1
|
Yang J, Li Y, Zhang Y, Xu L, Wang J, Xing F, Song X. Unraveling the Core Components and Critical Targets of Houttuynia cordata Thunb. in Treating Non-small Cell Lung Cancer through Network Pharmacology and Multi-omics Analysis. Curr Pharm Des 2025; 31:540-558. [PMID: 39440769 PMCID: PMC12079317 DOI: 10.2174/0113816128330427241017110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This study aimed to preliminary explore the molecular mechanisms of Houttuynia cordata Thunb. (H. cordata; Saururaceae) in treating non-small cell lung cancer (NSCLC), with the goal of screening drug potential targets for clinical drug development. METHODS This study employed a multi-omics and multi-source data integration approach to identify potential therapeutic targets of H. cordata against NSCLC from the TCMSP database, GEO database, BioGPS database, Metascape database, and others. Meanwhile, target localization was performed, and its possible mechanisms of action were predicted. Furthermore, dynamics simulations and molecular docking were used for verification. Multi-omics analysis was used to confirm the selected key genes' efficacy in treating NSCLC. RESULTS A total of 31 potential therapeutic targets, 8 key genes, and 5 core components of H. cordata against NSCLC were screened out. These potential therapeutic targets played a therapeutic role mainly by regulating lipid and atherosclerosis, the TNF signaling pathway, the IL-17 signaling pathway, and others. Molecular docking indicated a stable combination between MMP9 and quercetin. Finally, through multi-omics analysis, it was found that the expression of some key genes was closely related not only to the progression and prognosis of NSCLC but also to the level of immune infiltration. CONCLUSION Through comprehensive network pharmacology and multi-omics analysis, this study predicts that the core components of H. cordata play a role in treating NSCLC by regulating lipid and atherosclerosis, as well as the TNF signaling pathway. Among them, the anti-NSCLC activity of isoramanone is reported for the first time.
Collapse
Affiliation(s)
- Jinyan Yang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yang Li
- Department of Ultrasound, Xinyang Central Hospital, Xinyang 464000, China
| | - Yan Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Ling Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jiahui Wang
- College of International Education, Xinyang Normal University, Xinyang 464000, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Xinqiang Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Medical College, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Kappen J, Abdel-Rahman O. Advances in pharmacotherapy for the treatment of peritoneal metastases from colorectal cancer. Expert Opin Pharmacother 2025; 26:17-30. [PMID: 39604139 DOI: 10.1080/14656566.2024.2435946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Patients with peritoneal metastasis (PM) from colorectal cancer (CRC) typically have a poor prognosis with historically few treatment options. Cytoreductive surgery (CRS) is the mainstay of treatment to remove macrometastases into the peritoneum, but residual micrometastases are often left behind. Systemic chemotherapy remains a cornerstone of treatment for micrometastases, but intraperitoneal therapy offers advantages including higher local dose concentration with fewer systemic side effects from treatment. AREAS COVERED This review covers advancements in the routes and types of pharmacotherapies for PM in CRC. EXPERT OPINION More evidence is needed to justify HIPEC with CRS as the standard of care treatment modality for patients with resectable PM in CRC. New therapies such as oncolytic viruses, biologics, and small-molecule inhibitors may become additional treatment modalities for PM.
Collapse
Affiliation(s)
- Janson Kappen
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Wang M, Zhu L, Yang X, Li J, Liu Y, Tang Y. Targeting immune cell types of tumor microenvironment to overcome resistance to PD-1/PD-L1 blockade in lung cancer. Front Pharmacol 2023; 14:1132158. [PMID: 36874015 PMCID: PMC9974851 DOI: 10.3389/fphar.2023.1132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lung cancer is the common malignant tumor with the highest mortality rate. Lung cancer patients have achieved benefits from immunotherapy, including immune checkpoint inhibitors (ICIs) therapy. Unfortunately, cancer patients acquire adaptive immune resistance, leading to poor prognosis. Tumor microenvironment (TME) has been demonstrated to play a critical role in participating in acquired adaptive immune resistance. TME is associated with molecular heterogeneity of immunotherapy efficacy in lung cancer. In this article, we discuss how immune cell types of TME are correlated with immunotherapy in lung cancer. Moreover, we describe the efficacy of immunotherapy in driven gene mutations in lung cancer, including KRAS, TP53, EGFR, ALK, ROS1, KEAP1, ZFHX3, PTCH1, PAK7, UBE3A, TNF-α, NOTCH, LRP1B, FBXW7, and STK11. We also emphasize that modulation of immune cell types of TME could be a promising strategy for improving adaptive immune resistance in lung cancer.
Collapse
Affiliation(s)
- Man Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lijie Zhu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoxu Yang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiahui Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Ying Tang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Fibrocytes boost tumor-supportive phenotypic switches in the lung cancer niche via the endothelin system. Nat Commun 2022; 13:6078. [PMID: 36241617 PMCID: PMC9568595 DOI: 10.1038/s41467-022-33458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrocytes are bone marrow-derived monocytic cells implicated in wound healing. Here, we identify their role in lung cancer progression/ metastasis. Selective manipulation of fibrocytes in mouse lung tumor models documents the central role of fibrocytes in boosting niche features and enhancing metastasis. Importantly, lung cancer patients show increased number of circulating fibrocytes and marked fibrocyte accumulation in the cancer niche. Using double and triple co-culture systems with human lung cancer cells, fibrocytes, macrophages and endothelial cells, we substantiate the central features of cancer-supporting niche: enhanced cancer cell proliferation and migration, macrophage activation, augmented endothelial cell sprouting and fibrocyte maturation. Upregulation of endothelin and its receptors are noted, and dual endothelin receptor blockade suppresses all cancer-supportive phenotypic alterations via acting on fibrocyte interaction with the cancer niche. We thus provide evidence for a crucial role of fibrocytes in lung cancer progression and metastasis, suggesting targets for treatment strategies.
Collapse
|
5
|
Li X, Wang M, Gong T, Lei X, Hu T, Tian M, Ding F, Ma F, Chen H, Liu Z. A S100A14-CCL2/CXCL5 signaling axis drives breast cancer metastasis. Am J Cancer Res 2020; 10:5687-5703. [PMID: 32483412 PMCID: PMC7255008 DOI: 10.7150/thno.42087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Chemokines contribute to cancer metastasis and have long been regarded as attractive therapeutic targets for cancer. However, controversy exists about whether neutralizing chemokines by antibodies promotes or inhibits tumor metastasis, suggesting that the approach to directly target chemokines needs to be scrutinized. Methods: Transwell assay, mouse metastasis experiments and survival analysis were performed to determine the functional role of S100A14 in breast cancer. RNA-Seq, secreted proteomics, ChIP, Western blot, ELISA, transwell assay and neutralizing antibody experiments were employed to investigate the underlying mechanism of S100A14 in breast cancer metastasis. Immunohistochemistry and ELISA were performed to examine the expression and serum levels of S100A14, CCL2 and CXCL5, respectively. Results: Overexpression of S100A14 significantly enhanced migration, invasion and metastasis of breast cancer cells. In contrast, knockout of S100A14 exhibited the opposite effects. Mechanistic studies demonstrated that S100A14 promotes breast cancer metastasis by upregulating the expression and secretion of CCL2 and CXCL5 via NF-κB mediated transcription. The clinical sample analyses showed that S100A14 expression is strongly associated with CCL2/CXCL5 expression and high expression of these three proteins is correlated with worse clinical outcomes. Notably, the serum levels of S100A14, CCL2/CXCL5 have significant diagnostic value for discerning breast cancer patients from healthy individuals. Conclusions: S100A14 is significantly upregulated in breast cancer, it can promote breast cancer metastasis by increasing the expression and secretion of CCL2/CXCL5 via RAGE-NF-κB pathway. And S100A14 has the potential to serve as a serological marker for diagnosis of breast cancer. Collectively, we identify S100A14 as an upstream regulator of CCL2/CXCL5 signaling and a metastatic driver of breast cancer.
Collapse
|
6
|
Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020; 130:155066. [PMID: 32208336 DOI: 10.1016/j.cyto.2020.155066] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TNF-alpha is involved in many physiologic and pathologic cellular pathways, including cellular proliferation, differentiation, and death, regulation of immunologic reactions to different cells and molecules, local and vascular invasion of neoplasms, and destruction of tumor vasculature. It is obvious that because of integrated functions of TNF-alpha inside different physiologic systems, it cannot be used as a single-agent therapy for neoplasms; however, long-term investigation of its different cellular pathways has led to recognition of a variety of subsequent molecules with more specific interactions, and therefore, might be suitable as prognostic and therapeutic factors for neoplasms. Here, we will review different aspects of the TNF-alpha as a cytokine involved in both physiologic functions of cells and pathologic abnormalities, most importantly, cancers.
Collapse
Affiliation(s)
- Pouya Mahdavi Sharif
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Jabbari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
7
|
NLRP3/Caspase-1 inflammasome activation is decreased in alveolar macrophages in patients with lung cancer. PLoS One 2018; 13:e0205242. [PMID: 30365491 PMCID: PMC6203254 DOI: 10.1371/journal.pone.0205242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related mortality. The interaction of cancer cells with their microenvironment, results in tumor escape or elimination. Alveolar macrophages (AMs) play a significant role in lung immunoregulation, however their role in LC has been outshined by the study of tumor associated macrophages. Inflammasomes are key components of innate immune responses and can exert either tumor-suppressive or oncogenic functions, while their role in lung cancer is largely unknown. We thus investigated the NLRP3 pathway in Bronchoalveolar Lavage derived alveolar macrophages and peripheral blood leukocytes from patients with primary lung cancer and healthy individuals. IL-1β and IL-18 secretion was significantly higher in unstimulated peripheral blood leukocytes from LC patients, while IL-1β secretion could be further increased upon NLRP3 stimulation. In contrast, in LC AMs, we observed a different profile of IL-1β secretion, characterized mainly by the impairment of IL-1β production in NLRP3 stimulated cells. AMs also exhibited an impaired TLR4/LPS pathway as shown by the reduced induction of IL-6 and TNF-α. Our results support the hypothesis of tumour induced immunosuppression in the lung microenvironment and may provide novel targets for cancer immunotherapy.
Collapse
|
8
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
9
|
He L, Wu S, Hao Q, Dioum EM, Zhang K, Zhang C, Li W, Zhang W, Zhang Y, Zhou J, Pang Z, Zhao L, Ma X, Li M, Zhang Q. Local blockage of self-sustainable erythropoietin signaling suppresses tumor progression in non-small cell lung cancer. Oncotarget 2017; 8:82352-82365. [PMID: 29137269 PMCID: PMC5669895 DOI: 10.18632/oncotarget.19354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Functional significance of co-expressed erythropoietin (EPO) and its receptor (EPOR) in non-small cell lung cancer (NSCLC) had been under debate. In this study, co-overexpression of EPO/EPOR was confirmed to be positively associated with poor survival in NSCLC. The serum EPO in 14 of 35 enrolled NSCLC patients were found elevated significantly and decreased to normal level after tumor resection. With primary tumor cell culture and patient-derived tumor xenograft (PDX) mouse model, the EPO secretion from the tumors of these 14 patients was verified. Then, we proved the patient derived serum EPO was functionally active and had growth promotion effect in EPO/EPOR overexpressed but not in EPO/EPOR under-expressed NSCLC cells. We also illustrated EPO promoted NSCLC cell proliferation through an EPOR/Jak2/Stat5a/cyclinD1 pathway. In xenograft mouse model, we proved local application of EPO neutralizing antibody and short hairpin RNA (shRNA) against EPOR effectively inhibited the growth of EPO/EPOR overexpressed NSCLC cells and prolonged survivals of the mice. Finally, EPO/EPOR/Jak2/Stat5a/cyclinD1 signaling was found to be a mediator of hypoxia induced growth in EPO/EPOR overexpressed NSCLC. Our results illustrated a subgroup of NSCLC adapt to hypoxia through self-sustainable EPO/EPOR signaling and suggest local blockage of EPO/EPOR as potential therapeutic method in this distinct NSCLC population.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Shouzhen Wu
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Elhadji M Dioum
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Current/Present address: Diabetes Department, Nestle Institute of Health Science, EPFL Campus, Lausanne, Switzerland
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jiming Zhou
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zhijun Pang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Lijuan Zhao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaowen Ma
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Qiuyang Zhang
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Current/Present address: Center for Esophageal Research, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Li Y, Chen H, Xu J, Yadav NN, Chan KWY, Luo L, McMahon MT, Vogelstein B, van Zijl PCM, Zhou S, Liu G. CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget 2016; 7:6369-78. [PMID: 26837220 PMCID: PMC4872720 DOI: 10.18632/oncotarget.7141] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer.
Collapse
Affiliation(s)
- Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwei Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Radiology, Panyu Central Hospital, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liangping Luo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bert Vogelstein
- Ludwig Center, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shibin Zhou
- Ludwig Center, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|