1
|
Metabolomics reveal the mechanism for anti-renal fibrosis effects of an n-butanol extract from Amygdalus mongolica. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:437-448. [PMID: 36651545 DOI: 10.2478/acph-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 01/26/2023]
Abstract
To reveal the mechanism of anti-renal fibrosis effects of an n-butanol extract from Amygdalus mongolica, renal fibrosis was induced with unilateral ureteral obstruction (UUO) and then treated with an n-butanol extract (BUT) from Amygdalus mongolica (Rosaceae). Sixty male Sprague-Dawley rats were randomly divided into the sham-operated, renal fibrosis (RF) model, benazepril hydrochloride-treated model (1.5 mg kg-1) and BUT-treated (1.75, 1.5 and 1.25 g kg-1) groups and the respective drugs were administered intragastrically for 21 days. Related biochemical indices in rat serum were determined and histopathological morphology observed. Serum metabolomics was assessed with HPLC-Q-TOF-MS. The BUT reduced levels of blood urea nitrogen, serum creatinine and albumin and lowered the content of malondialdehyde and hydroxyproline in tissues. The activity of superoxide dismutase in tissues was increased and an improvement in the severity of RF was observed. Sixteen possible biomarkers were identified by metabolomic analysis and six key metabolic pathways, including the TCA cycle and tyrosine metabolism, were analyzed. After treatment with the extract, 8, 12 and 9 possible biomarkers could be detected in the high-, medium- and low-dose groups, respectively. Key biomarkers of RF, identified using metabolomics, were most affected by the medium dose. A. mongolica BUT extract displays a protective effect on RF in rats and should be investigated as a candidate drug for the treatment of the disease.
Collapse
|
2
|
Glycogen Storage Disease Phenotypes Accompanying the Perturbation of the Methionine Cycle in NDRG3-Deficient Mouse Livers. Cells 2022; 11:cells11091536. [PMID: 35563842 PMCID: PMC9103136 DOI: 10.3390/cells11091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
N-Myc downstream regulated gene 3 (NDRG3) is a unique pro-tumorigenic member among NDRG family genes, mediating growth signals. Here, we investigated the pathophysiological roles of NDRG3 in relation to cell metabolism by disrupting its functions in liver. Mice with liver-specific KO of NDRG3 (Ndrg3 LKO) exhibited glycogen storage disease (GSD) phenotypes including excessive hepatic glycogen accumulation, hypoglycemia, elevated liver triglyceride content, and several signs of liver injury. They suffered from impaired hepatic glucose homeostasis, due to the suppression of fasting-associated glycogenolysis and gluconeogenesis. Consistently, the expression of glycogen phosphorylase (PYGL) and glucose-6-phosphate transporter (G6PT) was significantly down-regulated in an Ndrg3 LKO-dependent manner. Transcriptomic and metabolomic analyses revealed that NDRG3 depletion significantly perturbed the methionine cycle, redirecting its flux towards branch pathways to upregulate several metabolites known to have hepatoprotective functions. Mechanistically, Ndrg3 LKO-dependent downregulation of glycine N-methyltransferase in the methionine cycle and the resultant elevation of the S-adenosylmethionine level appears to play a critical role in the restructuring of the methionine metabolism, eventually leading to the manifestation of GSD phenotypes in Ndrg3 LKO mice. Our results indicate that NDRG3 is required for the homeostasis of liver cell metabolism upstream of the glucose–glycogen flux and methionine cycle and suggest therapeutic values for regulating NDRG3 in disorders with malfunctions in these pathways.
Collapse
|
3
|
Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, MacInnis RJ, Li SX, Meyer K, Navionis AS, Flicker L, Severi G, English DR, Vineis P, Tell GS, Southey MC, Milne RL, Giles GG. Association of Markers of Inflammation, the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci 2022; 77:826-836. [PMID: 34117761 DOI: 10.1093/gerona/glab163] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is a key feature of aging. We aimed to (i) investigate the association of 34 blood markers potentially involved in inflammatory processes with age and mortality and (ii) develop a signature of "inflammaging." METHODS Thirty-four blood markers relating to inflammation, B vitamin status, and the kynurenine pathway were measured in 976 participants in the Melbourne Collaborative Cohort Study at baseline (median age = 59 years) and follow-up (median age = 70 years). Associations with age and mortality were assessed using linear and Cox regression, respectively. A parsimonious signature of inflammaging was developed and its association with mortality was compared with 2 marker scores calculated across all markers associated with age and mortality, respectively. RESULTS The majority of markers (30/34) were associated with age, with stronger associations observed for neopterin, cystatin C, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), several markers of the kynurenine pathway and derived indices KTR (kynurenine/tryptophan ratio), PAr index (ratio of 4-pyridoxic acid and the sum of pyridoxal 5'-phosphate and pyridoxal), and HK:XA (3-hydroxykynurenine/xanthurenic acid ratio). Many markers (17/34) showed an association with mortality, in particular IL-6, neopterin, C-reactive protein, quinolinic acid, PAr index, and KTR. The inflammaging signature included 10 markers and was strongly associated with mortality (hazard ratio [HR] per SD = 1.40, 95% CI: 1.24-1.57, p = 2 × 10-8), similar to scores based on all age-associated (HR = 1.38, 95% CI: 1.23-1.55, p = 4 × 10-8) and mortality-associated markers (HR = 1.43, 95% CI: 1.28-1.60, p = 1 × 10-10), respectively. Strong evidence of replication of the inflammaging signature association with mortality was found in the Hordaland Health Study. CONCLUSION Our study highlights the key role of the kynurenine pathway and vitamin B6 catabolism in aging, along with other well-established inflammation-related markers. A signature of inflammaging based on 10 markers was strongly associated with mortality.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Norway
| | | | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sherly X Li
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Medical Research Council Epidemiology Unit, University of Cambridge, UK
| | | | - Anne-Sophie Navionis
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia
- WA Centre for Health and Ageing of the University of Western Australia, Perth, Australia
| | - Gianluca Severi
- Centre for Research into Epidemiology and Population Health (CESP), Faculté de Medicine, Université Paris-Saclay, Inserm, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Norway
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Tian SX, Cheng W, Lu JJ, Zhou FM, Ding ZS, Zhu BQ. Role of Militarine in PM 2.5-Induced BV-2 Cell Damage. Neurochem Res 2021; 46:1423-1434. [PMID: 33675461 DOI: 10.1007/s11064-021-03281-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
A growing number of studies have shown that air fine particulate matter (PM2.5) pollution is closely associated with neuroinflammation in humans. Militarine, a glucosyloxybenzyl 2-isobutylmalate compound isolated from Bletilla striata, has been found to exert significant neuroprotective effects. However, the anti-inflammatory, antioxidant and antiapoptotic effects of militarine on PM2.5-stimulated BV-2 microglial cells have not been reported. This study aimed to investigate the protective effects of militarine against PM2.5-induced cytotoxicity and its mechanism in BV-2 microglial cells. Our results revealed that pretreatment with 0.31-1.25 μg/mL militarine reversed the morphological changes caused by PM2.5 and decreased proinflammatory cytokine generation and gene expression in PM2.5-treated BV-2 cells. In particular, tumor necrosis factor-α and interleukin-6 expression was inhibited in a dose-dependent manner. Notably, militarine markedly inhibited the upregulation of Toll-like receptor 4, Toll-like receptor 2, and cyclo-oxygenase-2 expression at both the mRNA and protein levels and reduced NF-κB pathway-associated protein expression. Immunofluorescence analysis showed that militarine suppressed NF-κB activity through inhibiting p65 nuclear translocation. Our data suggested that militarine alleviated neuroinflammation in BV-2 microglial cells, possibly by inhibiting the expression of neuroinflammatory cytokines through the TLR/NF-κB signaling pathway. Additionally, militarine significantly reduced PM2.5-mediated reactive oxygen species (ROS) generation and cell apoptosis and restored the mitochondrial membrane potential (MMP; ΔΨm). Collectively, these findings demonstrate that militarine played a protective role against PM2.5-induced damage in BV-2 cells by exerting anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
Affiliation(s)
- Shu-Xin Tian
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wen Cheng
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Jing Lu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fang-Mei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Brisdelli F, Di Francesco L, Giorgi A, Lizzi AR, Luzi C, Mignogna G, Bozzi A, Schininà ME. Proteomic Analysis of Quercetin-Treated K562 Cells. Int J Mol Sci 2019; 21:ijms21010032. [PMID: 31861640 PMCID: PMC6981597 DOI: 10.3390/ijms21010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Among natural products under investigation for their additive potential in cancer prevention and treatment, the flavonoid quercetin has received attention for its effects on the cell cycle arrest and apoptosis. In the past, we addressed this issue in K562 cells, a cellular model of the human chronic myeloid leukemia. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) proteomics with the aim to increase knowledge on the regulative and metabolic pathways modulated by quercetin in these cells. After 24 h of quercetin treatment, we observed that apoptosis was not completely established, thus we selected this time range to capture quantitative data. As a result, we were able to achieve a robust identification of 1703 proteins, and to measure fold changes between quercetin-treated and untreated cells for 1206 proteins. Through a bioinformatics functional analysis on a subset of 112 proteins, we propose that the apoptotic phenotype of K562 cells entails a significant modulation of the translational machinery, RNA metabolism, antioxidant defense systems, and enzymes involved in lipid metabolism. Finally, we selected eight differentially expressed proteins, validated their modulated expression in quercetin-treated K562 cells, and discussed their possible role in flavonoid cytotoxicity. This quantitative profiling, performed for the first time on this type of tumor cells upon treatment with a flavonoid, will contribute to revealing the molecular basis of the multiplicity of the effects selectively exerted by quercetin on K562 cells.
Collapse
Affiliation(s)
- Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - Laura Di Francesco
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - Carla Luzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - Giuseppina Mignogna
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
| | - Argante Bozzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.R.L.); (C.L.); (A.B.)
| | - M. Eugenia Schininà
- Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy; (L.D.F.); (A.G.); (G.M.)
- Correspondence:
| |
Collapse
|
6
|
L-Cystathionine Protects against Homocysteine-Induced Mitochondria-Dependent Apoptosis of Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1253289. [PMID: 31885769 PMCID: PMC6899331 DOI: 10.1155/2019/1253289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
Abstract
The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.
Collapse
|
7
|
Savio M, Ibrahim MF, Scarlata C, Orgiu M, Accardo G, Sardar AS, Moccia F, Stivala LA, Brusotti G. Anti-Inflammatory Properties of Bellevalia saviczii Root Extract and Its Isolated Homoisoflavonoid ( Dracol) Are Mediated by Modification on Calcium Signaling. Molecules 2019; 24:molecules24183376. [PMID: 31533249 PMCID: PMC6766996 DOI: 10.3390/molecules24183376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/31/2022] Open
Abstract
Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.
Collapse
Affiliation(s)
- Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Mohammed Farhad Ibrahim
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
- Department of Environmental Science, College of Science, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Chiara Scarlata
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Matteo Orgiu
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Giuseppe Accardo
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Abdullah Shakur Sardar
- Department of Biology, College of Education, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Gloria Brusotti
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Gao X, Wu C, He W, Wang X, Li Y, Wang Y, Jia Y, Yuan R, Li H, Zhang B. DosR antigen Rv1737c induces activation of macrophages dependent on the TLR2 pathway. Cell Immunol 2019; 344:103947. [PMID: 31326120 DOI: 10.1016/j.cellimm.2019.103947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
Latent Mycobacterium tuberculosis (Mtb) infection (LTBI) is the main clinical manifestation after Mtb exposure. During the latent phase, Mtb retards the attempts of eradication by the host immune system. The dormancy survival regulator (DosR) is held as essential for Mtb persistence. Rv1737c is predominantly expressed by the Mtb in latent infection. However, the role of Rv1737c in the immune evasion is still largely unknown. In this study, we have characterized the Rv1737c functions in the recruitment and activation of macrophages, which play a cardinal role in the innate and adaptive immunity. For the first time, we have revealed that Rv1737c induced the tolerogenic phenotype of macrophages by upregulating the expression of indoleamine 2,3-dioxygenase 1 (IDO1). Rv1737c-activated macrophages upregulated interleukin (IL)-4, IL-10, and Foxp3 T cells proliferation in vitro. Furthermore, the interaction of Rv1737c with macrophages was found to depend on the Toll-like receptor 2 (TLR2) pathway. It augmented nuclear factor κB (NF-κB) phosphorylation and co-stimulatory molecule expression. Thus, this study provides a crucial insight into a strategy adopted by Mtb to survive in the host by inducing tolerogenic macrophage expansion.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China.
| | - Cong Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wenhua He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yongxiang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Rui Yuan
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Haojie Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties. RICE (NEW YORK, N.Y.) 2017; 10:24. [PMID: 28547736 PMCID: PMC5453916 DOI: 10.1186/s12284-017-0157-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/21/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. RESULTS This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. CONCLUSION Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this metabolite network may occur via additive and synergistic effects between compounds in the food matrix.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Los Baños, 4031 Laguna Philippines
| | - Dustin G. Brown
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Nora Jean Nealon
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Elizabeth P. Ryan
- Department of Environmental & Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| |
Collapse
|
10
|
Lai Y, Fan L, Zhao Y, Ge H, Feng X, Wang Q, Zhang X, Peng Y, Wang X, Tao L. Cx32 suppresses extrinsic apoptosis in human cervical cancer cells via the NF‑κB signalling pathway. Int J Oncol 2017; 51:1159-1168. [PMID: 28902345 DOI: 10.3892/ijo.2017.4106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023] Open
Abstract
Tumour necrosis factor α (TNFα) and TNF‑related apoptosis inducing ligand (TRAIL) usually trigger either survival or apoptosis signals in various cell types, and nuclear factor κB (NF‑κB) is a key factor that regulates their biological effects. Connexin 32 (Cx32) is a gap junction (GJ) protein that plays vital roles in tumourigenesis and tumour progression. Our previous study explored abnormal Cx32 expression in para‑nuclear areas, exacerbated prognostic parameters and suppressed streptonigrin/cisplatin-induced apoptosis in human cervical cancer (CaCx) cells. In this study, we investigated the role of Cx32 in the extrinsic apoptosis pathway of CaCx cells. In transgenic HeLa cells and C-33A cells, Cx32 expression was manipulated using doxycycline or Cx32 siRNA. GJ inhibitors or low density culturing was used to change the status of gap junction intracellular communication (GJIC). We found that apoptosis induced by TNFα and TRAIL was suppressed by Cx32 expression despite the presence or absense of GJIC. We also found that Cx32 upregulated the expression of nuclear NF‑κB and its downstream targets c-IAP1, MMP‑2, and MMP‑9 in HeLa‑Cx32 and C-33A cells. Following our previous study design, our clinical data showed that NF‑κB and MMP‑2 levels increased in human CaCx specimens with high Cx32 expression compared to levels in para‑carcinoma of cervical specimens. SC75741 and JSH-23, NF‑кB signalling pathway inhibitors, inhibited the anti-apoptotic effects of Cx32. In conclusion, Cx32 suppressed TNFα /TRAIL-induced extrinsic apoptosis by upregulating the NF‑κB signalling pathway. This study demonstrates a novel mechanism for Cx32's anti-apoptotic effect and provides a reasonable explanation for the pro-tumour effect of Cx32 in human CaCx cells.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifan Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui Ge
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Xue Feng
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Zhao Y, Lai Y, Ge H, Guo Y, Feng X, Song J, Wang Q, Fan L, Peng Y, Cao M, Harris AL, Wang X, Tao L. Non-junctional Cx32 mediates anti-apoptotic and pro-tumor effects via epidermal growth factor receptor in human cervical cancer cells. Cell Death Dis 2017; 8:e2773. [PMID: 28492539 PMCID: PMC5520707 DOI: 10.1038/cddis.2017.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
The role of connexin proteins (Cx), which form gap junctions (GJ), in progression and chemotherapeutic sensitivity of cervical cancer (CaCx), is unclear. Using cervix specimens (313 CaCx, 78 controls) and CaCx cell lines, we explored relationships among Cx expression, prognostic variables and mechanisms that may link them. In CaCx specimens, Cx32 was upregulated and cytoplasmically localized, and three other Cx downregulated, relative to controls. Cx32 expression correlated with advanced FIGO staging, differentiation and increased tumor size. In CaCx cell lines, Cx32 expression suppressed streptonigrin/cisplatin-induced apoptosis in the absence of functional GJ. In CaCx specimens and cell lines, expression of Cx32 upregulated epidermal growth factor receptor (EGFR) expression. Inhibition of EGFR signaling abrogated the anti-apoptotic effect of Cx32 expression. In conclusion, upregulated Cx32 in CaCx cells produces anti-apoptotic, pro-tumorigenic effects in vivo and vitro. Abnormal Cx32 expression/localization in CaCx appears to be both a mechanism and biomarker of chemotherapeutic resistance.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
- Department of Anesthesiology, Sun Yat-Sen
Memorial Hospital, Sun Yat-Sen University, Guangzhou
510120, China
| | - Yongchang Lai
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Hui Ge
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Yunquan Guo
- Department of Pathology, Xinjiang Medical
University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Xue Feng
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Jia Song
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen
Memorial Hospital, Sun Yat-Sen University, Guangzhou
510120, China
| | - Andrew L Harris
- Department of Pharmacology, Physiology
and Neuroscience, New Jersey Medical School - Rutgers University,
Newark, NJ
07103, USA
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| |
Collapse
|
12
|
H 2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. J Transl Med 2017; 97:268-278. [PMID: 27941756 DOI: 10.1038/labinvest.2016.129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/08/2022] Open
Abstract
This study aimed to determine whether hydrogen sulfide (H2S) inhibits pulmonary arterial endothelial inflammation in rats with monocrotaline (MCT)-induced pulmonary hypertension and its possible mechanisms. Twenty-four male Wistar rats were divided randomly into control, MCT, and MCT+H2S treatment groups. Human pulmonary arterial endothelial cells (HPAEC) were cultured and divided into four groups: control, MCT, MCT+H2S, and H2S. Pulmonary artery pressure was determined using a right cardiac catheterization procedure 3 weeks after MCT administration. Pulmonary vascular morphological changes and inflammatory infiltration were measured. Endogenous H2S levels, cystathionine-γ-lyase (CSE) expression, and inflammatory cytokines were determined both in vivo and in vitro. In addition, phosphorylation of NF-κB p65 and IκBα was detected by western blotting, and NF-κB p65 nuclear translocation, as well as its DNA-binding activity, was determined. Pulmonary hypertension and vascular remolding developed 3 wks after MCT administration, with elevated lung tissue inflammatory infiltration and cytokine level associated with activation of the NF-κB pathway, both in vivo and in vitro. However, the endogenous H2S/CSE pathway was downregulated in MCT rats. By contrast, an H2S donor markedly reduced pulmonary artery pressure, pulmonary vascular structural remolding, and increased lung inflammatory infiltration and cytokine levels of MCT-treated rats. Meanwhile, H2S reversed the activation of the NF-κB pathway successfully. The downregulated pulmonary arterial endothelial H2S/CSE pathway is involved in the pulmonary inflammatory response in MCT-treated pulmonary hypertensive rats. H2S attenuated endothelial inflammation by inhibiting the NF-κB pathway.
Collapse
|
13
|
Kang LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep 2016; 6:27460. [PMID: 27270216 PMCID: PMC4897702 DOI: 10.1038/srep27460] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
Fructose consumption induces metabolic syndrome to increase cardiovascular disease risk. Cinnamaldehyde and allopurinol possess anti-oxidative and anti-inflammatory activity to relieve heart injury in metabolic syndrome. But the mechanisms of fructose-induced cardiac injury, and cardioprotective effects of cinnamaldehyde and allopurinol are not completely understood. In this study, fructose-fed rats displayed metabolic syndrome with elevated serum ox-LDL, cardiac oxidative stress, inflammation and fibrosis. Scavenger receptor CD36, Toll-like receptor 4 (TLR4), TLR6, IL-1R-associated kinase 4/1 (IRAK4/1), nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, interleukin-1β, transforming growth factor-β (TGF-β), drosophila mothers against DPP homolog (Smad) 2/3 phosphorylation and Smad4 were increased in animal and H9c2 cell models. These pathological processes were further evaluated in ox-LDL or fructose-exposed H9c2 cells pretreated with ROS scavenger and CD36 specific inhibitor, or IRAK1/4 inhibitor, and transfected with CD36, NLRP3, or IRAK4/1 siRNA, demonstrating that NLPR3 inflammasome activation through CD36-mediated TLR4/6-IRAK4/1 signaling may promote cardiac inflammation and fibrosis. Cinnamaldehyde and allopurinol reduced cardiac oxidative stress to suppress NLPR3 inflammasome activation and TGF-β/Smads signaling by inhibiting CD36-mediated TLR4/6-IRAK4/1 signaling under fructose induction. These results suggest that the blockage of CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation by cinnamaldehyde and allopurinol may protect against fructose-induced cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Chun-Hua Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Jian-Hua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Jia-Hui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|