1
|
Thomas A, Meraldi P. Centrosome age breaks spindle size symmetry even in cells thought to divide symmetrically. J Cell Biol 2024; 223:e202311153. [PMID: 39012627 PMCID: PMC11252449 DOI: 10.1083/jcb.202311153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 07/17/2024] Open
Abstract
Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.
Collapse
Affiliation(s)
- Alexandre Thomas
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Lakshmi RB, Nayak P, Raz L, Sarkar A, Saroha A, Kumari P, Nair VM, Kombarakkaran DP, Sajana S, M G S, Agasti SS, Paul R, Ben-David U, Manna TK. CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments. EMBO Rep 2024; 25:1909-1935. [PMID: 38424231 PMCID: PMC11014917 DOI: 10.1038/s44319-024-00106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.
Collapse
Affiliation(s)
- R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Pinaki Nayak
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Apurba Sarkar
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - S Sajana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sanusha M G
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Raja Paul
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
3
|
Jaunky DB, Larocque K, Husser MC, Liu JT, Forgione P, Piekny A. Characterization of a recently synthesized microtubule-targeting compound that disrupts mitotic spindle poles in human cells. Sci Rep 2021; 11:23665. [PMID: 34880347 PMCID: PMC8655040 DOI: 10.1038/s41598-021-03076-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity. We also found that C75 inhibited microtubule polymerization and competed with colchicine for tubulin-binding in vitro. However, here we found that the two compounds synergized suggesting differences in their mechanism of action. Indeed, live imaging revealed that C75 causes different spindle phenotypes compared to colchicine. Spindles remained bipolar and collapsed after colchicine treatment, while C75 caused bipolar spindles to become multipolar. Importantly, microtubules rapidly disappeared after C75-treatment, but then grew back unevenly and from multiple poles. The C75 spindle phenotype is reminiscent of phenotypes caused by depletion of ch-TOG, a microtubule polymerase, suggesting that C75 blocks microtubule polymerization in metaphase cells. C75 also caused an increase in the number of spindle poles in paclitaxel-treated cells, and combining low amounts of C75 and paclitaxel caused greater regression of multicellular tumour spheroids compared to each compound on their own. These findings warrant further exploration of C75’s anti-cancer potential.
Collapse
Affiliation(s)
| | - Kevin Larocque
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Mathieu C Husser
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Jiang Tian Liu
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Stojic L, Lun AT, Mangei J, Mascalchi P, Quarantotti V, Barr AR, Bakal C, Marioni JC, Gergely F, Odom DT. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res 2018; 46:5950-5966. [PMID: 29860520 PMCID: PMC6093183 DOI: 10.1093/nar/gky437] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Loss-of-function (LOF) methods such as RNA interference (RNAi), antisense oligonucleotides or CRISPR-based genome editing provide unparalleled power for studying the biological function of genes of interest. However, a major concern is non-specific targeting, which involves depletion of transcripts other than those intended. Little work has been performed to characterize the off-target effects of these common LOF methods at the whole-transcriptome level. Here, we experimentally compared the non-specific activity of RNAi, antisense oligonucleotides and CRISPR interference (CRISPRi). All three methods yielded non-negligible off-target effects in gene expression, with CRISPRi also exhibiting strong clonal effects. As an illustrative example, we evaluated the performance of each method for determining the role of an uncharacterized long noncoding RNA (lncRNA). Several LOF methods successfully depleted the candidate lncRNA but yielded different sets of differentially expressed genes as well as a different cellular phenotype upon depletion. Similar discrepancies between methods were observed with a protein-coding gene (Ch-TOG/CKAP5) and another lncRNA (MALAT1). We suggest that the differences between methods arise due to method-specific off-target effects and provide guidelines for mitigating such effects in functional studies. Our recommendations provide a framework with which off-target effects can be managed to improve functional characterization of genes of interest.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Jasmin Mangei
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Patrice Mascalchi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Valentina Quarantotti
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alexis R Barr
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
5
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|
6
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Williams E, Moore J, Li SW, Rustici G, Tarkowska A, Chessel A, Leo S, Antal B, Ferguson RK, Sarkans U, Brazma A, Salas REC, Swedlow JR. The Image Data Resource: A Bioimage Data Integration and Publication Platform. Nat Methods 2017; 14:775-781. [PMID: 28775673 PMCID: PMC5536224 DOI: 10.1038/nmeth.4326] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Resource describes the Image Data Resource (IDR), a prototype online system for biological image data that links experimental and analytic data across multiple data sets and promotes image data sharing and reanalysis. Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR). IDR links data from several imaging modalities, including high-content screening, multi-dimensional microscopy and digital pathology, with public genetic or chemical databases and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable reanalysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open-source platform for publishing imaging data. Thus IDR provides an online resource and a software infrastructure that promotes and extends publication and reanalysis of scientific image data.
Collapse
Affiliation(s)
- Eleanor Williams
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Josh Moore
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK
| | - Simon W Li
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK
| | - Gabriella Rustici
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK
| | - Aleksandra Tarkowska
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK
| | - Anatole Chessel
- Pharmacology & Genetics Departments and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.,LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, Palaiseau, France
| | - Simone Leo
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK.,Center for Advanced Studies, Research, and Development in Sardinia (CRS4), Pula(CA), Italy
| | - Bálint Antal
- Pharmacology & Genetics Departments and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Richard K Ferguson
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK
| | - Ugis Sarkans
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Rafael E Carazo Salas
- Pharmacology & Genetics Departments and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.,School of Cell and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jason R Swedlow
- Centre for Gene Regulation & Expression & Division of Computational Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
8
|
Xiao YX, Yang WX. KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 2016; 7:48656-48670. [PMID: 27102297 PMCID: PMC5217046 DOI: 10.18632/oncotarget.8799] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/10/2016] [Indexed: 01/10/2023] Open
Abstract
The kinesin motor KIFC1 has been suggested as a potential chemotherapy target due to its critical role in clustering of the multiple centrosomes found in cancer cells. In this regard, KIFC1 seems to be non-essential in normal somatic cells which usually possess only two centrosomes. Moreover, KIFC1 is also found to initiatively drive tumor malignancy and metastasis by stabilizing a certain degree of genetic instability, delaying cell cycle and protecting cancer cell surviving signals. However, that KIFC1 also plays roles in other specific cell types complicates the question of whether it is a promising chemotherapy target for cancer treatment. For example, KIFC1 is found functionally significant in vesicular and organelle trafficking, spermiogenesis, oocyte development, embryo gestation and double-strand DNA transportation. In this review we summarize a recent collection of information so as to provide a generalized picture of ideas and mechanisms against and in favor of KIFC1 as a chemotherapy target. And we also drew the conclusion that KIFC1 is a promising chemotherapy target for some types of cancers, because the side-effects of inhibiting KIFC1 mentioned in this review are theoretically easy to avoid, while KIFC1 is functionally indispensable during mitosis and malignancy of multi-centrosome cancer cells. Further investigations of how KIFC1 is regulated throughout the mitosis in cancer cells are needed for the understanding of the pathways where KIFC1 is involved and for further exploitation of indirect KIFC1 inhibitors.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Yu JX, Chen Q, Yu YQ, Li SQ, Song JF. Upregulation of colonic and hepatic tumor overexpressed gene is significantly associated with the unfavorable prognosis marker of human hepatocellular carcinoma. Am J Cancer Res 2016; 6:690-700. [PMID: 27152245 PMCID: PMC4851847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023] Open
Abstract
Colonic hepatic tumor overexpressed gene (ch-TOG), a member of the highly conserved XMAP215 family of microtubule-associated proteins (MAPs), plays a crucial role in bipolar mitotic spindle assembly. Here, we performed proof-of-principle studies targeting ch-TOG for the development of HCC and further compared its prognostic significance with the clinicopathologic features of HCC. Quantitative real-time PCR was used to measure the expression level of ch-TOG mRNA in 207 cases of paired HCC and adjacent noncancerous liver tissues (ANLT). Additionally, immunohistochemistry was employed to identify ch-TOG protein in 71 HCC tissues. All HCC patients were divided into two groups according to the expression level of ch-TOG. Cumulative progression-free survival (PFS) and overall survival (OS) curves were estimated using the Kaplan-Meier method, and the prognostic value of ch-TOG was further evaluated using the Cox proportional hazards regression model. Our studies suggested that ch-TOG is overexpressed in HCC tissues compared with ANLT. The ch-TOG level was correlated with other prognostic factors, including the hepatitis B surface antigen (HBsAg) (p = 0.030), median size (p = 0.008), clinical tumor-node-metastasis (TNM) stage (p = 0.002), and alpha-fetoprotein (AFP) level (p = 0.030). Kaplan-Meier survival analysis showed that increased ch-TOG was associated with reduced PFS (p = 0.002) and OS (p = 0.004). Multivariate Cox proportional hazards analysis identified ch-TOG as an independent prognostic factor for the PFS (hazard ratio [HR] = 1.479, 95% confidence interval [CI] = 1.028-2.127, p = 0.035) and OS (HR = 1.609, 95% CI = 1.114-2.325, p = 0.011) of the HCC patients. Increased ch-TOG represents a powerful marker for predicting poorer prognosis in the clinical management of HCC, and may serve as a potential molecular target for HCC therapies in the future.
Collapse
Affiliation(s)
- Jun-Xiong Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Guilin Medical UniversityGuilin 541199, Guangxi, People’s Republic of China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Ya-Qun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Shu-Qun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Jian-Fei Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guilin Medical UniversityGuilin 541199, Guangxi, People’s Republic of China
| |
Collapse
|