1
|
Azari Z, Sadeghi-Avalshahr A, Alipour F, Kondori BJ, Askari VR, Mollazadeh S, Nazarnezhad S, Nasiri SN, Kermani F, Ranjbar-Mohammadi M. Advanced nanofibers integrating vitamin D3 and cerium oxide nanoparticles for enhanced diabetic wound healing: Co-electrospun silk fibroin-collagen and chitosan-PVA systems. Int J Biol Macromol 2025; 310:143099. [PMID: 40222506 DOI: 10.1016/j.ijbiomac.2025.143099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
This study investigates the co-electrospinning of polyvinyl alcohol-chitosan (PVA-CS) with cerium oxide nanoparticles (CeNPs) and silk fibroin-collagen (SF-Col) with vitamin D3 for diabetic wound healing applications. The SEM results showed smooth, bead-free nanofiber structures. The diameters of the SF-Col and PVA-CS nanofibers ranged from 168 ± 51 nm to 1956 ± 450 nm and 211.4 ± 37.2 nm, respectively. By surface modification using fetal bovine serum (FBS), CeNPs dispersion was enhanced. The average diameter of the uniformly distributed fibers on the SF-Co-D/PVA-CS-CeNPs nanofibers was 621.4 ± 50.6 nm. The addition of CeNPs and vitamin D3 improved cytocompatibility at lower doses. The FTIR test confirmed polymer interactions. Contact angle measurements indicated increased hydrophilicity. SEM analysis demonstrated excellent adhesion and growth of L929 fibroblast cells and significant HUVEC migration on SF-Col-D/PVA-CS-CeNP mats, emphasizing their potential to support cell proliferation and tissue regeneration. Blood compatibility assays exhibited hemolysis percentages below 2 %, classifying the nanofibers as non-hemolytic. Antibacterial tests revealed significant reductions in Staphylococcus aureus and Pseudomonas aeruginosa survival, addressing infection concerns in chronic wounds. Furthermore, in vivo studies have demonstrated that the utilization of SF-Co-D/PVA-CS-CeNPs nanofibrous membrane as a dressing for full-thickness skin wounds in rats has resulted in accelerated tissue regeneration.
Collapse
Affiliation(s)
- Zoleikha Azari
- Bhbahan Faculty of Medical Sciences, Behbahan, Iran; Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sadeghi-Avalshahr
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Jalali Kondori
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Mollazadeh
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Najibeh Nasiri
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Kermani
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Jia W, Liu Z, Sun L, Cao Y, Shen Z, Li M, An Y, Zhang H, Sang S. A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair. Biotechnol Bioeng 2024; 121:2752-2766. [PMID: 38877732 DOI: 10.1002/bit.28769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 06/16/2024]
Abstract
Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.
Collapse
Affiliation(s)
- Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hulin Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
3
|
Jin A, Shao Y, Wang F, Feng J, Lei L, Dai M. Designing polysaccharide materials for tissue repair and regeneration. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0223937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.
Collapse
Affiliation(s)
- Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
4
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
5
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
7
|
Liu T, Zhang Q, Li H, Cui X, Qi Z, Yang X. An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury. J Biol Eng 2023; 17:48. [PMID: 37488558 PMCID: PMC10367392 DOI: 10.1186/s13036-023-00368-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development. In recent years, injectable hydrogel materials have been widely used in tissue engineering due to their good biocompatibility, biodegradability, controllable properties, and low invasiveness. The treatment strategy of injectable hydrogels combined with stem cells or drugs has made some progress in SCI repair, showing the potential to overcome the drawbacks of traditional drugs and stem cell therapy. METHODS In this study, a novel injectable electroactive hydrogel (NGP) based on sodium hyaluronate oxide (SAO) and polyaniline-grafted gelatine (NH2-Gel-PANI) was developed as a material in which to load neural stem cells (NSCs) and donepezil (DPL) to facilitate nerve regeneration after SCI. To evaluate the potential of the prepared NGP hydrogel in SCI repair applications, the surface morphology, self-repairing properties, electrical conductivity and cytocompatibility of the resulting hydrogel were analysed. Meanwhile, we evaluated the neural repair ability of NGP hydrogels loaded with DPL and NSCs using a rat model of spinal cord injury. RESULTS The NGP hydrogel has a suitable pore size, good biocompatibility, excellent conductivity, and injectable and self-repairing properties, and its degradation rate matches the repair cycle of spinal cord injury. In addition, DPL could be released continuously and slowly from the NGP hydrogel; thus, the NGP hydrogel could serve as an excellent carrier for drugs and cells. The results of in vitro cell experiments showed that the NGP hydrogel had good cytocompatibility and could significantly promote the neuronal differentiation and axon growth of NSCs, and loading the hydrogel with DPL could significantly enhance this effect. More importantly, the NGP hydrogel loaded with DPL showed a significant inhibitory effect on astrocytic differentiation of NSCs in vitro. Animal experiments showed that the combination of NGP hydrogel, DPL, and NSCs had the best therapeutic effect on the recovery of motor function and nerve conduction function in rats. NGP hydrogel loaded with NSCs and DPL not only significantly increased the myelin sheath area, number of new neurons and axon area but also minimized the area of the cystic cavity and glial scar and promoted neural circuit reconstruction. CONCLUSIONS The DPL- and NSC-laden electroactive hydrogel developed in this study is an ideal biomaterial for the treatment of traumatic spinal cord injury.
Collapse
Affiliation(s)
- Tiemei Liu
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Qiang Zhang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Hongru Li
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, 130041, Changchun, PR China
| | - Zhiping Qi
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| | - Xiaoyu Yang
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| |
Collapse
|
8
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
9
|
Yu S, You M, Zhou K, Li J. Progress of research on graphene and its derivatives in bone and cartilage repair. Front Bioeng Biotechnol 2023; 11:1185520. [PMID: 37362210 PMCID: PMC10285074 DOI: 10.3389/fbioe.2023.1185520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, graphene and its derivatives have gained wide attention in the biomedical field due to their good physicochemical properties, biocompatibility, and bioactivity. Its good antibacterial, osteoinductive and drug-carrying properties make it a promising application in the field of orthopedic biomaterials. This paper introduces the research progress of graphene and its derivatives in bone tissue engineering and cartilage tissue engineering and presents an outlook on the future development of graphene-based materials in orthopedics.
Collapse
Affiliation(s)
- Shilong Yu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mingke You
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Jiang Y, Wang J, Wu R, Qi L, Huang L, Wang J, Du M, Liu Z, Li Y, Liu L, Feng G, Zhang L. Bioinspired Construction of Annulus Fibrosus Implants with a Negative Poisson's Ratio for Intervertebral Disc Repair and Restraining Disc Herniation. Bioconjug Chem 2023. [PMID: 36961940 DOI: 10.1021/acs.bioconjchem.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Inspired by the negative Poisson's ratio (NPR) effects of the annulus fibrosus (AF) in intervertebral discs (IVDs), we designed a re-entrant honeycomb model and then 3D printed it into a poly(ε-caprolactone) (PCL) scaffold with NPR effects, which was followed by in situ polymerization of polypyrrole (PPy), thus constructing a PPy-coated NPR-structured PCL scaffold (-vPCL-PPy) to be used as the AF implant for the treatment of lumbar herniated discs. Mechanical testing and finite element (FE) simulation indicated that the NPR composite implant could sustain axial spine loading and resist nucleus pulposus (NP) swelling while displaying uniform stress diffusion under NP swelling and contraction. More interestingly, the NPR-structured composite scaffold could also apply a reacting force to restrain NP herniation owing to the NPR effect. In addition, the in vitro biological assessment and in vivo implantation demonstrated that the NPR composite scaffold exhibited good biocompatibility and exerted the ability to restore the physiological function of the disc segments.
Collapse
Affiliation(s)
- Yulin Jiang
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Juehan Wang
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ruibang Wu
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Leizheng Huang
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jing Wang
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Meixuan Du
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical and Testing Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
12
|
Hui Y, Yan Z, Yang H, Xu X, Yuan WE, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4741-4759. [PMID: 36102324 DOI: 10.1021/acsabm.2c00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stem cells play a critical role in peripheral nerve regeneration. Nerve scaffolds fabricated by specific materials can help induce the neurogenic differentiation of stem cells. Therefore, it is a potential strategy to enhance therapeutic efficiency. Graphene family nanomaterials are widely applied in repairing peripheral nerves. However, the mechanism underlying the pro-regeneration effects remains elusive. In this review, we first discuss the properties of graphene family nanomaterials, including monolayer and multilayer graphene, few-layer graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots. We also introduce their applications in regulating stem cell differentiation. Then, we review the potential mechanisms of the neurogenic differentiation of stem cells facilitated by the materials. Finally, we discuss the existing challenges in this field to advance the development of nerve biomaterials.
Collapse
Affiliation(s)
- Yuxuan Hui
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Hao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Xingxing Xu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| |
Collapse
|
13
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
14
|
McWhorter JK, Halloran PR, Roff G, Skirving WJ, Mumby PJ. Climate refugia on the Great Barrier Reef fail when global warming exceeds 3°C. GLOBAL CHANGE BIOLOGY 2022; 28:5768-5780. [PMID: 35916134 PMCID: PMC9541460 DOI: 10.1111/gcb.16323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Increases in the magnitude, frequency, and duration of warm seawater temperatures are causing mass coral mortality events across the globe. Although, even during the most extensive bleaching events, some reefs escape exposure to severe stress, constituting potential refugia. Here, we identify present-day climate refugia on the Great Barrier Reef (GBR) and project their persistence into the future. To do this, we apply semi-dynamic downscaling to an ensemble of climate projections released for the IPCC's recent sixth Assessment Report. We find that GBR locations experiencing the least thermal stress over the past 20 years have done so because of their oceanographic circumstance, which implies that longer-term persistence of climate refugia is feasible. Specifically, tidal and wind mixing of warm water away from the sea surface appears to provide relief from warming. However, on average this relative advantage only persists until global warming exceeds ~3°C.
Collapse
Affiliation(s)
- Jennifer K. McWhorter
- College of Life and Environmental SciencesUniversity of ExeterExeterUK
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
- Atlantic Oceanographic and Meteorological LaboratoryNational Oceanic and Atmospheric AdministrationMiamiFloridaUSA
| | - Paul R. Halloran
- College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - George Roff
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
- Commonwealth Scientific and Industrial Research OrganisationCanberraAustralia
| | - William J. Skirving
- Coral Reef Watch, National Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
- ReefSense Pty Ltd.TownsvilleQueenslandAustralia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
15
|
Yao D, Lv Y. A cell-free difunctional demineralized bone matrix scaffold enhances the recruitment and osteogenesis of mesenchymal stem cells by promoting inflammation resolution. BIOMATERIALS ADVANCES 2022; 139:213036. [PMID: 35905556 DOI: 10.1016/j.bioadv.2022.213036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The dialogue between host macrophages (Mφs) and endogenous mesenchymal stem cells (MSCs) promotes M2 Mφs polarization to resolve early-stage inflammation, thereby effectively guiding in situ bone regeneration. Once inflammation is unresolved/incontrollable, it will induce the impediment of MSCs homing at bone defect site, implying the seasonable resolution of inflammation in balancing bone homeostasis. Repeatedly, evidence elucidated that specialized pro-resolving mediators (SPMs) could conduce to proper resolve inflammation and promote the repairing of bone defect. A difunctional demineralized bone matrix (DBM) scaffold co-modified by maresin 1 (MaR1) and aptamer 19S (Apt19S) was fabricated to facilitate the osteogenesis of MSCs. To confirm the osteogenesis and immunomodulatory role of the difunctional DBM scaffold, the proliferation, recruitment, and osteogenic differentiation of MSCs and the Mφs M2 subtype polarization were evaluated in vitro. Then, the DBM scaffolds were implanted into mice model with critical size calvarial defect to evaluate bone repair efficiency. Finally, the specific resolution mechanism in Mφs cultured on the difunctional DBM scaffold was further in-depth investigated. This difunctional DBM scaffold exhibited an enhanced function on the recruitment, proliferation, migration, osteogenesis of MSCs and the resolution of inflammation, finally improved bone-scaffold integration. At the same time, MaR1 modified on the difunctional DBM scaffold increased the biosynthesis of 12-lipoxygenase (12-LOX) and 12S-hydroxy-eicosatetraenoic acid (12S-HETE), and also directly stimulated lipid droplets (LDs) biogenesis in Mφs, which suggested that MaR1 regulated Mφ lipid metabolism at bone repair site. Findings based on this synergy strategy demonstrated that Mφ lipid metabolism was essential in bone homeostasis, which might provide a theoretical direction for the treatment-associated application of MaR1 in inflammatory bone disease.
Collapse
Affiliation(s)
- Dongdong Yao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
16
|
Chen M, Jiang R, Deng N, Zhao X, Li X, Guo C. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol 2022; 10:954699. [PMID: 35928962 PMCID: PMC9343850 DOI: 10.3389/fbioe.2022.954699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissues such as skin, muscle, and tendon are easily damaged due to injury from physical activity and pathological lesions. For soft tissue repair and regeneration, biomaterials are often used to build scaffolds with appropriate structures and tailored functionalities that can support cell growth and new tissue formation. Among all types of scaffolds, natural polymer-based scaffolds attract much attention due to their excellent biocompatibility and tunable mechanical properties. In this comprehensive mini-review, we summarize recent progress on natural polymer-based scaffolds for soft tissue repair, focusing on clinical translations and materials design. Furthermore, the limitations and challenges, such as unsatisfied mechanical properties and unfavorable biological responses, are discussed to advance the development of novel scaffolds for soft tissue repair and regeneration toward clinical translation.
Collapse
Affiliation(s)
- Meiwen Chen
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Xiumin Zhao
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Xiangjuan Li
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| |
Collapse
|
17
|
Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022; 110:1695-1721. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Graphene-based nanocomposites have recently attracted increasing attention in tissue engineering because of their extraordinary features. These biocompatible substances, in the presence of an apt microenvironment, can stimulate and sustain the growth and differentiation of stem cells into different lineages. This review discusses the characteristics of graphene and its derivatives, such as their excellent electrical signal transduction, carrier mobility, outstanding mechanical strength with improving surface characteristics, self-lubrication, antiwear properties, enormous specific surface area, and ease of functional group modification. Moreover, safety issues in the application of graphene and its derivatives in terms of biocompatibility, toxicity, and interaction with immune cells are discussed. We also describe the applicability of graphene-based nanocomposites in tissue healing and organ regeneration, particularly in the bone, cartilage, teeth, neurons, heart, skeletal muscle, and skin. The impacts of special textural and structural characteristics of graphene-based nanomaterials on the regeneration of various tissues are highlighted. Finally, the present review gives some hints on future research for the transformation of these exciting materials in clinical studies.
Collapse
Affiliation(s)
- Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran.,Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Yousef Rasmi
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Wang S, Qiu Y, Qu L, Wang Q, Zhou Q. Hydrogels for Treatment of Different Degrees of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:858656. [PMID: 35733529 PMCID: PMC9207401 DOI: 10.3389/fbioe.2022.858656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a common disease that severely restricts human activities and degrades the quality of life. Every year, millions of people worldwide are diagnosed with osteoarthritis, placing a heavy burden on society. Hydrogels, a polymeric material with good biocompatibility and biodegradability, are a novel approach for the treatment of osteoarthritis. In recent years, this approach has been widely studied with the development of materials science and tissue engineering technology. We reviewed the research progress of hydrogels in the treatment of osteoarthritis in the past 3 years. We summarized the required hydrogel properties and current applications according to the development and treatment of osteoarthritis. Furthermore, we listed the challenges of hydrogels for different types of osteoarthritis and presented prospects for future development.
Collapse
Affiliation(s)
- Shuze Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Liu Qu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
19
|
Basal O, Ozmen O, Deliormanli AM. Effect of polycaprolactone scaffolds containing different weights of graphene on healing in large osteochondral defect model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1123-1139. [PMID: 35171753 DOI: 10.1080/09205063.2022.2042035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Now it is possible to combine the different biomaterial properties of graphene and 3 D printing scaffolds produced by tissue engineering for cartilage repair. In the study graphene-containing (1, 3, 5, 10 wt%), porous and oriented poly-ε-caprolactone-based scaffolds were prepared by robocasting method to use in the regeneration of large osteochondral defects. The scaffolds were implanted into the full-thickness osteochondral defect in a rabbit model to evaluate the regeneration of the defect in vivo. For this purpose, twenty female New Zealand white rabbits were used and they were euthanized at 4 and 8 weeks of implantation. The reparative osteochondral tissues were harvested from rabbit distal femurs and then processed for gross appearance assessment, radiographic imaging, histopathological, histochemical and immunohistochemical examinations. Results revealed that graphene-containing graft materials caused significant amelioration at the defect areas. Graphene-containing graft materials improved the fibrous, chondroid and osseous tissue regeneration compared to the control group. The expressions of bone morphogenetic protein-2 (BMP-2), collagen-1 (col-1), vascular endothelial growth factor (VEGF) and alkaline phosphatase (ALP) expressions were more prominent in graphene-containing PCL implanted groups (p < .001). Picrosirrius red method was used for to evaluate connective and muscle tissues. Results also revealed that the ameliorative effect of graphene increased by the elevation in concentration. The most prominent healing was observed in 10 wt% graphene-containing PCL based composite scaffold implanted group. This study results showed that graphene-containing PCL scaffolds enhanced the healing significantly in large osteochondral defect areas compared to the control groups.
Collapse
Affiliation(s)
- Ozgur Basal
- Department of Orthopaedics and Traumatology, Emsey Hospital, Pendik, Istanbul, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Aylin Muyesser Deliormanli
- Department of Metallurgical and Materials Engineering, Manisa Celal Bayar University, Manisa, Yunusemre, Turkey
| |
Collapse
|
20
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Liang Q, Ma Y, Yao X, Wei W. Advanced 3D-Printing Bioinks for Articular Cartilage Repair. Int J Bioprint 2022; 8:511. [PMID: 36105138 PMCID: PMC9468847 DOI: 10.18063/ijb.v8i3.511] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Chondral lesions caused by stressors, such as injury or inflammation, lead to osteoarthritis (OA). OA is a degenerative joint disease that has become a challenge worldwide. As the articular cartilage is incapable of self-regeneration due to the absence of vessels and nerves, novel cartilage repair techniques are urgently needed. Three-dimensional (3D) bioprinting, which allows the precise control of internal architecture and geometry of printed scaffolds, has stepped up to be a promising strategy in cartilage restoration. With regards to 3D bioprinting, bioinks with proper chemical and mechanical properties play one of the most critical roles in designing successful cartilage tissue constructs. In particular, hydrogels as 3D hydrophilic cross-linked polymer networks are highly recommended as bioinks because of their fine biocompatibility, easy fabrication, and tunable mechanical strength. Herein, we highlight the widely used polymers for hydrogel preparation and further provide a non-exhaustive overview of various functional modified additives (such as cells, drugs, bioactive factors and ceramic) to exploit the unique properties suitable for bioprinted cartilage. Finally, a prospective on future development for 3D-bioprinting in cartilage repair is elucidated in this review.
Collapse
Affiliation(s)
- Qiushi Liang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 310000, China
| | - Yuanzhu Ma
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 310000, China
| | - Xudong Yao
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Wei
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
22
|
Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomater 2022; 13:27. [PMID: 35323227 PMCID: PMC8953174 DOI: 10.3390/jfb13010027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have shown to have a high potential in future biomedical applications due to their unique physicochemical properties such as unusual electrical conductivity, high biocompatibility, large surface area, and extraordinary thermal and mechanical properties. Although the potential of graphene as the most common 2D nanomaterials in biomedical applications has been extensively investigated, the practical use of other nanoengineered 2D materials beyond graphene such as transition metal dichalcogenides (TMDs), topological insulators (TIs), phosphorene, antimonene, bismuthene, metal-organic frameworks (MOFs) and MXenes for biomedical applications have not been appreciated so far. This review highlights not only the unique opportunities of 2D nanomaterials beyond graphene in various biomedical research areas such as bioelectronics, imaging, drug delivery, tissue engineering, and regenerative medicine but also addresses the risk factors and challenges ahead from the medical perspective and clinical translation of nanoengineered 2D materials. In conclusion, the perspectives and future roadmap of nanoengineered 2D materials beyond graphene are outlined for biomedical applications.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Sahar Daemi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Pegah Shahini
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Afagh Habibzadeh
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| |
Collapse
|
23
|
P B S, S G, J P, Muthusamy S, R N, Krishnakumar GS, R S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int J Biol Macromol 2022; 195:179-189. [PMID: 34863969 DOI: 10.1016/j.ijbiomac.2021.11.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sathish P B
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gayathri S
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Priyanka J
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Shalini Muthusamy
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Narmadha R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gopal Shankar Krishnakumar
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Selvakumar R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India.
| |
Collapse
|
24
|
Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:65-87. [DOI: 10.1007/978-981-16-4923-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
A rabbit femoral trochlear defect model for chondral and osteochondral regeneration. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Articular cartilage degeneration represents one of the main features of osteoarthritis. Recently, novel approaches based on biomaterials have been successfully applied to osteochondral regeneration. Our study was carried out on rabbits to assess a model of articular cartilage damage to test biomaterials for osteochondral regeneration. We created osteochondral defects on the surface of the trochlear groove area of the femurs in 15 white male New Zealand rabbits of the size of 3 mm × 3 mm (diameter × depth). Rabbits were then monitored and samples were collected 2 weeks, 4 weeks, and 6 weeks after the operation. The reconstruction of defects was assessed macroscopically according to the International Cartilage Repair Society (ICRS) scale and radiography (X-ray). For microscopic evaluation, haematoxylin-eosin staining and safranin O staining were used. The defects were repaired by regenerative tissue, and the recovery results gradually increased after 2 weeks, 4 weeks, and 6 weeks, showing both microscopically and macroscopically. However, the regenerative tissue was mainly fibrous connective tissue, not cartilage or bone. This is a model of articular cartilage damage that is suitable for early screening of preclinical studies related to osteochondral regeneration using biomaterials.
Collapse
|
26
|
Das P, Rajesh K, Lalzawmliana V, Bavya Devi K, Basak P, Lahiri D, Kundu B, Roy M, Nandi SK. Development and Characterization of Acellular Caprine Choncal Cartilage Matrix for Tissue Engineering Applications. Cartilage 2021; 13:1292S-1308S. [PMID: 31215790 PMCID: PMC8804783 DOI: 10.1177/1947603519855769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because of poor regenerative capabilities of cartilage, reconstruction of similar rigidity and flexibility is difficult, challenging, and restricted. The aim of the present investigation was to develop cost-effective acellular xenogeneic biomaterial as cartilage substitution. Two novel biometrics have been developed using different chemical processes (Na-deoxycholate + SDS and GndHCl + NaOH) to decellularize caprine (goat) ear cartilage and further extensively characterized before preclinical investigation. Complete cell removal was ascertained by hematoxylin and eosin staining followed by DNA estimation. No adverse effect on extracellular matrix (ECM) was found by quantifying collagen and sulfated glycosaminoglycans (sGAG) content as well as collagen, sGAG and elastin staining. Results showed no drastic changes in ECM structure apart from desired sGAG loss. Scanning electron microscopy images confirmed cellular loss and unaltered orientation. Nano-indentation study on cartilage matrices indicated interesting output showing better results among decellularized groups. Increased elastic modulus and hardness indicated better stiffness and more active energy dissipation mechanism due to decellularization. Fluid uptake and retention property remained unchanged after decellularization as analyzed by swelling behavior study. Additionally, acellular materials were confirmed to be nonreactive and nonhemolytic as assessed by in vitro hemocompatibility study. In vivo study (up to 3 months) on rabbits showed no symptoms of graft rejection/ tissue necrosis, established through postoperative histology and biochemical analyses of tissue explants. With regard to size, shape, biomechanics, source of origin and nonimmunogenic properties, these developed materials can play versatile role in biomedical/ clinical applications and pave a new insight as alternatives in cartilage reconstruction.
Collapse
Affiliation(s)
- Piyali Das
- School of Biosciences and Engineering,
Jadavpur University, Kolkata, West Bengal, India
| | - Kanike Rajesh
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology, Roorkee, Uttarakhand,
India
| | - V. Lalzawmliana
- Department of Veterinary Surgery and
Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West
Bengal, India
| | - K. Bavya Devi
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology–Kharagpur, Kharagpur, West
Bengal, India
| | - Piyali Basak
- School of Biosciences and Engineering,
Jadavpur University, Kolkata, West Bengal, India
| | - Debrupa Lahiri
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology, Roorkee, Uttarakhand,
India
| | - Biswanath Kundu
- Bioceramics and Coating Division,
CSIR–Central Glass and Ceramic Research Institute, Kolkata, West Bengal, India
| | - Mangal Roy
- Department of Metallurgical and
Materials Engineering, Indian Institute of Technology–Kharagpur, Kharagpur, West
Bengal, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and
Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West
Bengal, India,Samit Kumar Nandi, Department of Veterinary
Surgery and Radiology, West Bengal University of Animal and Fishery Sciences,
37, K. B. Sarani, Kolkata 700037, West Bengal, India.
| |
Collapse
|
27
|
Xue W, Du J, Li Q, Wang Y, Lu Y, Fan J, Yu S, Yang Y. Preparation, properties and application of graphene-based materials in tissue engineering scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1121-1136. [PMID: 34751592 DOI: 10.1089/ten.teb.2021.0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue engineering has great application prospect as an effective treatment for tissue and organ injury, functional reduction or loss. Bioactive tissues are reconstructed and damaged organs are repaired by the three elements including cells, scaffold materials and growth factors. Graphene-based composites can be used as reinforcing auxiliary materials for tissue scaffold preparation because of their large specific surface area, and good mechanical support. Tissue engineering scaffolds with graphene-based composites have been widely studied. Part of research have focused on the application of graphene-based composites in single tissue engineering; The basic principles of graphene materials used in tissue engineering are summarized in some researches. Some studies emphasized the key problems and solutions urgently needed to be solved in the development of tissue engineering, and discussed their application prospect. Some related studies mainly focused on the conductivity of graphene, and discussed the application of electroactive scaffolds in tissue engineering. In this review, the composite materials for preparing tissue engineering scaffolds are briefly described, which emphasizes the preparation methods, biological properties and practical applications of graphene-based composite scaffolds. The synthetic techniques with stressing solvent casting, electrospinning and 3D printing are introduced in detail. The mechanical, cell-oriented and biocompatible properties of graphene-based composite scaffolds in tissue engineering are analyzed and summarized. Their applications in bone tissue engineering, nerve tissue engineering, cardiovascular tissue engineering and other tissue engineering are summarized systematically. In addition, this work also looks forward to the difficulties and challenges in the future research, providing some references for the follow-up research of graphene-based composites in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqiang Xue
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jinglei Du
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Qiang Li
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Yan Wang
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Yemin Lu
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jiangbo Fan
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Shiping Yu
- Second Hospital of Shanxi Medical University, 74761, 582 Wuyi Road, Taiyuan City, Shanxi Province, Taiyuan, China, 030001;
| | - Yongzhen Yang
- Taiyuan University of Technology, 47846, Taiyuan, Shanxi , China;
| |
Collapse
|
28
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
29
|
Molino BZ, Fukuda J, Molino PJ, Wallace GG. Redox Polymers for Tissue Engineering. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:669763. [PMID: 35047925 PMCID: PMC8757887 DOI: 10.3389/fmedt.2021.669763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
This review will focus on the targeted design, synthesis and application of redox polymers for use in regenerative medicine and tissue engineering. We define redox polymers to encompass a variety of polymeric materials, from the multifunctional conjugated conducting polymers to graphene and its derivatives, and have been adopted for use in the engineering of several types of stimulus responsive tissues. We will review the fundamental properties of organic conducting polymers (OCPs) and graphene, and how their properties are being tailored to enhance material - biological interfacing. We will highlight the recent development of high-resolution 3D fabrication processes suitable for biomaterials, and how the fabrication of intricate scaffolds at biologically relevant scales is providing exciting opportunities for the application of redox polymers for both in-vitro and in-vivo tissue engineering. We will discuss the application of OCPs in the controlled delivery of bioactive compounds, and the electrical and mechanical stimulation of cells to drive behaviour and processes towards the generation of specific functional tissue. We will highlight the relatively recent advances in the use of graphene and the exploitation of its physicochemical and electrical properties in tissue engineering. Finally, we will look forward at the future of organic conductors in tissue engineering applications, and where the combination of materials development and fabrication processes will next unite to provide future breakthroughs.
Collapse
Affiliation(s)
- Binbin Z. Molino
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Paul J. Molino
- Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Gordon G. Wallace
- Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
30
|
Zheng Y, Hong X, Wang J, Feng L, Fan T, Guo R, Zhang H. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Adv Healthc Mater 2021; 10:e2001743. [PMID: 33511775 DOI: 10.1002/adhm.202001743] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Regenerative medicine has become one of the hottest research topics in medical science that provides a promising way for repairing tissue defects in the human body. Due to their excellent physicochemical properties, the application of 2D nanomaterials in regenerative medicine has gradually developed and has been attracting a wide range of research interests in recent years. In particular, graphene and its derivatives, black phosphorus, and transition metal dichalcogenides are applied in all the aspects of tissue engineering to replace or restore tissues. This review focuses on the latest advances in the application of 2D-nanomaterial-based hydrogels, nanosheets, or scaffolds that are engineered to repair skin, bone, and cartilage tissues. Reviews on other applications, including cardiac muscle regeneration, skeletal muscle repair, nerve regeneration, brain disease treatment, and spinal cord healing are also provided. The challenges and prospects of applications of 2D nanomaterials in regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Xiangqian Hong
- Shenzhen Eye Institute Shenzhen Eye Hospital Affiliated to Jinan University School of Optometry Shenzhen University Shenzhen 518040 P. R. China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jiantao Wang
- Shenzhen Eye Institute Shenzhen Eye Hospital Affiliated to Jinan University School of Optometry Shenzhen University Shenzhen 518040 P. R. China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
31
|
Trucco D, Vannozzi L, Teblum E, Telkhozhayeva M, Nessim GD, Affatato S, Al‐Haddad H, Lisignoli G, Ricotti L. Graphene Oxide-Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Adv Healthc Mater 2021; 10:e2001434. [PMID: 33586352 PMCID: PMC11468639 DOI: 10.1002/adhm.202001434] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.
Collapse
Affiliation(s)
- Diego Trucco
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Lorenzo Vannozzi
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Eti Teblum
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Madina Telkhozhayeva
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Gilbert Daniel Nessim
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Saverio Affatato
- IRCSS Istituto Ortopedico RizzoliLaboratorio Tecnologie BiomedicheVia di Barbiano, 1/10Bologna40136Italy
| | - Hind Al‐Haddad
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Leonardo Ricotti
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| |
Collapse
|
32
|
Research Progress on Stem Cell Therapies for Articular Cartilage Regeneration. Stem Cells Int 2021; 2021:8882505. [PMID: 33628274 PMCID: PMC7895563 DOI: 10.1155/2021/8882505] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Injury of articular cartilage can cause osteoarthritis and seriously affect the physical and mental health of patients. Unfortunately, current surgical treatment techniques that are commonly used in the clinic cannot regenerate articular cartilage. Regenerative medicine involving stem cells has entered a new stage and is considered the most promising way to regenerate articular cartilage. In terms of theories on the mechanism, it was thought that stem cell-mediated articular cartilage regeneration was achieved through the directional differentiation of stem cells into chondrocytes. However, recent evidence has shown that the stem cell secretome plays an important role in biological processes such as the immune response, inflammation regulation, and drug delivery. At the same time, the stem cell secretome can effectively mediate the process of tissue regeneration. This new theory has attributed the therapeutic effect of stem cells to their paracrine effects. The application of stem cells is not limited to exogenous stem cell transplantation. Endogenous stem cell homing and in situ regeneration strategies have received extensive attention. The application of stem cell derivatives, such as conditioned media, extracellular vesicles, and extracellular matrix, is an extension of stem cell paracrine theory. On the other hand, stem cell pretreatment strategies have also shown promising therapeutic effects. This article will systematically review the latest developments in these areas, summarize challenges in articular cartilage regeneration strategies involving stem cells, and describe prospects for future development.
Collapse
|
33
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
34
|
Shin J, Kang EH, Choi S, Jeon EJ, Cho JH, Kang D, Lee H, Yun IS, Cho SW. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater Sci Eng 2021; 7:4230-4243. [PMID: 33538598 DOI: 10.1021/acsbiomaterials.0c01414] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate (CS), the main component of cartilage extracellular matrix, has attracted attention as a biomaterial for cartilage tissue engineering. However, current CS hydrogel systems still have limitations for application in successful cartilage tissue engineering owing to their unsuitable degradation kinetics, insufficient mechanical similarity, and lack of integration with the native cartilage tissue. In this study, using mussel adhesive-inspired catechol chemistry, we developed a functional CS hydrogel that exhibits tunable physical and mechanical properties as well as excellent tissue adhesion for efficient integration with native tissues. Various properties of the developed catechol-functionalized CS (CS-CA) hydrogel, including swelling, degradation, mechanical properties, and adhesiveness, could be tailored by varying the conjugation ratio of the catechol group to the CS backbone and the concentration of the CS-CA conjugates. CS-CA hydrogels exhibited significantly increased modulus (∼10 kPa) and superior adhesive properties (∼3 N) over conventional CS hydrogels (∼hundreds Pa and ∼0.05 N). In addition, CS-CA hydrogels incorporating decellularized cartilage tissue dice promoted the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by providing a cartilage-like microenvironment. Finally, the transplantation of autologous cartilage dice using tissue-adhesive CS-CA hydrogels enhanced cartilage integration with host tissue and neo-cartilage formation owing to favorable physical, mechanical, and biological properties for cartilage formation. In conclusion, our study demonstrated the potential utility of the CS-CA hydrogel system in cartilage tissue reconstruction.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Hye Kang
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Severance Hospital, Seoul 03722, Republic of Korea
| | - Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - In Sik Yun
- Department of Plastic and Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials 2020; 268:120602. [PMID: 33360302 DOI: 10.1016/j.biomaterials.2020.120602] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.
Collapse
|
36
|
Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020; 12:E2946. [PMID: 33317211 PMCID: PMC7764097 DOI: 10.3390/polym12122946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Dean Martinez
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| |
Collapse
|
37
|
Ghaemi A, Javadi S, Heidari MK, Rashedi H, Yazdian F, Omidi M, Tavakoli Z, Sheikhpour M. Graphene-based materials in drug delivery and growth factor release: A critical review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.wndm.2020.100193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. MEMBRANES 2020; 10:E348. [PMID: 33212901 PMCID: PMC7698415 DOI: 10.3390/membranes10110348] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland; (W.S.); (A.C.)
| | | | | |
Collapse
|
39
|
Ezzati N, Mahjoub AR, Shokrollahi S, Amiri A, Abolhosseini Shahrnoy A. Novel Biocompatible Amino Acids-Functionalized Three-dimensional Graphene Foams: As the Attractive and Promising Cisplatin Carriers for Sustained Release Goals. Int J Pharm 2020; 589:119857. [PMID: 32898631 DOI: 10.1016/j.ijpharm.2020.119857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Application of amino acids-immobilized porous materials for drug delivery studies has been attracted a lot of attention in the recent years. In this study, amino acids-grafted graphene foams were prepared by anchoring of Alanine (Ala), Cysteine (Cys) and Glycine (Gly) amino acids on the surface of graphene oxide (GO) nanostructures and used as the novel biocompatible carriers to control releasing of the cisplatin as the cytotoxic anticancer drug. The characterization of prepared compounds was done by the FT-IR, Raman, TGA, N2 adsorption-desorption isotherms, SEM, and TEM techniques. Adsorption and in vitro release behavior of amino acids-functionalized foams were studied using ICP standard method. The results show that the drug loading amount and the drug releasing rate are significantly enhanced upon functionalization process. The Ala-Foam sample with the larger surface area and pore volume showed a higher loading content (4.53%) than other samples. In addition, the MTT test on the two MCF-7 and HepG2 human cancer cell lines exhibited an acceptable biocompatibility and sustainable drug releasing from the carriers up to 48 h, leading to the dosage frequency decrease and the patient compliance improvement.
Collapse
Affiliation(s)
- Nasim Ezzati
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box. 14155-4383, Tehran, Iran.
| | - Ali Reza Mahjoub
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box. 14155-4383, Tehran, Iran.
| | - Sudabeh Shokrollahi
- Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| | - Ahmad Amiri
- Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| | | |
Collapse
|
40
|
More N, Srivastava A, Kapusetti G. Graphene Oxide Reinforcement Enhances the Piezoelectric and Mechanical Properties of Poly(3-hydroxybutyrate- co-3-hydroxy valerate)-Based Nanofibrous Scaffolds for Improved Proliferation of Chondrocytes and ECM Production. ACS APPLIED BIO MATERIALS 2020; 3:6823-6835. [PMID: 35019345 DOI: 10.1021/acsabm.0c00765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The discovery of piezoelectricity in natural cartilage has inspired the development of piezoelectric biomaterials for its repair and regeneration using tissue engineering approaches. In the present work, piezoelectric scaffolds composed of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PB) and graphene oxide (GO) have been successfully fabricated by the electrospinning technology. The fabricated scaffolds were examined for their morphological, physical, chemical, piezoelectric, and biological characterizations. The fiber diameter was found to be in the range of 600-800 nm appropriate for chondrogenic growth. Reinforcement of 1.5% GO enhanced the tensile strength of PB to 2.08 ± 0.33 MPa compared to PB alone (0.59 ± 0.12). Reinforcement of GO significantly enhances the piezoelectric coefficient (d33), and for 0.5, 1, and 1.5% GO in PB, it was found to be 0.12 ± 0.015, 0.57 ± 0.19, and 0.94 ± 0.03 pC/N, respectively, and corresponding voltages of 11.84 ± 1.4, 54.69 ± 18.29, and 100.2 ± 3.2 mV, respectively, were generated. The biological activity of the smart piezo scaffolds was also evaluated on freshly isolated goat chondrocytes. The GO-reinforced scaffold showed higher cell proliferation and cell adhesion as confirmed by alamarBlue assay and field emission scanning electron microscopy imaging. The GO-reinforced scaffold has demonstrated significantly higher extracellular matrix production compared to PB as confirmed by histochemistry and real-time polymerase chain reaction. Hence, the GO-based piezoelectric PB electrospun scaffold can be a better alternative for cell-free and growth factor-free approach for cartilage tissue engineering.
Collapse
Affiliation(s)
- Namdev More
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
41
|
Zimmermann J, Distler T, Boccaccini AR, van Rienen U. Numerical Simulations as Means for Tailoring Electrically Conductive Hydrogels Towards Cartilage Tissue Engineering by Electrical Stimulation. Molecules 2020; 25:E4750. [PMID: 33081205 PMCID: PMC7587583 DOI: 10.3390/molecules25204750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Cartilage regeneration is a clinical challenge. In recent years, hydrogels have emerged as implantable scaffolds in cartilage tissue engineering. Similarly, electrical stimulation has been employed to improve matrix synthesis of cartilage cells, and thus to foster engineering and regeneration of cartilage tissue. The combination of hydrogels and electrical stimulation may pave the way for new clinical treatment of cartilage lesions. To find the optimal electric properties of hydrogels, theoretical considerations and corresponding numerical simulations are needed to identify well-suited initial parameters for experimental studies. We present the theoretical analysis of a hydrogel in a frequently used electrical stimulation device for cartilage regeneration and tissue engineering. By means of equivalent circuits, finite element analysis, and uncertainty quantification, we elucidate the influence of the geometric and dielectric properties of cell-seeded hydrogels on the capacitive-coupling electrical field stimulation. Moreover, we discuss the possibility of cellular organisation inside the hydrogel due to forces generated by the external electric field. The introduced methodology is easily reusable by other researchers and allows to directly develop novel electrical stimulation study designs. Thus, this study paves the way for the design of future experimental studies using electrically conductive hydrogels and electrical stimulation for tissue engineering.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Thomas Distler
- Institute of Biomaterials, Friedrich Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.D.); (A.R.B.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.D.); (A.R.B.)
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany;
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
42
|
Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, Lin J, He Q, Leptihn S, Ouyang H. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2020; 6:998-1011. [PMID: 33102942 PMCID: PMC7557878 DOI: 10.1016/j.bioactmat.2020.09.030] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
Abstract
Cartilage defects are one of the most common symptoms of osteoarthritis (OA), a degenerative disease that affects millions of people world-wide and places a significant socio-economic burden on society. Hydrogels, which are a class of biomaterials that are elastic, and display smooth surfaces while exhibiting high water content, are promising candidates for cartilage regeneration. In recent years, various kinds of hydrogels have been developed and applied for the repair of cartilage defects in vitro or in vivo, some of which are hopeful to enter clinical trials. In this review, recent research findings and developments of hydrogels for cartilage defects repair are summarized. We discuss the principle of cartilage regeneration, and outline the requirements that have to be fulfilled for the deployment of hydrogels for medical applications. We also highlight the development of advanced hydrogels with tailored properties for different kinds of cartilage defects to meet the requirements of cartilage tissue engineering and precision medicine. The biotechnology of developing hydrogels for cartilage defects repair is promising. The principle for cartilage regeneration using hydrogels and requirements for clinical transformation are summarized. Advanced hydrogels with tailored properties for different kinds of cartilage defects are discussed.
Collapse
Affiliation(s)
- Wei Wei
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanzhu Ma
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxin Lin
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Sebastian Leptihn
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
43
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
44
|
Vashisth P, Kar N, Gupta D, Bellare JR. Three Dimensional Quercetin-Functionalized Patterned Scaffold: Development, Characterization, and In Vitro Assessment for Neural Tissue Engineering. ACS OMEGA 2020; 5:22325-22334. [PMID: 32923790 PMCID: PMC7482233 DOI: 10.1021/acsomega.0c02678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/10/2020] [Indexed: 05/06/2023]
Abstract
Regeneration of injured neuronal areas is a big challenge owing to the complex structure and function of the nervous system along with the limited regeneration capacity of neural cells. Recent reports show that patterned and functionalized scaffolds could control neural cell directional growth. In this study, aligned nanofibers (ANFs) were fabricated using a versatile and cost-effective approach, electrospinning, and further processed to make a patterned hybrid scaffold (HANF). The patterned scaffold had circular rings of ANFs reinforced in a biocompatible gellan-gelatin hydrogel matrix to provide adequate mechanical strength and contact guidance for adhesion and growth of neural cells in vitro. Quercetin was loaded into the nanofibrous scaffold to provide a functional agent that supported regeneration of neural cells. The reinforced ANFs enhanced the mechanical strength of the scaffold and provided a cylindrical nerve conduit structure to support neuronal cell growth. The influence of scaffold topology on cell behavior was assessed in in vitro cell culture conditions that revealed that the functionalized patterned scaffolds favored directed neurite cell growth/extension with favored cell culture morphology and showed no cytotoxicity toward neural cells. The results ultimately indicated that the fabricated scaffold has potential for guiding nerve tissue growth and can be used as nerve regeneration scaffolds.
Collapse
Affiliation(s)
- Priya Vashisth
- Wadhwani
Research Centre for Bioengineering, Indian
Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Neelakshi Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Deepak Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Jayesh R. Bellare
- Wadhwani
Research Centre for Bioengineering, Indian
Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
- . Phone: +91 22 2576 7207. Fax: +91 22 2572 6895 or +91 22 2572 3480
| |
Collapse
|
45
|
Choi JH, Kim JS, Kim WK, Lee W, Kim N, Song CU, Jung JJ, Song JE, Khang G. Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial. Macromol Res 2020. [DOI: 10.1007/s13233-020-8137-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:357-373. [PMID: 30913997 DOI: 10.1089/ten.teb.2018.0330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge
Collapse
Affiliation(s)
- Yaima Campos
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gastón Fuentes
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L Bloem
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric L Kaijzel
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luis J Cruz
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Shi XD, Tian YQ, Wu JL, Wang SY. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit Rev Food Sci Nutr 2020; 61:2225-2236. [PMID: 32567982 DOI: 10.1080/10408398.2020.1774497] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles with unique properties have potential applications in food, medicine, pharmacology, and agriculture industries. Accordingly, many significant researches have been conducted to develop novel nanoparticles using chemical and biological techniques. This review focuses on the synthesis of selenium nanoparticles (SeNPs) using polysaccharides as templates. Various instrumental techniques being used to confirm the formation of polysaccharide-SeNPs conjugates and characterize the properties of nanoparticles are also introduced. Finally, the biological activities of the synthesized SeNPs and the influence of structural factors of polysaccharides on the property of synthetic nanocomposites are highlighted. In general, the polysaccharides functionalized SeNPs can be easily obtained using sodium selenite as precursor and ascorbic acid as reductant. The final products having different particle size, morphology, and selenium content exhibit abundant physiological activities. Structural factors of polysacchairdes involving molecular weights, substitution of functional groups, and chain conformation play determinant roles on the properties of nanocomposites, resulting in different biological performances. The review on the achievements and current status of polysaccharides conjugated SeNPs provides insights into this exciting research topic for further studies in the future.
Collapse
Affiliation(s)
- Xiao-Dan Shi
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yong-Qi Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiu-Lin Wu
- Institute of Biomedical and Pharmaceutical Technology & College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Shao-Yun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
48
|
Chen W, Xu Y, Li H, Dai Y, Zhou G, Zhou Z, Xia H, Liu H. Tanshinone IIA Delivery Silk Fibroin Scaffolds Significantly Enhance Articular Cartilage Defect Repairing via Promoting Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21470-21480. [PMID: 32314911 DOI: 10.1021/acsami.0c03822] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cartilage tissue engineering is a promising approach for repairing articular cartilage defects and requires proper scaffolds and necessary growth factors. Herein, tanshinone IIA (TAN) delivery silk fibroin scaffolds were prepared for efficient cartilage defect repair by bioactivities of TAN. By incubating with the TAN delivery silk fibroin scaffold, the transcription of the chondrocytic activity-related genes was enhanced in chondrocytes, and it also can inhibit cell apoptosis and reduce the oxidative stress by regulating the transcription of related genes, indicating that these scaffolds may promote cartilage regeneration. TAN10 delivery silk fibroin scaffolds, in which the concentration of TAN is 10 μg/mL, significantly promotes chondrocytes to generate the cartilage-specific extracellular matrix and tissue both in vitro and in vivo, compared with silk fibroin scaffolds. By treating rabbit articular cartilage defects with TAN10 delivery silk fibroin scaffolds, cartilage defects were filled with hyaline-cartilage-like tissue that integrated with the surrounding cartilage perfectly and displayed strong mechanical properties and higher extracellular matrix content. Hence, TAN facilitates cartilage regeneration, and TAN delivery silk fibroin scaffolds can be potentially applied in the clinics treating cartilage defects in the future.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hao Li
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261041, Shandong, China
| | - Yao Dai
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Tissue Engineering Center of China, Shanghai 200041, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Huitang Xia
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261041, Shandong, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Scognamiglio F, Travan A, Borgogna M, Donati I, Marsich E. Development of biodegradable membranes for the delivery of a bioactive chitosan‐derivative on cartilage defects: A preliminary investigation. J Biomed Mater Res A 2020; 108:1534-1545. [DOI: 10.1002/jbm.a.36924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Scognamiglio
- Department of Life SciencesUniversity of Trieste Trieste Italy
- Department of Medical, Surgical and Health SciencesUniversity of Trieste Trieste Italy
| | | | | | - Ivan Donati
- Department of Life SciencesUniversity of Trieste Trieste Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health SciencesUniversity of Trieste Trieste Italy
| |
Collapse
|
50
|
Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X. Animal Models of Osteochondral Defect for Testing Biomaterials. Biochem Res Int 2020; 2020:9659412. [PMID: 32082625 PMCID: PMC7007938 DOI: 10.1155/2020/9659412] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration.
Collapse
Affiliation(s)
- Xiangbo Meng
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Reihane Ziadlou
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanyan Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|