Aishwarya
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600086, India; CAS in Crystallography and Biophysics, University of Madras, Chennai, 600025, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | - U Rohini Rajendran
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, 600086, India
| | - K Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai, 600025, India
| |
Collapse
|
10
|
Ohno MK, Kirikae T, Yoshihara E, Kirikae F, Ishida I. Addition of L-cysteine to the N- or C-terminus of the all-D-enantiomer [ D(KLAKLAK) 2] increases antimicrobial activities against multidrug-resistant Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. PeerJ 2020; 8:e10176. [PMID: 33335804 PMCID: PMC7713595 DOI: 10.7717/peerj.10176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Antimicrobial peptides have a broad spectrum of antimicrobial activities and are attracting attention as promising next-generation antibiotics against multidrug-resistant (MDR) bacteria. The all-d-enantiomer [D(KLAKLAK)2] has been reported to have antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and to be resistant to protein degradation in bacteria because it is composed of D-enantiomer compounds. In this study, we demonstrated that modification of [D(KLAKLAK)2] by the addition of an L-cysteine residue to its N- or C- terminus markedly enhanced its antimicrobial activities against Gram-negative bacteria such as MDR Acinetobacter baumannii, E. coli, and P. aeruginosa. METHODS The peptides [D(KLAKLAK)2] (DP), DP to which L-cysteine was added at the N-terminus C-DP, and DP to which L-cysteine was added at the C-terminus DP-C, were synthesized at >95% purity. The minimum inhibitory concentrations of peptides and antibiotics were determined by the broth microdilution method. The synergistic effects of the peptides and the antibiotics against MDR P. aeruginosa were evaluated using the checkerboard dilution method. In order to assess how these peptides affect the survival of human cells, cell viability was determined using a Cell Counting Kit-8. RESULTS C-DP and DP-C enhanced the antimicrobial activities of the peptide against MDR Gram-negative bacteria, including A. baumannii, E. coli, and P. aeruginosa. The antimicrobial activity of DP-C was greater than that of C-DP, with these peptides also having antimicrobial activity against drug-susceptible P. aeruginosa and drug-resistant P. aeruginosa overexpressing the efflux pump components. C-DP and DP-C also showed antimicrobial activity against colistin-resistant E. coli harboring mcr-1, which encodes a lipid A modifying enzyme. DP-C showed synergistic antimicrobial activity against MDR P. aeruginosa when combined with colistin. The LD50 of DP-C against a human cell line HepG2 was six times higher than the MIC of DP-C against MDR P. aeruginosa. The LD50 of DP-C was not altered by incubation with low-dose colistin. CONCLUSION Attachment of an L-cysteine residue to the N- or C-terminus of [D(KLAKLAK)2] enhanced its antimicrobial activity against A. baumannii, E. coli, and P. aeruginosa. The combination of C-DP or DP-C and colistin had synergistic effects against MDR P. aeruginosa. In addition, DP-C and C-DP showed much stronger antimicrobial activity against MDR A. baumannii and E. coli than against P. aeruginosa.
Collapse
Affiliation(s)
- Maki K. Ohno
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Fumiko Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Isao Ishida
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| |
Collapse
|
11
|
Wu Y, Huang R, Jin JM, Zhang LJ, Zhang H, Chen HZ, Chen LL, Luan X. Advances in the Study of Structural Modification and Biological Activities of Anoplin. Front Chem 2020; 8:519. [PMID: 32733845 PMCID: PMC7358703 DOI: 10.3389/fchem.2020.00519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Anoplin is an amphipathic, α-helical bioactive peptide from wasp venom. In recent years, pharmaceutical and organic chemists discovered that anoplin and its derivatives showed multiple pharmacological activities in antibacterial, antitumor, antifungal, and antimalarial activities. Owing to the simple and unique structure and diverse biological activities, anoplin has attracted considerable research interests. This review highlights the advances in structural modification, biological activities, and the outlook of anoplin in order to provide a basis for new drug design and delivery.
Collapse
Affiliation(s)
- Ye Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Mei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Li Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Ilyas H, Kim J, Lee D, Malmsten M, Bhunia A. Structural insights into the combinatorial effects of antimicrobial peptides reveal a role of aromatic-aromatic interactions in antibacterial synergism. J Biol Chem 2019; 294:14615-14633. [PMID: 31383740 DOI: 10.1074/jbc.ra119.009955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
The recent development of plants that overexpress antimicrobial peptides (AMPs) provides opportunities for controlling plant diseases. Because plants employ a broad-spectrum antimicrobial defense, including those based on AMPs, transgenic modification for AMP overexpression represents a potential way to utilize a defense system already present in plants. Herein, using an array of techniques and approaches, we report on VG16KRKP and KYE28, two antimicrobial peptides, which in combination exhibit synergistic antimicrobial effects against plant pathogens and are resistant against plant proteases. Investigating the structural origin of these synergistic antimicrobial effects with NMR spectroscopy of the complex formed between these two peptides and their mutated analogs, we demonstrate the formation of an unusual peptide complex, characterized by the formation of a bulky hydrophobic hub, stabilized by aromatic zippers. Using three-dimensional structure analyses of the complex in bacterial outer and inner membrane components and when bound to lipopolysaccharide (LPS) or bacterial membrane mimics, we found that this structure is key for elevating antimicrobial potency of the peptide combination. We conclude that the synergistic antimicrobial effects of VG16KRKP and KYE28 arise from the formation of a well-defined amphiphilic dimer in the presence of LPS and also in the cytoplasmic bacterial membrane environment. Together, these findings highlight a new application of solution NMR spectroscopy to solve complex structures to study peptide-peptide interactions, and they underscore the importance of structural insights for elucidating the antimicrobial effects of AMP mixtures.
Collapse
Affiliation(s)
- Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - JaeWoong Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139743, Korea
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139743, Korea
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden .,Department of Pharmacy, University of Copenhagen, DK 2100, Copenhagen, Denmark
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
13
|
Selective antimicrobial activity of cell lytic enzymes in a bacterial consortium. Appl Microbiol Biotechnol 2019; 103:7041-7054. [DOI: 10.1007/s00253-019-09955-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
14
|
Nam BH, Park EH, Shin EH, Kim YO, Kim DG, Kong HJ, Park JY, Seo JK. Development of novel antimicrobial peptides derived from anti-lipopolysaccharide factor of the swimming crab, Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:664-672. [PMID: 30336284 DOI: 10.1016/j.fsi.2018.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Anti-lipopolysaccharide factors (ALFs) are a representative host defense protein in crustaceans. In this study, we successfully developed two novel antimicrobial peptides (AMPs), named crab-ALF2A and crab-ALF6A, which contain changes to the amino acid sequences of the lipopolysaccharide binding domain and signal peptide, respectively, of the ALF of the swimming crab Portunus trituberculatus. The crab-ALF2A peptide showed potent antimicrobial activity against the Gram-positive bacteria Bacillus cereus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentration [MEC] 1.51-1.93 μg/mL) and the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli (MEC 1.87-1.98 μg/mL), with maximal bactericidal activity at a peptide concentration of 5 μg/mL. The crab-ALF6A peptide also showed potent antimicrobial activity against B. cereus, S. aureus, and S. iniae (MEC 1.49-2.3 μg/mL) and P. aeruginosa and E. coli (MEC 1.72-1.19 μg/mL) at a peptide concentration of 5 μg/mL. Notably, the crab-ALF2A and crab-ALF6A peptides exhibited strong activity against Candida albicans (MECs of 2.11 and 1.95 μg/mL, respectively). These activities were stable following heat treatment. Moreover, the effect of crab-ALF2A and crab-ALF6A peptide treatment on microbe cell morphology was confirmed by scanning electron microscopy. Membrane disruption and damage, and the leakage of cytoplasmic content were clearly observed. A downsizing peptide approach illustrated that the hexapeptide ALF6A8 (RVLLRL) was the shortest peptide showing significant antimicrobial activity. Our approach allows for the generation of novel antimicrobial peptides in a cost effective manner as potential next-generation antibiotics.
Collapse
Affiliation(s)
- Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea.
| | - Eun-Hee Park
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Eun-Ha Shin
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 619-705, Republic of Korea
| | - Jung-Kil Seo
- Department of Food Science and Biotechnology, Kunsan National University, Republic of Korea.
| |
Collapse
|
15
|
Panahi Chegini P, Nikokar I, Tabarzad M, Faezi S, Mahboubi A. Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:157-168. [PMID: 32802096 PMCID: PMC7393060 DOI: 10.22037/ijpr.2019.112397.13734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide range of antimicrobial activities. They have also exhibited other biological activities, including anti-inflammatory, growth stimulating, and anti-cancer activities. In this study, an analog of Magainin II was designed and produced as a recombinant fusion protein. The designed sequence contained 24 amino acid residues (P24), in which Lys, His, Ser residues were substituted with Arg and also, hydrophobic Phe was replaced with Trp. Recombinant production of P24 in Escherichia coli (E. coli) BL21 using pTYB21, containing chitin binding domain and intein sequence at the N-terminus of the peptide gene, resulted in 1 μg mL-1 product from culture. Chitin column chromatography, followed by online peptide cleavage with thiol reducing agent was applied to purify the peptide. Antimicrobial activity was evaluated using five bacteria strains including Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, E. coli, and Pseudomonas aeruginosa. Designed AMP exhibited promising antimicrobial activities with low minimum inhibitory concentration, in the range of 64-256 µg/mL. P24 showed potent antimicrobial activity preferably against Gram-positive bacteria, and more potent than pexiganan as a successful Magainin II analog for topical infections. In general, further modification can be applied to improve its therapeutic index.
Collapse
Affiliation(s)
- Parvaneh Panahi Chegini
- Department of Medicinal Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Iraj Nikokar
- Department of Medicinal Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Xie K, Song S, Zhou L, Wan J, Qiao Y, Wang M, Xie H, Zhou L, Zheng S, Wang H. Revival of a potent therapeutic maytansinoid agent using a strategy that combines covalent drug conjugation with sequential nanoparticle assembly. Int J Pharm 2018; 556:159-171. [PMID: 30553007 DOI: 10.1016/j.ijpharm.2018.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/10/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023]
Abstract
Maytansine and its related analogues are a class of highly potent anti-proliferation agents that have failed to be exploited as clinical drugs for human therapy due to unacceptable systemic toxicity. Here, we delineate a novel strategy that combines rational drug conjugation with subsequent nanoparticle assembly to systemically deliver this highly potent and toxic drug. To demonstrate this concept, we covalently coupled the thiolated maytansine derivative, the DM1 agent, to amphiphilic block co-polymers, polyethylene glycol (PEG)-block-polylactide (PLA), in varying molecular weights to generate two prodrug constructs (i.e., PEG2K-PLA2K-DM1 and PEG2K-PLA4K-DM1) via the maleimide-thiol reaction. The resulting two constructs are amenable to self-assembly in aqueous solutions and are systemically injectable for preclinical studies. In vivo evaluations indicate that PEG-PLA-DM1 conjugate-assembled nanoparticles (NPs) display substantially reduced drug toxicity compared to the free drug forms and NPs that physically encapsulate DM1. Furthermore, following systemic administration, these nanodrugs produced superior therapeutic efficacy over free DM1 in a colon tumor xenograft-bearing mouse model. Therefore, this study provides evidence that the conjugation of toxic drugs to assembling copolymers enables the alleviation of cancer drug toxicity and effective delivery of anticancer drugs. Thus, this DM1-formulated platform represents a new generation of nanotherapeutics that are available for further clinical evaluation.
Collapse
Affiliation(s)
- Ke Xie
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Shanshan Song
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Yiting Qiao
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Min Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Haiyang Xie
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Lin Zhou
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Shusen Zheng
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| |
Collapse
|
17
|
Hu A, Liu HB, Mlynski R, Plontke S, Zhang JF, Dai WJ, Duan JL, Fan JP, Zheng HL, Xu WH, Chen XP, Huang JJ. Therapeutic ultrasound potentiates the anti-nociceptive and anti-inflammatory effects of curcumin to postoperative pain via Sirt1/NF-κB signaling pathway. Am J Transl Res 2018; 10:3099-3110. [PMID: 30416653 PMCID: PMC6220212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Background: Postoperative pain has well defined and is perceived by patients as one of the most obnoxious aspects of surgical pain. The aim of this study was to determine whether the combination of Therapeutic ultrasound (TUS) and Curcumin (CUR) resulted in an enhancement of their pain relieving activities in a rat model of postoperative pain. Methods: We explored the effect of these treatment and their interaction with signal transduction pathways involved in inflammatory. In this study, TUS and CUR alone or in combination were administered prior to or simultaneously with or after the incisional surgery. Results: At the start time of administration, we observed that the TUS plus CUR treatment reduced the mean paw withdrawal threshold more efficiently than CUR alone. Then we demonstrated that TUS potentiates the antinociceptive effect of CUR in a rat model of chronic postoperative pain and that the combination could facilitate the recovery of surgical pain. However, preventive value was not statistically significant when the treatments were given prior to the incisional surgery. We provide evidence that TUS plus CUR administrations were safe and significantly reduced the ED50 compared to treatment with the single CUR treatment in rats. TUS plus CUR administrations decreases incisional surgery induced activation of inflammatory cells and down-regulation of chemokines and proinflammatory cytokines, MCP-1, MIP-1α, IL-1β, and TNF-α through regulating Sirt1/NF-κB signaling pathway. Conclusions: Taken together, our results indicate that the combinations of TUS and CUR can be more effective in the anti-nociceptive effects than the treatment with CUR alone.
Collapse
Affiliation(s)
- An Hu
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New AreaMiaopu Road 219, Shanghai, China
| | - Hai-Bin Liu
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Koerner”, Rostock University Medical CenterGertrudenstraße 9, 18057 Rostock, Germany
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical UniversityFengyang Road 415, Huangpu District, Shanghai, China
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Koerner”, Rostock University Medical CenterGertrudenstraße 9, 18057 Rostock, Germany
| | - Stefan Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine HalleErnst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Jing-Fei Zhang
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New AreaMiaopu Road 219, Shanghai, China
| | - Wei-Jun Dai
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New AreaMiaopu Road 219, Shanghai, China
| | - Jun-Li Duan
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai, China
| | - Jing-Ping Fan
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical UniversityFengyang Road 415, Huangpu District, Shanghai, China
| | - Hong-Liang Zheng
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical UniversityChanghai Road 168, Shanghai, China
| | - Wei-Hua Xu
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New AreaMiaopu Road 219, Shanghai, China
| | - Xiao-Ping Chen
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New AreaMiaopu Road 219, Shanghai, China
| | - Jing-Juan Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong UniversityHuaihai Xi Road 241, Xuhui District, Shanghai, China
| |
Collapse
|
18
|
Inui Kishi RN, Stach-Machado D, Singulani JDL, dos Santos CT, Fusco-Almeida AM, Cilli EM, Freitas-Astúa J, Picchi SC, Machado MA. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One 2018; 13:e0203451. [PMID: 30192822 PMCID: PMC6128562 DOI: 10.1371/journal.pone.0203451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial peptides (AMPs) can be found in various organisms, and could be considered an alternative for pesticides used to control plant pathogens, including those affecting citrus. Brazil is the largest producer and exporter of frozen concentrated orange juice in the world. However, the citrus industry has been affected by several diseases such as citrus canker and huanglongbing (HLB), caused by the bacteria Xanthomonas citri subsp. citri (X.citri) and Candidatus Liberibacter asiaticus (CaLas), respectively. In order to control these pathogens, putative AMPs were prospected in databases containing citrus sequences. Furthermore, AMPs already reported in the literature were also used for in vitro and in vivo assays against X.citri. Since CaLas cannot be cultivated in vitro, surrogates as Sinorhizobium meliloti and Agrobacterium tumefaciens were used. This study reports the evaluation of six AMPs obtained from different sources, two of them from Citrus spp. (citrus-amp1 and citrus-amp2), three from amphibians (Hylin-a1, K0-W6-Hy-a1 and Ocellatin 4-analogue) and one from porcine (Tritrpticin). Peptides K0-W6-Hy-a1, Ocellatin 4-analogue, and citrus-amp1 showed bactericidal activity against X.citri and S. meliloti and bacteriostatic effect on A. tumefaciens. These results were confirmed for X.citri in planta. In addition cytotoxicity evaluations of these molecules were performed. The AMPs that showed the lowest hemolytic activities were Triptrpticin, citrus-amp1 and citrus-amp2. Citrus-amp1 and citrus-amp2 not presented toxicity in experiments using in vivo model, G. mellonella and U87 MG cells. To verify the interaction of these AMPs with bacteria and erythrocyte cell membranes, vesicles mimicking these cells were built. Citrus-amp1 and Tritrpticin exhibited higher affinity to bacterial membranes, while Ocellatin 4-analogue and Hylin-a1 showed higher affinity to erythrocyte membranes; exclude their use in citrus. This work demonstrates an essential alternative, trough AMPs obtained from Citrus spp., which can be feasibly used to control bacterial pathogens.
Collapse
Affiliation(s)
- Rosangela Naomi Inui Kishi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- * E-mail:
| | - Dagmar Stach-Machado
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Claudia Tavares dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Eduardo Maffud Cilli
- Instituto de Química de Araraquara, Departamento de Bioquímica e tecnologia química, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | | | - Simone Cristina Picchi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
19
|
Irani N, Basardeh E, Samiee F, Fateh A, Shooraj F, Rahimi A, Shahcheraghi F, Vaziri F, Masoumi M, Pazhouhandeh M, Siadat SD, Kazemi-Lomedasht F, Jamnani FR. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog 2018; 121:310-317. [PMID: 29859290 DOI: 10.1016/j.micpath.2018.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
The emergence of extensively drug-resistant (XDR) Acinetobacter baumannii strains and the limited number of efficacious antibiotics demonstrate an urgent need to develop novel agents to treat infections caused by this dangerous pathogen. To find antimicrobial peptides against A. baumannii growing either in planktonic or in biofilm mode, biopanning was carried out with a peptide library on five XDR A. baumannii strains grown in the medium containing human blood (blood biopanning) and biofilms formed by these strains (biofilm biopanning). Two groups of peptides were identified, among which two peptides N10 (from blood biopanning) and NB2 (from biofilm biopanning) were selected and synthesized for more assessments. The selected peptides showed significant binding to A. baumannii rather than to the human cell line Caco-2. Both peptides were effective against A. baumannii and showed antibacterial activities (minimum inhibitory concentration (MIC) 500 μg/ml). In the biofilm inhibition assay, NB2 reduced biofilm more efficiently (75%) than N10 (50%). The combination of the two peptides could function better than each peptide alone to prevent biofilm formation by A. baumannii. Supplementation of conventional therapy with a mixture of peptides targeting A. baumannii or using peptides to deliver antibiotics specifically to the site of infection may be promising to control A. baumannii-related diseases.
Collapse
Affiliation(s)
- Nazanin Irani
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran; Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eilnaz Basardeh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Samiee
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Shooraj
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ayoub Rahimi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Andreev K, Martynowycz MW, Huang ML, Kuzmenko I, Bu W, Kirshenbaum K, Gidalevitz D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1414-1423. [PMID: 29621496 DOI: 10.1016/j.bbamem.2018.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
Hydrophobic interactions govern specificity for natural antimicrobial peptides. No such relationship has been established for synthetic peptoids that mimic antimicrobial peptides. Peptoid macrocycles synthesized with five different aromatic groups are investigated by minimum inhibitory and hemolytic concentration assays, epifluorescence microscopy, atomic force microscopy, and X-ray reflectivity. Peptoid hydrophobicity is determined using high performance liquid chromatography. Disruption of bacterial but not eukaryotic lipid membranes is demonstrated on the solid supported lipid bilayers and Langmuir monolayers. X-ray reflectivity studies demonstrate that intercalation of peptoids with zwitterionic or negatively charged lipid membranes is found to be regulated by hydrophobicity. Critical levels of peptoid selectivity are demonstrated and found to be modulated by their hydrophobic groups. It is suggested that peptoids may follow different optimization schemes as compared to their natural analogues.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States
| | - Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States; Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, United States
| | - Mia L Huang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, United States
| | - Wei Bu
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, IL 60637, United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States.
| |
Collapse
|
21
|
Yang R, Zhang G, Zhang F, Li Z, Huang C. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection. Biochimie 2018; 146:139-147. [DOI: 10.1016/j.biochi.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
|
22
|
Parmar A, Lakshminarayanan R, Iyer A, Mayandi V, Leng Goh ET, Lloyd DG, Chalasani MLS, Verma NK, Prior SH, Beuerman RW, Madder A, Taylor EJ, Singh I. Design and Syntheses of Highly Potent Teixobactin Analogues against Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus (MRSA), and Vancomycin-Resistant Enterococci (VRE) in Vitro and in Vivo. J Med Chem 2018; 61:2009-2017. [PMID: 29363971 DOI: 10.1021/acs.jmedchem.7b01634] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cyclic depsipeptide, teixobactin, kills a number of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium tuberculosis without detectable resistance. To date, teixobactin is the only molecule in its class that has shown in vivo antibacterial efficacy. In this work, we designed and synthesized 10 new in vivo ready teixobactin analogues. These analogues showed highly potent antibacterial activities against Staphylococcus aureus, MRSA, and vancomycin-resistant enterococci (VRE) in vitro. One analogue, d-Arg4-Leu10-teixobactin, 2, was found to be noncytotoxic in vitro and in vivo. Moreover, topical instillation of peptide 2 in a mouse model of S. aureus keratitis decreased the bacterial bioburden (>99.0% reduction) and corneal edema significantly as compared to untreated mouse corneas. Collectively, our results have established the high therapeutic potential of a teixobactin analogue in attenuating bacterial infections and associated severities in vivo.
Collapse
Affiliation(s)
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute , The Academia , Discovery Tower Level 6, 20 College Road , 169857 Singapore
| | - Abhishek Iyer
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 (S4) , Ghent B-9000 , Belgium
| | - Venkatesh Mayandi
- Singapore Eye Research Institute , The Academia , Discovery Tower Level 6, 20 College Road , 169857 Singapore
| | - Eunice Tze Leng Goh
- Singapore Eye Research Institute , The Academia , Discovery Tower Level 6, 20 College Road , 169857 Singapore
| | | | | | - Navin K Verma
- Singapore Eye Research Institute , The Academia , Discovery Tower Level 6, 20 College Road , 169857 Singapore.,Lee Kong Chian School of Medicine , Nanyang Technological University , 636921 Singapore
| | | | - Roger W Beuerman
- Singapore Eye Research Institute , The Academia , Discovery Tower Level 6, 20 College Road , 169857 Singapore
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 (S4) , Ghent B-9000 , Belgium
| | | | | |
Collapse
|
23
|
Dong N, Li XR, Xu XY, Lv YF, Li ZY, Shan AS, Wang JL. Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides. Amino Acids 2017; 50:453-468. [PMID: 29282543 DOI: 10.1007/s00726-017-2531-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Facing rising global antibiotics resistance, physical membrane-damaging antimicrobial peptides (AMPs) represent promising antimicrobial agents. Various strategies to design effective hybrid peptides offer many advantages in overcoming the adverse effects of natural AMPs. In this study, hybrid peptides from different species were investigated, and three hybrid antimicrobial peptides, LI, LN, and LC, were designed by combining the typical fragment of human cathelicidin-derived LL37 with either indolicidin, pig nematode cecropin P1 (CP-1) or rat neutrophil peptide-1 (NP-1). In an aqueous solution, all hybrid peptides had an unordered conformation. In simulated membrane conditions, the hybrid peptide LI displayed more β-turn and β-hairpin structures, whereas LN and LC folded into α-helix structures. The three interspecific hybrid peptides LI, LN, and LC exhibited different levels of antimicrobial activity against Gram-positive and Gram-negative bacteria. LI demonstrated the highest antimicrobial activity and cell selectivity. The results of the swimming motility indicated that LI repressed bacterial motility in a concentration-dependent method. Endotoxin binding assay demonstrated that hybrid peptide LI conserved the binding ability to LPS (polyanionic lipopolysaccharides) of its parental peptides. Fluorescence assays, flow cytometry, and SEM further revealed that hybrid peptide LI acted through different bacteriostatic mechanisms than LL37 and indolicidin and that LI killed bacterial cells via membrane damage. In summary, this study demonstrated that hybrid peptide LI produced by interspecific hybrid synthesis possessed strong cell selectivity and is a promising therapeutic candidate for drug-resistant bacteria infection.
Collapse
Affiliation(s)
- N Dong
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - X R Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - X Y Xu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Y F Lv
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Z Y Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - A S Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - J L Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
24
|
Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9650-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Abstract
Antimicrobial peptides (AMPs) are expressed in various living organisms as first-line host defenses against potential harmful encounters in their surroundings. AMPs are short polycationic peptides exhibiting various antimicrobial activities. The principal antibacterial activity is attributed to the membrane-lytic mechanism which directly interferes with the integrity of the bacterial cell membrane and cell wall. In addition, a number of AMPs form a transmembrane channel in the membrane by self-aggregation or polymerization, leading to cytoplasm leakage and cell death. However, an increasing body of evidence has demonstrated that AMPs are able to exert intracellular inhibitory activities as the primary or supportive mechanisms to achieve efficient killing. In this review, we focus on the major intracellular targeting activities reported in AMPs, which include nucleic acids and protein biosynthesis and protein-folding, protease, cell division, cell wall biosynthesis, and lipopolysaccharide inhibition. These multifunctional AMPs could serve as the potential lead peptides for the future development of novel antibacterial agents with improved therapeutic profiles.
Collapse
|
26
|
Zhang P, Ma J, Yan Y, Chen B, Liu B, Jian C, Zhu B, Liang S, Zeng Y, Liu Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org Biomol Chem 2017; 15:9379-9388. [DOI: 10.1039/c7ob02233f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, arginine modification rendered Lycosin-I with higher anticancer activity, penetrability, and dissemination ability against solid tumor cells due to the optimized physicochemical properties and high serum stability.
Collapse
|
27
|
Memariani H, Shahbazzadeh D, Ranjbar R, Behdani M, Memariani M, Pooshang Bagheri K. Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem Biol Drug Des 2016; 89:327-338. [PMID: 27591703 DOI: 10.1111/cbdd.12864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/12/2016] [Accepted: 08/06/2016] [Indexed: 02/01/2023]
Abstract
Antimicrobial peptides are considered to be excellent templates for designing novel antibiotics because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance. In this study, for the first time, a series of short hybrid antimicrobial peptides combined by different fragments of venom-derived alpha-helical antimicrobial peptides pEM-2, mastoparan-VT1, and mastoparan-B were designed with the intent to improve the therapeutic index of the parental peptides. Short hybrid antimicrobial peptides PV, derived from pEM-2 and mastoparan-VT1, was found to possess the highest antibacterial, hemolytic, and cytotoxic activity. Short hybrid antimicrobial peptides PV3, derived from pEM-2 and three fragments of mastoparan-VT1, showed more than threefold improvement in therapeutic index compared with parental peptides pEM-2 and mastoparan-VT1. PV had the highest antimicrobial activity in stability studies. Except BVP, designed based on all three parental peptides, the other short hybrid antimicrobial peptides at their minimal inhibitory concentration and 2× minimal inhibitory concentration required less than 120 and 60 min to reduce >3log10 the initial inoculum, respectively. All peptides had membrane-disrupting activity in a time-dependent manner. Collectively, this study highlights the potential for rational design of improved short hybrid antimicrobial peptides such as PV3 that was an ideal candidate for further assessment with the ultimate purpose of development of effective antimicrobial agents.
Collapse
Affiliation(s)
- Hamed Memariani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Memariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun 2016; 479:103-8. [DOI: 10.1016/j.bbrc.2016.09.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/10/2016] [Indexed: 11/29/2022]
|
29
|
The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans. Antimicrob Agents Chemother 2016; 60:6369-73. [PMID: 27458227 DOI: 10.1128/aac.00699-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/16/2016] [Indexed: 11/20/2022] Open
Abstract
Two antimicrobial P-113 peptide derivatives, P-113Du and P-113Tri, were investigated in this study. Notably, P-113Du and P-113Tri contained significant fractions of α-helix conformation and were less sensitive to high salt and low pH than P-113. Moreover, compared to P-113, these peptides exhibited increased antifungal activity against planktonic cells, biofilm cells, and clinical isolates of Candida albicans and non-albicans Candida spp. These results suggest that P-113Du and P-113Tri are promising candidates for development as novel antifungal agents.
Collapse
|
30
|
Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 2016; 6:26828. [PMID: 27225022 PMCID: PMC4881017 DOI: 10.1038/srep26828] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3.
Collapse
|
31
|
Yang H, Li S, Li F, Xiang J. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF) of Shrimp. Mar Drugs 2016; 14:md14050096. [PMID: 27213409 PMCID: PMC4882570 DOI: 10.3390/md14050096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/29/2023] Open
Abstract
The lipopolysaccharide binding domain (LBD) in anti-lipopolysaccharide factor (ALF) is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2) from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9) cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
32
|
Jin L, Bai X, Luan N, Yao H, Zhang Z, Liu W, Chen Y, Yan X, Rong M, Lai R, Lu Q. A Designed Tryptophan- and Lysine/Arginine-Rich Antimicrobial Peptide with Therapeutic Potential for Clinical Antibiotic-Resistant Candida albicans Vaginitis. J Med Chem 2016; 59:1791-9. [PMID: 26881456 DOI: 10.1021/acs.jmedchem.5b01264] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New therapeutic agents for Candida albicans vaginitis are urgently awaiting to be developed because of the increasing antibiotic resistance of C. albicans. Antimicrobial peptides (AMPs) are one of the most promising choices for next-generation antibiotics. In this study, novel peptides were designed based on snake venom antimicrobial peptide cathelicidin-BF to promote anti-C. albicans activity and decrease side-effects. The designing strategies include substitutions of charged or hydrophobic amino acid residues for noncharged polar residues to promote antimicrobial activity and insertion of a hydrophobic residue in the hydrophilic side of the helix structure to reduce hemolysis. A designed tryptophan and lysine/arginine-rich cationic peptide 4 (ZY13) (VKRWKKWRWKWKKWV-NH2) exhibited excellent antimicrobial activity against either common strain or clinical isolates of antibiotic-resistant C. albicans with little hemolysis. Peptide 4 showed significant therapeutic effects on vaginitis in mice induced by the infection of clinical antibiotic-resistant C. albicans. The approaches herein might be useful for designing of AMPs.
Collapse
Affiliation(s)
- Lin Jin
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Xuewei Bai
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Ning Luan
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Huimin Yao
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China.,Joint Laboratory of Natural Peptide of University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| | - Weihui Liu
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Yan Chen
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Xiuwen Yan
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China
| | - Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China.,Joint Laboratory of Natural Peptide of University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| | - Ren Lai
- Life Sciences College of Nanjing Agricultural University , Nanjing 210095, Jiangsu, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China.,Joint Laboratory of Natural Peptide of University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China.,Joint Laboratory of Natural Peptide of University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| |
Collapse
|