1
|
Rahim AR, Will V, Myung J. Mood variation under dual regulation of circadian clock and light. Chronobiol Int 2025; 42:162-184. [PMID: 39840618 DOI: 10.1080/07420528.2025.2455144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The intricate relationship between circadian rhythms and mood is well-established. Disturbances in circadian rhythms and sleep often precede the development of mood disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD). Two primary factors, intrinsic circadian clocks and light, drive the natural fluctuations in mood throughout the day, mirroring the patterns of sleepiness and wakefulness. Nearly all organisms possess intrinsic circadian clocks that coordinate daily rhythms, with light serving as the primary environmental cue to synchronize these internal timekeepers with the 24-hour cycle. Additionally, light directly influences mood states. Disruptions to circadian rhythms, such as those caused by jet lag, shift work, or reduced daylight hours, can trigger or exacerbate mood symptoms. The complex and often subtle connections between circadian disruptions and mood dysregulation suggest that focusing solely on individual clock genes is insufficient to fully understand their etiology and progression. Instead, mood instability may arise from systemic misalignments between external cycles and the internal synchronization of circadian clocks. Here, we synthesize past research on the independent contributions of circadian clocks and light to mood regulation, drawing particularly on insights from animal studies that illuminate fundamental mechanisms relevant to human health.
Collapse
Affiliation(s)
- Amalia Ridla Rahim
- Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
| | - Veronica Will
- Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
| | - Jihwan Myung
- Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences (GIMS), Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Mastellari T, Saint-Dizier C, Fovet T, Geoffroy PA, Rogers J, Lamer A, Amad A. Exploring seasonality in catatonia diagnosis: Evidence from a large-scale population study. Psychiatry Res 2024; 331:115652. [PMID: 38071881 DOI: 10.1016/j.psychres.2023.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Catatonia is a severe psychomotor syndrome mainly associated with psychiatric disorders, such as mood disorders and schizophrenia. Seasonal patterns have been described for these psychiatric disorders, and a previous study conducted in South London showed for the first time a seasonal pattern in the onset of catatonia. In this study, we aim to extend those findings to a larger national sample of patients admitted to French metropolitan hospitals, between 2015 and 2022, and to perform subgroup analyses by the main associated psychiatric disorder. A total of 6225 patients diagnosed with catatonia were included. A seasonal pattern for catatonia diagnosis was described, using cosinor models. Two peaks of diagnoses for catatonic cases were described in March and around September-October. Depending on the associated psychiatric disorder, the seasonality of catatonia diagnosis differed. In patients suffering with mood disorders, peaks of catatonia diagnosis were found in March and July. For patients suffering with schizophrenia, no seasonal pattern was found.
Collapse
Affiliation(s)
- Tomas Mastellari
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Chloé Saint-Dizier
- Fédération Régionale de Recherche en Santé Mentale et Psychiatrie, Hauts-de-France, France; Univ. Lille, Faculté Ingénierie et Management de la Santé, Lille F-59000, France
| | - Thomas Fovet
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Pierre-Alexis Geoffroy
- Département de Psychiatrie et d'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| | - Jonathan Rogers
- Division of Psychiatry, University College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Antoine Lamer
- Fédération Régionale de Recherche en Santé Mentale et Psychiatrie, Hauts-de-France, France; Univ. Lille, Faculté Ingénierie et Management de la Santé, Lille F-59000, France; Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille F-59000, France
| | - Ali Amad
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| |
Collapse
|
3
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
4
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
5
|
Belin AC, Barloese MC. The genetics and chronobiology of cluster headache. Cephalalgia 2023; 43:3331024231208126. [PMID: 37851671 DOI: 10.1177/03331024231208126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND/HYPOTHESIS Cluster headache displays uniquely rhythmic patterns in its attack manifestation. This strong chronobiological influence suggests that part of the pathophysiology of cluster headache is distinctly different from migraine and has prompted genetic investigations probing these systems. METHODS This is a narrative overview of the cluster headache chronobiological phenotype from the point of view of genetics covering existing knowledge, highlighting the specific challenges in cluster headache and suggesting novel research approaches to overcome these. RESULTS The chronobiological features of cluster headache are a hallmark of the disorder and while discrepancies between study results do exist, the main findings are highly reproducible across populations and time. Particular findings in subgroups indicate that the heritability of the disorder is linked to chronobiological systems. Meanwhile, genetic markers of circadian rhythm genes have been implicated in cluster headache, but with conflicting results. However, in two recently published genome wide association studies two of the identified four loci include genes with an involvement in circadian rhythm, MER proto-oncogene, tyrosine kinase and four and a half LIM domains 5. These findings strengthen the involvement of circadian rhythm in cluster headache pathophysiology. CONCLUSION/INTERPRETATION Studying chronobiology and genetics in cluster headache presents challenges unique to the disorder. Researchers are overcoming these challenges by pooling various data from different cohorts and performing meta-analyses providing novel insights into a classically enigmatic disorder. Further progress can likely be made by combining deep pheno- and genotyping.
Collapse
Affiliation(s)
- Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mads Christian Barloese
- Department of Functional and Diagnostic Imaging, Hvidovre Hospital, Hvidovre, Denmark
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
6
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
7
|
Zhang L, Malkemper EP. Cryptochromes in mammals: a magnetoreception misconception? Front Physiol 2023; 14:1250798. [PMID: 37670767 PMCID: PMC10475740 DOI: 10.3389/fphys.2023.1250798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Cryptochromes are flavoproteins related to photolyases that are widespread throughout the plant and animal kingdom. They govern blue light-dependent growth in plants, control circadian rhythms in a light-dependent manner in invertebrates, and play a central part in the circadian clock in vertebrates. In addition, cryptochromes might function as receptors that allow animals to sense the Earth's magnetic field. As cryptochromes are also present in mammals including humans, the possibility of a magnetosensitive protein is exciting. Here we attempt to provide a concise overview of cryptochromes in mammals. We briefly review their canonical role in the circadian rhythm from the molecular level to physiology, behaviour and diseases. We then discuss their disputed light sensitivity and proposed role in the magnetic sense in mammals, providing three mechanistic hypotheses. Specifically, mammalian cryptochromes could form light-induced radical pairs in particular cellular milieus, act as magnetoreceptors in darkness, or as secondary players in a magnetoreception signalling cascade. Future research can test these hypotheses to investigate if the role of mammalian cryptochromes extends beyond the circadian clock.
Collapse
Affiliation(s)
| | - E. Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior—caesar, Bonn, Germany
| |
Collapse
|
8
|
Rizavas I, Gournellis R, Douzenis P, Efstathiou V, Bali P, Lagouvardos K, Douzenis A. A Systematic Review on the Impact of Seasonality on Severe Mental Illness Admissions: Does Seasonal Variation Affect Coercion? Healthcare (Basel) 2023; 11:2155. [PMID: 37570395 PMCID: PMC10418389 DOI: 10.3390/healthcare11152155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Coercion in psychiatry is associated mainly with involuntary admissions. The purpose of this study was to investigate the associations between hospital admissions of patients suffering from affective and schizophrenic disorders and seasonality. A systematic literature search using PubMed, Scopus and Google Scholar was conducted, including studies with affective and schizophrenia disorder admissions, published from October 1992 to August 2020. A total of 31 studies were included in the review. Four broad severe mental illness admission categories were identified regarding seasonality: affective disorders, schizophrenia disorders, involuntary admission affective disorders and involuntary admission schizophrenia disorders. There was clear and strong evidence for spring and summer peaks for severe mental illness admissions; data provided for age, gender and involuntary admissions was limited. Seasonality may have a significant effect on the onset and exacerbation of psychopathology of severe mental illness and should be considered as a risk factor in psychiatric admissions, violence and the risk of mental health coercion. A better understanding of the impact of seasonality on severe mental illness will help professionals to provide the best practices in mental health services in order to reduce and prevent psychiatric hospitalizations (especially involuntary admissions) resulting in further coercive measures.
Collapse
Affiliation(s)
- Ioannis Rizavas
- Psychiatric Hospital of Attica “Dafni”, 12462 Chaidari, Greece;
| | - Rossetos Gournellis
- Second Department of Psychiatry, Medical School, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Chaidari, Greece; (R.G.); (A.D.)
| | - Phoebe Douzenis
- Medical School, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Vasiliki Efstathiou
- Postgraduate Program “Liaison Psychiatry Integrative Care of Physical and Mental Health”, School of Medicine, National and Kapodistrian University of Athens, 12462 Chaidari, Greece;
| | - Panagiota Bali
- Second Department of Psychiatry, Medical School, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Chaidari, Greece; (R.G.); (A.D.)
| | - Kostas Lagouvardos
- National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 Athens, Greece;
| | - Athanasios Douzenis
- Second Department of Psychiatry, Medical School, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Chaidari, Greece; (R.G.); (A.D.)
| |
Collapse
|
9
|
Hickie IB, Merikangas KR, Carpenter JS, Iorfino F, Scott EM, Scott J, Crouse JJ. Does circadian dysrhythmia drive the switch into high- or low-activation states in bipolar I disorder? Bipolar Disord 2023; 25:191-199. [PMID: 36661342 PMCID: PMC10947388 DOI: 10.1111/bdi.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Emerging evidence suggests a role of circadian dysrhythmia in the switch between "activation" states (i.e., objective motor activity and subjective energy) in bipolar I disorder. METHODS We examined the evidence with respect to four relevant questions: (1) Are natural or environmental exposures that can disrupt circadian rhythms also related to the switch into high-/low-activation states? (2) Are circadian dysrhythmias (e.g., altered rest/activity rhythms) associated with the switch into activation states in bipolar disorder? (3) Do interventions that affect the circadian system also affect activation states? (4) Are associations between circadian dysrhythmias and activation states influenced by other "third" factors? RESULTS Factors that naturally or experimentally alter circadian rhythms (e.g., light exposure) have been shown to relate to activation states; however future studies need to measure circadian rhythms contemporaneously with these natural/experimental factors. Actigraphic measures of circadian dysrhythmias are associated prospectively with the switch into high- or low-activation states, and more studies are needed to establish the most relevant prognostic actigraphy metrics in bipolar disorder. Interventions that can affect the circadian system (e.g., light therapy, lithium) can also reduce the switch into high-/low-activation states. Whether circadian rhythms mediate these clinical effects is an unknown but valuable question. The influence of age, sex, and other confounders on these associations needs to be better characterised. CONCLUSION Based on the reviewed evidence, our view is that circadian dysrhythmia is a plausible driver of transitions into high- and low-activation states and deserves prioritisation in research in bipolar disorders.
Collapse
Affiliation(s)
- Ian B. Hickie
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Kathleen R. Merikangas
- Genetic Epidemiology Research Branch, Division of Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | - Joanne S. Carpenter
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Frank Iorfino
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Elizabeth M. Scott
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- Norwegian University of Science and TechnologyTrondheimNorway
- Université de ParisParisFrance
| | - Jacob J. Crouse
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| |
Collapse
|
10
|
Freund N, Haussleiter I. Bipolar Chronobiology in Men and Mice: A Narrative Review. Brain Sci 2023; 13:738. [PMID: 37239210 PMCID: PMC10216184 DOI: 10.3390/brainsci13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
In patients with bipolar disorder, we do not only see a cycling of mood episodes, but also a shift in circadian rhythm. In the present overview, the circadian rhythm, the "internal clock", and their disruptions are briefly described. In addition, influences on circadian rhythms such as sleep, genetics, and environment are discussed. This description is conducted with a translational focus covering human patients as well as animal models. Concluding the current knowledge on chronobiology and bipolar disorder, implications for specificity and the course of bipolar disorder and treatment options are given at the end of this article. Taken together, circadian rhythm disruption and bipolar disorder are strongly correlated; the exact causation, however, is still unclear.
Collapse
Affiliation(s)
- Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany;
| | - Ida Haussleiter
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany
| |
Collapse
|
11
|
McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, Cain S, Dulcis D, Etain B, Frey BN, Garbazza C, Ketchesin KD, Landgraf D, Lee H, Marie‐Claire C, Nusslock R, Porcu A, Porter R, Ritter P, Scott J, Smith D, Swartz HA, Murray G. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord 2022; 24:232-263. [PMID: 34850507 PMCID: PMC9149148 DOI: 10.1111/bdi.13165] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Collapse
Affiliation(s)
- Michael J. McCarthy
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - John F. Gottlieb
- Department of PsychiatryFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral HealthPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Colleen A. McClung
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Davide Dulcis
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | - Bruno Etain
- Université de ParisINSERM UMR‐S 1144ParisFrance
| | - Benicio N. Frey
- Department Psychiatry and Behavioral NeuroscienceMcMaster UniversityHamiltonOntarioCanada
| | - Corrado Garbazza
- Centre for ChronobiologyPsychiatric Hospital of the University of Basel and Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Kyle D. Ketchesin
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dominic Landgraf
- Circadian Biology GroupDepartment of Molecular NeurobiologyClinic of Psychiatry and PsychotherapyUniversity HospitalLudwig Maximilian UniversityMunichGermany
| | - Heon‐Jeong Lee
- Department of Psychiatry and Chronobiology InstituteKorea UniversitySeoulSouth Korea
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy ResearchNorthwestern UniversityChicagoIllinoisUSA
| | - Alessandra Porcu
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | | | - Philipp Ritter
- Clinic for Psychiatry and PsychotherapyCarl Gustav Carus University Hospital and Technical University of DresdenDresdenGermany
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastleUK
| | - Daniel Smith
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Greg Murray
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| |
Collapse
|
12
|
Yang SY, Hong KS, Cho Y, Cho EY, Choi Y, Kim Y, Park T, Ha K, Baek JH. Association between the Arylalkylamine N-Acetyltransferase (AANAT) Gene and Seasonality in Patients with Bipolar Disorder. Psychiatry Investig 2021; 18:453-462. [PMID: 33993688 PMCID: PMC8169335 DOI: 10.30773/pi.2020.0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is complex genetic disorder. Therefore, approaches using clinical phenotypes such as biological rhythm disruption could be an alternative. In this study, we explored the relationship between melatonin pathway genes with circadian and seasonal rhythms of BD. METHODS We recruited clinically stable patients with BD (n=324). We measured the seasonal variation of mood and behavior (seasonality), and circadian preference, on a lifetime basis. We analyzed 34 variants in four genes (MTNR1a, MTNR1b, AANAT, ASMT) involved in the melatonin pathway. RESULTS Four variants were nominally associated with seasonality and circadian preference. After multiple test corrections, the rs116879618 in AANAT remained significantly associated with seasonality (corrected p=0.0151). When analyzing additional variants of AANAT through imputation, the rs117849139, rs77121614 and rs28936679 (corrected p=0.0086, 0.0154, and 0.0092) also showed a significant association with seasonality. CONCLUSION This is the first study reporting the relationship between variants of AANAT and seasonality in patients with BD. Since AANAT controls the level of melatonin production in accordance with light and darkness, this study suggests that melatonin may be involved in the pathogenesis of BD, which frequently shows a seasonality of behaviors and symptom manifestations.
Collapse
Affiliation(s)
- So Yung Yang
- Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.,Institute of Behavioral and Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Sue Hong
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Youngah Cho
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun-Young Cho
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Yujin Choi
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
13
|
Validity and Usage of the Seasonal Pattern Assessment Questionnaire (SPAQ) in a French Population of Patients with Depression, Bipolar Disorders and Controls. J Clin Med 2021; 10:jcm10091897. [PMID: 33925578 PMCID: PMC8123881 DOI: 10.3390/jcm10091897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022] Open
Abstract
The Seasonal Pattern Assessment Questionnaire (SPAQ), by Rosenthal et al. (1984), is by far the most used questionnaire to evaluate seasonal effects on mood and behavior. It includes a general seasonality score (GSS), composed of 6 items, from which cutoffs have been established to screen for seasonal affective disorder (SAD). However, it has never been validated in French and associations with circadian rhythm and symptoms of depression and bipolarity remain unclear. In this study, including 165 subjects (95 controls and 70 patients with depression or bipolar disorder), we confirmed the validity of the French version of the SPAQ, with a two-factor structure (a psychological factor: energy, mood, social activity and sleep length; and a food factor: weight and appetite) and a good fit was observed by all indicators. Mood and social activity dimensions were significantly affected by seasons in the depressed/bipolar group and a stronger global seasonality score (GSS) was associated with more severe phenotypes of depression and mania. Subjects meeting SAD and subsyndromal-SAD criteria also showed a delayed circadian rhythm compared to controls. Simple tools, such as the SPAQ, can aid the identification of significant seasonal changes and have direct implications on therapeutics including the use of bright light therapy in order to enhance personalized treatments, but also to prevent adverse seasonal effects.
Collapse
|
14
|
Circadian depression: A mood disorder phenotype. Neurosci Biobehav Rev 2021; 126:79-101. [PMID: 33689801 DOI: 10.1016/j.neubiorev.2021.02.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Major mood syndromes are among the most common and disabling mental disorders. However, a lack of clear delineation of their underlying pathophysiological mechanisms is a major barrier to prevention and optimised treatments. Dysfunction of the 24-h circadian system is a candidate mechanism that has genetic, behavioural, and neurobiological links to mood syndromes. Here, we outline evidence for a new clinical phenotype, which we have called 'circadian depression'. We propose that key clinical characteristics of circadian depression include disrupted 24-h sleep-wake cycles, reduced motor activity, low subjective energy, and weight gain. The illness course includes early age-of-onset, phenomena suggestive of bipolarity (defined by bidirectional associations between objective motor and subjective energy/mood states), poor response to conventional antidepressant medications, and concurrent cardiometabolic and inflammatory disturbances. Identifying this phenotype could be clinically valuable, as circadian-targeted strategies show promise for reducing depressive symptoms and stabilising illness course. Further investigation of underlying circadian disturbances in mood syndromes is needed to evaluate the clinical utility of this phenotype and guide the optimal use of circadian-targeted interventions.
Collapse
|
15
|
Fico G, de Toffol M, Anmella G, Sagué-Vilavella M, Dellink A, Verdolini N, Pacchiarotti I, Goikolea JM, Solmi M, Vieta E, Murru A. Clinical correlates of seasonality in bipolar disorder: A specifier that needs specification? Acta Psychiatr Scand 2021; 143:162-171. [PMID: 33140436 DOI: 10.1111/acps.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Seasonal pattern (SP) is a bipolar disorder (BD) specifier that indicates a tendency towards affective relapses during specific moments of the year. SP affects 15%-25% of BD patients. In the past, SP was applied only to depressive relapses while, in DSM-5, SP may be applied to both depressive and (hypo)manic episodes. We examined the association between different clinical correlates of BD and SP according to its current definition in a cohort of patients with BD type I (BDI) and II (BDII). METHODS Patients were recruited from a specialized unit and assessed according to the season of relapse and type of episode per season. SP and non-SP patients were compared looking into sociodemographic and clinical correlates. Significant variables at univariate comparisons were included in multivariate logistic regression with SP as the dependent variable. RESULTS 708 patients were enrolled (503 BDI, 205 BDII), and 117 (16.5%) fulfilled DSM-5 criteria for SP. The mean age was 45.3 years (SD = 14.18), and 389 were female (54.9%). The logistic regression model included a significant contribution of BDII (OR = 2.23, CI 1.4-3.55), family history of mood disorder (OR = 1.97, CI 1.29-3.01), undetermined predominant polarity (OR = 0.44, CI 0.28-0.70), and aggressive behavior (OR = 0.42, CI 0.23-0.75). CONCLUSION Our results outline a novel positive association of SP with undetermined predominant polarity, BDII, family history of mood disorder, and with fewer aggressiveness-related symptoms. Seasonality is associated with a biphasic pattern with similar dominance of (hypo)mania and depression and is more frequent in BDII as compared to BDI. Seasonal episodes may be easier to predict, but difficult to prevent.
Collapse
Affiliation(s)
- Giovanna Fico
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Marco de Toffol
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain.,Neurosciences Department, University of Padua, Padua, Italy
| | - Gerard Anmella
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Maria Sagué-Vilavella
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Annelies Dellink
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain.,Behavioural and Cognitive Neuroscience Programme, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jose Manuel Goikolea
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Marco Solmi
- Neurosciences Department, University of Padua, Padua, Italy
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Andrea Murru
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
16
|
Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1173-1183. [PMID: 32794101 DOI: 10.3758/s13415-020-00824-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seasonal variations in environmental light influence switches between moods in seasonal affective disorder (SAD) and bipolar disorder (BD), with depression arising during short active (SA) winter periods. Light-induced changes in behavior are also seen in healthy animals and are intensified in mice with reduced dopamine transporter expression. Specifically, decreasing the nocturnal active period (SA) of mice increases punishment perseveration and forced swim test (FST) immobility. Elevating acetylcholine with the acetylcholinesterase inhibitor physostigmine induces depression symptoms in people and increases FST immobility in mice. We used SA photoperiods and physostigmine to elevate acetylcholine prior to testing in a probabilistic learning task and the FST, including reversing subsequent deficits with nicotinic and scopolamine antagonists and targeted hippocampal adeno-associated viral administration. We confirmed that physostigmine also increases punishment sensitivity in a probabilistic learning paradigm. In addition, muscarinic and nicotinic receptor blockade attenuated both physostigmine-induced and SA-induced phenotypes. Finally, viral-mediated hippocampal expression of human AChE used to lower ACh levels blocked SA-induced elevation of FST immobility. These results indicate that increased hippocampal acetylcholine neurotransmission is necessary for the expression of SA exposure-induced behaviors. Furthermore, these studies support the potential for cholinergic treatments in depression. Taken together, these results provide evidence for hippocampal cholinergic mechanisms in contributing to seasonally depressed affective states induced by short day lengths.
Collapse
|
17
|
Borisenkov MF, Popov SV, Tserne TA, Bakutova LA, Pecherkina AA, Dorogina OI, Martinson EA, Vetosheva VI, Gubin DG, Solovieva SV, Turovinina EF, Symanyuk EE. Food addiction and symptoms of depression among inhabitants of the European North of Russia: Associations with sleep characteristics and photoperiod. EUROPEAN EATING DISORDERS REVIEW 2020; 28:332-342. [PMID: 32153116 DOI: 10.1002/erv.2728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/23/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023]
Abstract
The purpose of this investigation was to study the sleep-wake rhythm characteristics of young persons with food addiction (FA) and symptoms of depression. A total of 2,360 young persons living in northern European Russia were included in the study. The average age of the respondents (± standard deviation [SD]) was 17.9 [4.6] years (66.6% female). Each participant provided personal data and filled in three questionnaires: the Munich Chronotype Questionnaire, the Zung Self-Rating Depression Scale, and the Yale Food Addiction Scale. FA was detected in 8.9% of respondents, and moderate-to-severe symptoms of depression were detected in 16.7% of respondents. FA and depressive symptoms were more often detected in females. Age and body mass index were shown to be significantly associated with FA. There were positive associations between the time of sunrise and FA and depressive symptoms. Persons who had symptoms of depression also tended to have a later chronotype, lower sleep efficiency, later sleep onset, higher sleep inertia, and greater sleep latency on school days. A positive relationship between FA and the time of sleep onset on school days was also revealed. Thus, the results indicate that prolonged wakefulness in the evening after sunset was associated with FA.
Collapse
Affiliation(s)
- Mikhail F Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| | - Sergey V Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| | - Tatyana A Tserne
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Larisa A Bakutova
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Anna A Pecherkina
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| | - Olga I Dorogina
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| | | | - Valentina I Vetosheva
- Institute of Pedagogy and Psychology, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Denis G Gubin
- Department of Biology, Tyumen Medical University, Tyumen, Russia
- Tyumen Cardiology Research Centre, Tomsk National Research Medical Center, Russian Academy of Science, Tyumen, Russia
| | | | | | - Elvira E Symanyuk
- Ural Institute of Humanities, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
18
|
Di Nicola M, Mazza M, Panaccione I, Moccia L, Giuseppin G, Marano G, Grandinetti P, Camardese G, De Berardis D, Pompili M, Janiri L. Sensitivity to Climate and Weather Changes in Euthymic Bipolar Subjects: Association With Suicide Attempts. Front Psychiatry 2020; 11:95. [PMID: 32194448 PMCID: PMC7066072 DOI: 10.3389/fpsyt.2020.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Climate and weather are known to affect multiple areas of human life, including mental health. In bipolar disorder (BD), seasonality represents an environmental trigger for mood switches, and climatic variables may contribute to recurrences. Several studies reported seasonal and climatic-related variations in the rate of suicide attempts. Suicide risk is relevant in BD, with approximately 25% of patients attempting suicide. Therefore, this study aimed to assess sensitivity to weather and climatic variations in BD subjects and its relationship with lifetime suicide attempts. METHODS Three hundred fifty-two euthymic BD and 352 healthy control subjects, homogeneous with respect to socio-demographic characteristics, were enrolled. All participants were administered the METEO-Questionnaire (METEO-Q) to evaluate susceptibility to weather and climatic changes. We also investigated the potential relationship between sensitivity to climate and weather and lifetime suicide attempts in BD patients. RESULTS METEO-Q scores and the number of subjects reaching the cut-off for meteorosensitivity/meteoropathy were significantly higher in BD patients. Within the clinical group, BD subjects with lifetime suicide attempts obtained higher METEO-Q scores, with no differences between BD-I and BD-II. The number of suicide attempts directly correlated with METEO-Q scores. The presence of suicide attempts was associated with the physical and psychological symptoms related to weather variations. DISCUSSION Our findings support the relevance of sensitivity to weather and climate variations in a large sample of BD subjects and point out the association of this feature with lifetime suicide attempts.
Collapse
Affiliation(s)
- Marco Di Nicola
- Department of Psychiatry, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marianna Mazza
- Department of Psychiatry, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Lorenzo Moccia
- Department of Psychiatry, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Giuseppin
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Marano
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giovanni Camardese
- Department of Psychiatry, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico De Berardis
- Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, Teramo, Italy
| | - Maurizio Pompili
- Suicide Prevention Centre, Department of Neurosciences, Mental Health and Sensory Organs, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Luigi Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Satyanarayanan SK, Chien YC, Chang JPC, Huang SY, Guu TW, Su H, Su KP. Melatonergic agonist regulates circadian clock genes and peripheral inflammatory and neuroplasticity markers in patients with depression and anxiety. Brain Behav Immun 2020; 85:142-151. [PMID: 30851380 DOI: 10.1016/j.bbi.2019.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Circadian dysfunction is a core manifestation and a risk factor for psychiatric disorders. Ramelteon (RMT), a melatonin receptor agonist, has been shown to induce sleep phase shifts and has been used to normalize sleep onset time. RMT has been used in sleep disorders, depression and anxiety. In this study, we aimed to investigate the effects of RMT in regulating gene expression profiles of the circadian clock and peripheral markers of inflammation and neuroplasticity. METHODS Sixteen patients with a diagnosis of primary insomnia comorbid with depression and anxiety and ten healthy controls were recruited in an 8-week open-label trial. The patients with primary insomnia received RMT 8 mg/day. The morning expression profiles of 15 core clock genes from peripheral blood mononuclear cells (PBMCs), urine and plasma levels of melatonin and its metabolite levels, and plasma inflammatory markers and neurotrophin levels were evaluated at baseline, 4th and 8th week of RMT treatment. RESULTS RMT treatment was associated with significant clinical improvement in depression scores at 8th week (Hamilton depression rating scale scores (Mean ± SEM) from 21.5 ± 2.44 to 14.31 ± 2.25, p ≤ 0.05). The overall poor sleep quality (Pittsburgh sleep quality index) of the patient group significantly improved (p ≤ 0.05) following RMT treatment. The mRNA level analysis showed a significant association between RMT treatment and alterations of the nine core circadian genes (CLOCK, PER1, PER2, CRY1, CRY2, NR1D1, NR1D2, DEC1 and TIMELESS) in the patient group when compared with the control group (p ≤ 0.05). Compared with the controls, the patient group had a decrease in neurotrophins (brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and beta-nerve growth factor; p ≤ 0.05) but an increase in pro-inflammatory cytokine levels (interleukin-6, interleukin-1b, tumour necrosis factor-alpha and interferon gamma; p ≤ 0.05); RMT treatment normalized the levels of neurotrophins and cytokine levels. CONCLUSION RMT treatment is able to restore phase-shifted melatonin markers, normalized the altered expression of the circadian genes, the levels of inflammatory cytokines and neurotrophins in patients with insomnia comorbid anxiety and depression.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yu-Chuan Chien
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Division of Psychiatry, Departments of Internal Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Jane Pei-Chen Chang
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; College of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ta-Wei Guu
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Division of Psychiatry, Departments of Internal Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Chen CT, Schultz JA, Haven SE, Wilhite B, Liu CH, Chen J, Hibbeln JR. Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum. Prostaglandins Leukot Essent Fatty Acids 2020; 152:102036. [PMID: 31835092 PMCID: PMC7041906 DOI: 10.1016/j.plefa.2019.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Deficiency in retinoid acid receptor-related orphan receptor alpha (RORα) of staggerer mice results in extensive granule and Purkinje cell loss in the cerebellum as well as in learned motor deficits, cognition impairments and perseverative tendencies that are commonly observed in autistic spectrum disorder (ASD). The effects of RORα on brain lipid metabolism associated with cerebellar atrophy remain unexplored. The aim of this study is to examine the effects of RORα deficiency on brain phospholipid fatty acid concentrations and compositions. Staggerer mice (Rorasg/sg) and wildtype littermates (Rora+/+) were fed n-3 polyunsaturated fatty acids (PUFA) containing diets ad libitum. At 2 months and 7 or more months old, brain total phospholipid fatty acids were quantified by gas chromatography-flame ionization detection. In the cerebellum, all fatty acid concentrations were reduced in 2 months old mice. Since total fatty acid concentrations were significantly different at 2-month-old, we examined changes in fatty acid composition. The composition of ARA was not significantly different between genotypes; though DHA composition remained significantly lowered. Despite cerebellar atrophy at >7-months-old, cerebellar fatty acid concentrations had recovered comparably to wildtype control. Therefore, RORα may be necessary for fatty acid accretions during neurodevelopment. Specifically, the effects of RORα on PUFA metabolisms are region-specific and age-dependent.
Collapse
Affiliation(s)
- Chuck T Chen
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Joseph A Schultz
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Sophie E Haven
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Breanne Wilhite
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States.
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States.
| | - Joseph R Hibbeln
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| |
Collapse
|
21
|
Agustini B, Bocharova M, Walker AJ, Berk M, Young AH, Juruena MF. Has the sun set for seasonal affective disorder and HPA axis studies? A systematic review and future prospects. J Affect Disord 2019; 256:584-593. [PMID: 31299439 DOI: 10.1016/j.jad.2019.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Seasonal Affective Disorder (SAD) is a form of cyclic mood disorder that tends to manifest as winter depression. SAD has anecdotally been described as a hypocortisolemic condition. However, there are no systematic reviews on SAD and Hypothalamic-Pituitary-Adrenal (HPA) axis function. This review intends to summarize these findings. METHODS Using the PRISMA (2009) guideline recommendations we searched for relevant articles indexed in databases including MEDLINE, EMBASE, PsycINFO, and PsychArticles. The following keywords were used: "Seasonal affective disorder", OR "Winter Depression", OR "Seasonal depression" associated with: "HPA Axis" OR "cortisol" OR "CRH" OR "ACTH". RESULTS Thirteen papers were included for qualitative analysis. Studies used both heterogeneous methods and populations. The best evidence comes from a recent study showing that SAD patients tend to demonstrate an attenuated Cortisol Awakening Response (CAR) in winter, but not in summer, compared to controls. Dexamethasone Suppression Test (DST) studies suggest SAD patients have normal suppression of the HPA axis. CONCLUSION There is still insufficient evidence to classify SAD as a hypocortisolemic condition when compared to controls. Heterogeneous methods and samples did not allow replication of results. We discuss the limitations of these studies and provide new methods and targets to probe HPA axis function in this population. SAD can provide a unique window of opportunity to study HPA axis in affective disorders, since it is highly predictable and can be followed before, during and after episodes subsides.
Collapse
Affiliation(s)
- Bruno Agustini
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, VIC, Australia.
| | - Mariia Bocharova
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust (SLaM) and King's College London, London, United Kingdom
| | - Adam J Walker
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, VIC, Australia
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust (SLaM) and King's College London, London, United Kingdom
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust (SLaM) and King's College London, London, United Kingdom
| |
Collapse
|
22
|
Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, Ayhan Y, Baethge C, Bauer R, Baune BT, Becerra-Palars C, Bellivier F, Belmaker RH, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Cabrera J, Wo Cheung EY, Del Zompo M, Dodd S, Donix M, Etain B, Fagiolini A, Fountoulakis KN, Frye MA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Harima H, Henry C, Isometsä ET, Janno S, Kapczinski F, Kardell M, Khaldi S, Kliwicki S, König B, Kot TL, Krogh R, Kunz M, Lafer B, Landén M, Larsen ER, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacQueen G, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nery FG, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Sørensen HØ, Ouali U, Ruiz YP, Pilhatsch M, Pinna M, da Ponte FDR, Quiroz D, Ramesar R, Rasgon N, Reddy MS, Reif A, Ritter P, Rybakowski JK, Sagduyu K, Raghuraman BS, Scippa ÂM, Severus E, Simhandl C, Stackhouse PW, Stein DJ, Strejilevich S, Subramaniam M, Sulaiman AH, Suominen K, Tagata H, Tatebayashi Y, Tondo L, Torrent C, Vaaler AE, Vares E, Veeh J, Vieta E, et alBauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, Ayhan Y, Baethge C, Bauer R, Baune BT, Becerra-Palars C, Bellivier F, Belmaker RH, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Cabrera J, Wo Cheung EY, Del Zompo M, Dodd S, Donix M, Etain B, Fagiolini A, Fountoulakis KN, Frye MA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Harima H, Henry C, Isometsä ET, Janno S, Kapczinski F, Kardell M, Khaldi S, Kliwicki S, König B, Kot TL, Krogh R, Kunz M, Lafer B, Landén M, Larsen ER, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacQueen G, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nery FG, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Sørensen HØ, Ouali U, Ruiz YP, Pilhatsch M, Pinna M, da Ponte FDR, Quiroz D, Ramesar R, Rasgon N, Reddy MS, Reif A, Ritter P, Rybakowski JK, Sagduyu K, Raghuraman BS, Scippa ÂM, Severus E, Simhandl C, Stackhouse PW, Stein DJ, Strejilevich S, Subramaniam M, Sulaiman AH, Suominen K, Tagata H, Tatebayashi Y, Tondo L, Torrent C, Vaaler AE, Vares E, Veeh J, Vieta E, Viswanath B, Yoldi-Negrete M, Zetin M, Zgueb Y, Whybrow PC. Association between solar insolation and a history of suicide attempts in bipolar I disorder. J Psychiatr Res 2019; 113:1-9. [PMID: 30878786 DOI: 10.1016/j.jpsychires.2019.03.001] [Show More Authors] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area on Earth. Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients p < 0.01). In summary, living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Further investigation of the impacts of solar insolation on the course of bipolar disorder is needed.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Yavuz Ayhan
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Department of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Frank Bellivier
- Psychiatry and Addiction Medicine. Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, FondaMental Foundation, Paris, France
| | - Robert H Belmaker
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, Orygen, the National Centre for Excellence in Youth Mental Health, the Centre for Youth Mental Health and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | - Thomas D Bjella
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jorge Cabrera
- Mood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile
| | - Eric Y Wo Cheung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Seetal Dodd
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Markus Donix
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bruno Etain
- Psychiatry and Addiction Medicine. Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, FondaMental Foundation, Paris, France
| | - Andrea Fagiolini
- Department of Molecular Medicine and Department of Mental Health (DAI), University of Siena and University of Siena Medical Center (AOUS), Siena, Italy
| | - Kostas N Fountoulakis
- Division of Neurosciences, 3rd Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Ana Gonzalez-Pinto
- Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa, University of Toronto, Toronto, ON, Canada
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Chantal Henry
- AP-HP, Hopitaux Universitaires Henri Mondor and INSERM U955 (IMRB) and Université Paris Est and Institut Pasteur, Unité Perception et Mémoire, Paris, France
| | - Erkki T Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathias Kardell
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Sebastian Kliwicki
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Timur L Kot
- Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia
| | - Rikke Krogh
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Mauricio Kunz
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Erik R Larsen
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rasmus W Licht
- Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Glenda MacQueen
- Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts, Worcester, MA, USA
| | | | - Ingrid Melle
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fátima Meza-Urzúa
- National Institute of Psychiatry '"Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - Mok Yee Ming
- Department of General Psychiatry, Mood Disorders Unit, Institute of Mental Health, Singapore City, Singapore
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Enrica Mosca
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Fethi Nacef
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Fabiano G Nery
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - René E Nielsen
- Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Adel Omrani
- Tunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2, Tunis, Tunisia
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Uta Ouali
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Maximilian Pilhatsch
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marco Pinna
- Lucio Bini Mood Disorder Center, Cagliari, Italy
| | - Francisco D R da Ponte
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago de Chile, Chile
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - M S Reddy
- Asha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Kemal Sagduyu
- Department of Psychiatry, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Ângela M Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Paul W Stackhouse
- Science Directorate/Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
| | - Dan J Stein
- Department of Psychiatry, MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Sergio Strejilevich
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
| | | | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- Department of Social Services and Health Care, Psychiatry, City of Helsinki, Finland
| | - Hiromi Tagata
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Yoshitaka Tatebayashi
- Schizophrenia & Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Seatagaya, Tokyo, Japan
| | - Leonardo Tondo
- McLean Hospital-Harvard Medical School, Boston, MA, USA; Mood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
| | - Carla Torrent
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Edgar Vares
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | | | - Maria Yoldi-Negrete
- Consejo Nacional de Ciencia y Tecnología - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Mark Zetin
- Department of Psychology, Chapman University, Orange, CA, USA
| | - Yosra Zgueb
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
23
|
Geoffroy PA, Curis E, Courtin C, Moreira J, Morvillers T, Etain B, Laplanche JL, Bellivier F, Marie-Claire C. Lithium response in bipolar disorders and core clock genes expression. World J Biol Psychiatry 2018; 19:619-632. [PMID: 28095742 DOI: 10.1080/15622975.2017.1282174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We examine whether the lithium response is associated with changes in the expression of core clock genes. METHODS The effect of a therapeutic concentration of lithium (1 mM) on the expression levels of 17 circadian genes was examined in lymphoblastoid cell lines (LCLs) derived from two well-characterized groups of bipolar disorder patients, defined as lithium non-responders (NR, n = 20) or excellent responders (ER, n = 16). Quantitative real-time PCR (qRT-PCR) was conducted at 2, 4 and 8 days (d2, d4 and d8) with and without lithium exposure. RESULTS At d2, in ER only, BHLHE41, RORA, PER1, ARNTL, CRY2, BHLHE40 and CSNK1D were upregulated, whereas NR1D1 was downregulated. At d4, in ER only, CRY1 was downregulated. At d8, in NR only, GSK3β was upregulated and DBP, TIMELESS and CRY1 were downregulated. Significant Group × Lithium interactions existed for NR1D1 at d2 (P = 0.02), and CRY1 at d4 (P = 0.02). Longitudinal analyses showed differential temporal evolutions between NR and ER (significant Time × Group interaction) for PER3, NR1D1, DBP, RORA, CSNK1D and TIMELESS; and a significant Time × Lithium interaction for NR1D1. Coexpression data analyses suggested distinct groups of circadian genes concurrently modulated by lithium. CONCLUSIONS In LCLs, lithium influences expression of circadian genes with differences in amplitude and kinetics according to the patient's lithium response status.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,c AP-HP, GH Saint-Louis-Lariboisière-F. Widal , Pôle de Psychiatrie et de Médecine Addictologique , Paris , France.,d Fondation FondaMental , Créteil , France
| | - Emmanuel Curis
- a Inserm U1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France.,f Laboratoire de biomathématiques, Faculté de pharmacie de Paris Université Paris Descartes , Paris , France.,g Département de biostatistiques et d'informatique médicales , Hôpital Saint-Louis, APHP , Paris , France
| | - Cindie Courtin
- a Inserm U1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| | - Jeverson Moreira
- a Inserm U1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| | | | - Bruno Etain
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,c AP-HP, GH Saint-Louis-Lariboisière-F. Widal , Pôle de Psychiatrie et de Médecine Addictologique , Paris , France.,d Fondation FondaMental , Créteil , France
| | - Jean-Louis Laplanche
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| | - Frank Bellivier
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,c AP-HP, GH Saint-Louis-Lariboisière-F. Widal , Pôle de Psychiatrie et de Médecine Addictologique , Paris , France.,d Fondation FondaMental , Créteil , France
| | - Cynthia Marie-Claire
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| |
Collapse
|
24
|
Dorokhov VB, Puchkova AN, Arsen’ev GN, Slominsky PA, Dementienko VV, Sveshnikov DS, Putilov AA. Association of obesity in shift workers with the minor allele of a single-nucleotide polymorphism (rs4851377) in the largest circadian clock gene (NPAS2). BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1537558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra N. Puchkova
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb N. Arsen’ev
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Petr A. Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, the Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Valeriy V. Dementienko
- Laboratory of Medical Electronics, Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, Moscow, Russia
| | - Dmitry S. Sveshnikov
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia, Moscow, Russia
| | - Arcady A. Putilov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Young JW, Cope ZA, Romoli B, Schrurs E, Aniek Joosen, van Enkhuizen J, Sharp RF, Dulcis D. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology 2018; 43. [PMID: 29520059 PMCID: PMC6006292 DOI: 10.1038/s41386-018-0031-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing novel therapeutics for bipolar disorder (BD) has been hampered by limited mechanistic knowledge how sufferers switch between mania and depression-how the same brain can switch between extreme states-described as the "holy grail" of BD research. Strong evidence implicates seasonally-induced switching between states, with mania associated with summer-onset, depression with winter-onset. Determining mechanisms of and sensitivity to such switching is required. C57BL/6J and dopamine transporter hypomorphic (DAT-HY 50% expression) mice performed a battery of psychiatry-relevant behavioral tasks following 2-week housing in chambers under seasonally relevant photoperiod extremes. Summer-like and winter-like photoperiod exposure induced mania-relevant and depression-relevant behaviors respectively in mice. This behavioral switch paralleled neurotransmitter switching from dopamine to somatostatin in hypothalamic neurons (receiving direct input from the photoperiod-processing center, the suprachiasmatic nucleus). Mice with reduced DAT expression exhibited hypersensitivity to these summer-like and winter-like photoperiods, including more extreme mania-relevant (including reward sensitivity during reinforcement learning), and depression-relevant (including punishment-sensitivity and loss-sensitivity during reinforcement learning) behaviors. DAT mRNA levels switched in wildtype littermate mice across photoperiods, an effect not replicated in DAT hypomorphic mice. This inability to adjust DAT levels to match photoperiod-induced neurotransmitter switching as a homeostatic control likely contributes to the susceptibility of DAT hypormophic mice to these switching photoperiods. These data reveal the potential contribution of photoperiod-induced neuroplasticity within an identified circuit of the hypothalamus, linked with reduced DAT function, underlying switching between states in BD. Further investigations of the circuit will likely identify novel therapeutic targets to block switching between states.
Collapse
Affiliation(s)
- Jared W. Young
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA ,0000 0004 0419 2708grid.410371.0Research Service, VA San Diego Healthcare System, San Diego, CA USA
| | - Zackary A. Cope
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Benedetto Romoli
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Esther Schrurs
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA ,0000000120346234grid.5477.1Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Aniek Joosen
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA ,0000000120346234grid.5477.1Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jordy van Enkhuizen
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Richard F. Sharp
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| |
Collapse
|
26
|
Maruani J, Anderson G, Etain B, Lejoyeux M, Bellivier F, Geoffroy PA. The neurobiology of adaptation to seasons: Relevance and correlations in bipolar disorders. Chronobiol Int 2018; 35:1335-1353. [DOI: 10.1080/07420528.2018.1487975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Julia Maruani
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | | | - Bruno Etain
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | - Michel Lejoyeux
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- Department of Epidemiology, Paris Hospital Group – Psychiatry & Neurosciences, Paris, France
- Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Paris, France
- Paris Diderot University – Paris VII, Paris, France
| | - Frank Bellivier
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | - Pierre A. Geoffroy
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| |
Collapse
|
27
|
Schuch JB, Genro JP, Bastos CR, Ghisleni G, Tovo-Rodrigues L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am J Med Genet B Neuropsychiatr Genet 2018; 177:181-198. [PMID: 28902457 DOI: 10.1002/ajmg.b.32599] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The circadian clock system drives daily rhythms in physiology, metabolism, and behavior in mammals. Molecular mechanisms of this system consist of multiple clock genes, with Circadian Locomotor Output Cycles Kaput (CLOCK) as a core member that plays an important role in a wide range of behaviors. Alterations in the CLOCK gene are associated with common psychiatric disorders as well as with circadian disturbances comorbidities. This review addresses animal, molecular, and genetic studies evaluating the role of the CLOCK gene on many psychiatric conditions, namely autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, major depressive disorder, bipolar disorder, anxiety disorder, and substance use disorder. Many animal experiments focusing on the effects of the Clock gene in behavior related to psychiatric conditions have shown consistent biological plausibility and promising findings. In humans, genetic and gene expression studies regarding disorder susceptibility, sleep disturbances related comorbidities, and response to pharmacological treatment, in general, are in agreement with animal studies. However, the number of controversial results is high. Literature suggests that the CLOCK gene exerts important influence on these conditions, and influences the susceptibility to phenotypes of psychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline B Schuch
- Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P Genro
- Graduate Program in Bioscience, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clarissa R Bastos
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Graduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Talih F, Gebara NY, Andary FS, Mondello S, Kobeissy F, Ferri R. Delayed sleep phase syndrome and bipolar disorder: Pathogenesis and available common biomarkers. Sleep Med Rev 2018. [PMID: 29534856 DOI: 10.1016/j.smrv.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circadian rhythm disturbances are common in bipolar affective disorder (BD). Delayed sleep-wake phase syndrome (DSWPD) is the most prevalent circadian rhythm sleep-wake disorder (CRSWDs) and is frequently observed in BD. It is unclear whether DSWPD in BD is an independent process or is a consequence of BD. In this hypothetical review, we discuss the overlap between BD and DSWPD and potential common biomarkers for DSWPD and BD. The review will include a discussion of the genetics of DSWPD and BD. Biomarkers elucidating the pathophysiological processes occurring in these two disorders may offer insight into the etiology and prognosis of both conditions.
Collapse
Affiliation(s)
- Farid Talih
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Nour Y Gebara
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Farah S Andary
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy; Sleep Research Centre, Oasi Research Institute IRCCS, Troina, Italy
| | - Firas Kobeissy
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute IRCCS, Troina, Italy
| |
Collapse
|
29
|
Linnstaedt SD, Pan Y, Mauck MC, Sullivan J, Zhou CY, Jung L, Rueckeis CA, Blount JD, Carson MS, Tungate AS, Kurz MC, Hendry PL, Lewandowski C, D'Anza T, Datner E, Bell K, Lechner M, Shupp JW, Cairns BA, McLean SA. Evaluation of the Association Between Genetic Variants in Circadian Rhythm Genes and Posttraumatic Stress Symptoms Identifies a Potential Functional Allele in the Transcription Factor TEF. Front Psychiatry 2018; 9:597. [PMID: 30498461 PMCID: PMC6249322 DOI: 10.3389/fpsyt.2018.00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies suggest that genetic variants within genes affecting the circadian rhythm influence the development of posttraumatic stress symptoms (PTSS). In the present study, we used data from three emergency care-based cohorts to search genetic variants in circadian pathway genes previously associated with neuropsychiatric disorders for variants that influence PTSS severity. The three cohorts used included a discovery cohort of African American men and women enrolled following motor vehicle collision (n = 907) and two replication cohorts: one of multi-ethnic women enrolled following sexual assault (n = 274) and one of multi-ethnic men and women enrolled following major thermal burn injury (n = 68). DNA and RNA were collected from trauma survivors at the time of initial assessment. Validated questionnaires were used to assess peritraumatic distress severity and to assess PTSS severity 6 weeks, 6 months, and 1 year following trauma exposure. Thirty-one genetic variants from circadian rhythm genes were selected for analyses, and main effect and potential gene*stress and gene*sex interactions were evaluated. Secondary analyses assessed whether associated genetic variants affected mRNA expression levels. We found that six genetic variants across five circadian rhythm-associated genes predicted PTSS outcomes following motor vehicle collision (p < 0.05), but only two of these variants survived adjustment for multiple comparisons (False Discovery Rate < 5%). The strongest of these associations, an interaction between the PAR-zip transcription factor, thyrotroph embryonic factor (TEF) variant rs5758324 and peritraumatic distress, predicted PTSS development in all three cohorts. Further analysis of genetic variants in the genetic region surrounding TEFrs5758324 (±125,000 nucleotides) indicated that this allele showed the strongest association. Further, TEF RNA expression levels (determined via RNA-seq) were positively associated with PTSS severity in distressed individuals with at least one copy of the TEFrs5758324 minor allele. These results suggest that rs5758324 genetic variant in TEF, a regulator of clock-controlled genes and key mediator of the core circadian rhythm, influence PTSS severity in a stress-dependent manner.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States.,Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, United States
| | - Yue Pan
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Matthew C Mauck
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States.,Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, United States
| | - Jenyth Sullivan
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States
| | - Christine Y Zhou
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States
| | - Lindsey Jung
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Cathleen A Rueckeis
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States
| | - Jameson D Blount
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States
| | - Matthew S Carson
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States
| | - Andrew S Tungate
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL, United States
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL, United States
| | | | - Teresa D'Anza
- Albuquerque Sexual Assault Nurse Examiner Collaborative, Albuquerque, NM, United States
| | - Elizabeth Datner
- Department of Emergency Medicine, Albert Einstein Medical Center, Philadelphia, PA, United States
| | - Kathy Bell
- Forensic Nursing Program, Tulsa Police Department, Tulsa, OK, United States
| | - Megan Lechner
- Forensic Nursing Program, Memorial Health System, Colorado Springs, CO, United States
| | - Jeffrey W Shupp
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Georgetown University School of Medicine, Washington, DC, United States
| | - Bruce A Cairns
- Jaycee Burn Center, University of North Carolina, Chapel Hill, NC, United States
| | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC, United States.,Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, United States.,Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
30
|
The Role of Mammalian Glial Cells in Circadian Rhythm Regulation. Neural Plast 2017; 2017:8140737. [PMID: 29435373 PMCID: PMC5757113 DOI: 10.1155/2017/8140737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/19/2017] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of about 24 hours. These rhythms are maintained by an innate genetically determined time-keeping system called the circadian clock. A large number of the proteins involved in the regulation of this clock are transcription factors controlling rhythmic transcription of so-called clock-controlled genes, which participate in a plethora of physiological functions in the organism. In the brain, several areas, besides the suprachiasmatic nucleus, harbor functional clocks characterized by a well-defined time pattern of clock gene expression. This expression rhythm is not restricted to neurons but is also present in glia, suggesting that these cells are involved in circadian rhythmicity. However, only certain glial cells fulfill the criteria to be called glial clocks, namely, to display molecular oscillators based on the canonical clock protein PERIOD, which depends on the suprachiasmatic nucleus for their synchronization. In this contribution, we summarize the current information about activity of the clock genes in glial cells, their potential role as oscillators as well as clinical implications.
Collapse
|
31
|
Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7:2096. [PMID: 28522826 PMCID: PMC5437096 DOI: 10.1038/s41598-017-02152-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls. Our results elucidate the enzymatic mechanism for melatonin deficit in ASD, involving a reduction of both enzyme activities contributing to melatonin synthesis (AANAT and ASMT), observed in the pineal gland as well as in gut and platelets of patients. Further investigations suggest new, post-translational (reduced levels of 14-3-3 proteins which regulate AANAT and ASMT activities) and post-transcriptional (increased levels of miR-451, targeting 14-3-3ζ) mechanisms to these impairments. This study thus gives insights into the pathophysiological pathways involved in ASD.
Collapse
|
32
|
Patients' Experience of Winter Depression and Light Room Treatment. PSYCHIATRY JOURNAL 2017; 2017:6867957. [PMID: 28293623 PMCID: PMC5331315 DOI: 10.1155/2017/6867957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/04/2016] [Indexed: 02/02/2023]
Abstract
Background. There is a need for more knowledge on the effects of light room treatment in patients with seasonal affective disorder and to explore patients' subjective experience of the disease and the treatment. Methods. This was a descriptive and explorative study applying qualitative content analysis. A purposeful sample of 18 psychiatric outpatients with a major depressive disorder with a seasonal pattern and a pretreatment score ≥12 on the 9-item Montgomery-Åsberg Depression self-rating scale was included (10 women and 8 men, aged 24-65 years). All patients had completed light room treatment (≥7/10 consecutive weekdays). Data was collected two weeks after treatment using a semistructured interview guide. Results. Patients described a clear seasonal pattern and a profound struggle to adapt to seasonal changes during the winter, including deterioration in sleep, daily rhythms, energy level, mood, activity, and cognitive functioning. Everyday life was affected with reduced work capacity, social withdrawal, and disturbed relations with family and friends. The light room treatment resulted in a radical and rapid improvement in all the major symptoms with only mild and transient side effects. Discussion. The results indicate that light room treatment is essential for some patients' ability to cope with seasonal affective disorder.
Collapse
|
33
|
Gray LT, Yao Z, Nguyen TN, Kim TK, Zeng H, Tasic B. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex. eLife 2017; 6. [PMID: 28112643 PMCID: PMC5325622 DOI: 10.7554/elife.21883] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex.
Collapse
Affiliation(s)
- Lucas T Gray
- Allen Institute for Brain Science, Seattle, United States
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, United States
| | | | - Tae Kyung Kim
- Allen Institute for Brain Science, Seattle, United States
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, United States
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, United States
| |
Collapse
|
34
|
Amare AT, Schubert KO, Klingler-Hoffmann M, Cohen-Woods S, Baune BT. The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies. Transl Psychiatry 2017; 7:e1007. [PMID: 28117839 PMCID: PMC5545727 DOI: 10.1038/tp.2016.261] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Meta-analyses of genome-wide association studies (meta-GWASs) and candidate gene studies have identified genetic variants associated with cardiovascular diseases, metabolic diseases and mood disorders. Although previous efforts were successful for individual disease conditions (single disease), limited information exists on shared genetic risk between these disorders. This article presents a detailed review and analysis of cardiometabolic diseases risk (CMD-R) genes that are also associated with mood disorders. First, we reviewed meta-GWASs published until January 2016, for the diseases 'type 2 diabetes, coronary artery disease, hypertension' and/or for the risk factors 'blood pressure, obesity, plasma lipid levels, insulin and glucose related traits'. We then searched the literature for published associations of these CMD-R genes with mood disorders. We considered studies that reported a significant association of at least one of the CMD-R genes and 'depression' or 'depressive disorder' or 'depressive symptoms' or 'bipolar disorder' or 'lithium treatment response in bipolar disorder', or 'serotonin reuptake inhibitors treatment response in major depression'. Our review revealed 24 potential pleiotropic genes that are likely to be shared between mood disorders and CMD-Rs. These genes include MTHFR, CACNA1D, CACNB2, GNAS, ADRB1, NCAN, REST, FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4, PPP1R1B, APOE, CRY2, HTR1A, ADRA2A, TCF7L2, MTNR1B and IGF1. A pathway analysis of these genes revealed significant pathways: corticotrophin-releasing hormone signaling, AMPK signaling, cAMP-mediated or G-protein coupled receptor signaling, axonal guidance signaling, serotonin or dopamine receptors signaling, dopamine-DARPP32 feedback in cAMP signaling, circadian rhythm signaling and leptin signaling. Our review provides insights into the shared biological mechanisms of mood disorders and cardiometabolic diseases.
Collapse
Affiliation(s)
- A T Amare
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - K O Schubert
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA, Australia,Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA, Australia
| | - M Klingler-Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - S Cohen-Woods
- School of Psychology, Faculty of Social and Behavioural Sciences, Flinders University, Adelaide, SA, Australia
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA, Australia,Discipline of Psychiatry, School of Medicine, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. E-mail:
| |
Collapse
|
35
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
36
|
Zhao R, Gao X, Zhang T, Li X. Effects of Lycium barbarum. polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:1024-1030. [PMID: 27803791 PMCID: PMC5080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/28/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Type 2 diabetes mellitus (T2DM) is associated with circadian disruption. Our previous experimental results have showed that dietary Lycium barbarum. polysaccharide (LBP-4a) exhibited hypoglycemic and improving insulin resistance (IR) activities. This study was to explore the mechanisms of LBP-4a for improving hyperglycemia and IR by regulating biological rhythms in T2DM rats. MATERIALS AND METHODS The rats of T2DM were prepared by the high-sucrose-fat diets and injection of streptozotocin (STZ). The levels of insulin, leptin and melatonin were measured by enzyme linked immunosorbent assay (ELISA). The effect of LBP-4a on mRNA expression of melatonin receptors (MT2) in epididymal adipose tissue was evaluated by RT-PCR. The expression of CLOCK and BMAL1 in pancreatic islet cells was detected by Western blotting. RESULTS Our data indicated that the 24-hr rhythm of blood glucose appeared to have consistent with normal rats after gavaged administration of LBP-4a for each day of the 4 weeks, and the effects of hypoglycemia and improving hyperinsulinemia in T2DM rats treated at high dose were much better than that at low dose. The mechanisms were related to increasing MT2 level in epididymal adipose tissue and affecting circadian clocks gene expression of CLOCK and BMAL1 in pancreatic islet cells. CONCLUSION LBP-4a administration could treat T2DM rats. These observations provided the background for the further development of LBP-4a as a potential dietary therapeutic agent in the treatment of T2DM.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, Harbin China
| | - Tao Zhang
- School of Basic Medical Sciences, Jiamusi University, No.188 Xuefu Street, Jiamusi City, Heilongjiang Province, China
| | - Xing Li
- Department of Nephrology, Daqing people’s Hospital, No.213 Jianshe Road, Gaoxin District, Daqing City, Heilongjiang Province, China
| |
Collapse
|
37
|
Kovanen L, Donner K, Kaunisto M, Partonen T. CRY1 and CRY2 genetic variants in seasonality: A longitudinal and cross-sectional study. Psychiatry Res 2016; 242:101-110. [PMID: 27267441 DOI: 10.1016/j.psychres.2016.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
Cryptochromes are key components of the circadian clocks that generate and maintain seasonal variations. The aim of our study was to analyze the associations of CRY1 and CRY2 genetic variants with the problematicity of seasonal variations, and whether the problematicity of seasonal variations changed during the follow-up of 11 years. Altogether 21 CRY1 and 16 CRY2 single-nucleotide polymorphisms (SNPs) were genotyped and analyzed in 5910 individuals from a Finnish nationwide population-based sample who had filled in the self-report on the seasonal variations in mood and behavior in the year 2000. In the year 2011, 3356 of these individuals filled in the same self-report on the seasonal variations in mood and behavior. Regression models were used to test whether any of the SNPs associated with the problematicity of seasonal variations or with a change in the problematicity from 2000 to 2011. In the longitudinal analysis, CRY2 SNP rs61884508 was protective from worsening of problematicity of seasonal variations. In the cross-sectional analysis, CRY2 SNP rs72902437 showed evidence of association with problematicity of seasonal variations, as did SNP rs1554338 (in the MAPK8IP1 and downstream of CRY2).
Collapse
Affiliation(s)
- Leena Kovanen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
38
|
Geoffroy PA, Etain B, Lajnef M, Zerdazi EH, Brichant-Petitjean C, Heilbronner U, Hou L, Degenhardt F, Rietschel M, McMahon FJ, Schulze TG, Jamain S, Marie-Claire C, Bellivier F. Circadian genes and lithium response in bipolar disorders: associations with PPARGC1A (PGC-1α) and RORA. GENES BRAIN AND BEHAVIOR 2016; 15:660-8. [DOI: 10.1111/gbb.12306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/01/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- P. A. Geoffroy
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
- Fondation FondaMental; Créteil France
| | - B. Etain
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
- Fondation FondaMental; Créteil France
| | - M. Lajnef
- Inserm U955, Psychiatrie Translationnelle; Créteil France
| | - E-H. Zerdazi
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- AP-HP, Pôle de Psychiatrie, groupe hospitalier Henri Mondor; Créteil France
| | - C. Brichant-Petitjean
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
| | - U. Heilbronner
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University; Munich Germany
| | - L. Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services; Bethesda MD USA
| | - F. Degenhardt
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - M. Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Heidelberg Germany
| | - F. J. McMahon
- Human Genetics Branch, NIMH Intramural Research Program, National Institutes of Health, and; Department of Psychiatry, Johns Hopkins University School of Medicine; Baltimore MD USA
| | - T. G. Schulze
- Institute of Psychiatric Phenomics and Genomics; Ludwig-Maximilians-University; Munich Germany
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health; Mannheim Germany
- Department of Psychiatry and Psychotherapy, University Medical Center; Georg-August-University; Göttingen Germany
| | - S. Jamain
- Fondation FondaMental; Créteil France
- Inserm U955, Psychiatrie Translationnelle; Créteil France
- Université Paris Est, Faculté de Médecine; Créteil France
| | - C. Marie-Claire
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
| | - F. Bellivier
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
- Fondation FondaMental; Créteil France
| |
Collapse
|
39
|
Rajendran B, Janakarajan VN. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study. Indian J Psychiatry 2016; 58:57-60. [PMID: 26985106 PMCID: PMC4776583 DOI: 10.4103/0019-5545.174374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIM Polymorphisms in aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, the key component of circadian clock manifests circadian rhythm abnormalities. As seasonal affective disorder (SAD) is associated with disrupted circadian rhythms, the main objective of this study was to screen an Indian family with SAD for ARNTL gene polymorphisms. MATERIALS AND METHODS In this study, 30 members of close-knit family with SAD, 30 age- and sex-matched controls of the same caste with no prior history of psychiatric illness and 30 age- and sex-matched controls belonging to 17 different castes with no prior history of psychiatric illness were genotyped for five different single nucleotide polymorphisms (SNPs) in ARNTL gene by TaqMan allele-specific genotyping assay. STATISTICAL ANALYSIS Statistical significance was assessed by more powerful quasi-likelihood score test-XM. RESULTS Most of the family members carried the risk alleles and we observed a highly significant SNP rs2279287 (A/G) in ARNTL gene with an allelic frequency of 0.75. CONCLUSIONS Polymorphisms in ARNTL gene disrupt circadian rhythms causing SAD and genetic predisposition becomes more deleterious in the presence of adverse environment.
Collapse
Affiliation(s)
- Bhagya Rajendran
- Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
40
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26878025 PMCID: PMC4750502 DOI: 10.11131/2015/101185] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
41
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015. [PMID: 26878025 DOI: 10.1038/nbt.3121.chip-nexus] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|