1
|
Shi K, Wang B, Dou L, Wang S, Fu X, Yu H. Integrated bioinformatics analysis of the transcription factor-mediated gene regulatory networks in the formation of spermatogonial stem cells. Front Physiol 2022; 13:949486. [PMID: 36569748 PMCID: PMC9773208 DOI: 10.3389/fphys.2022.949486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background: In vitro induction of spermatogonial stem cells (SSCs) from embryonic stem cells (ESCs) provides a promising tool for the treatment of male infertility. A variety of molecules are involved in this complex process, which needs to be further clarified. Undoubtedly, the increased knowledge of SSC formation will be beneficial to facilitate the currently complex induction process. Methods: Based on ATAC-seq, DNase-seq, RNA-seq, and microarray data from GEO datasets, chromatin property data (ATAC-seq, DNase-seq) and gene expression data (RNA-seq, microarray data) were combined to search for SSC-specific transcription factors (TFs) and hub SSC-specific genes by using the WGCNA method. Then, we applied RNA-seq and microarray data screening for key SSC-specific TFs and constructed key SSC-specific TF-mediated gene regulatory networks (GRNs) using ChIP-seq data. Results: First, after analysis of the ATAC-seq and DNase-seq data of mouse ESCs, primordial germ cells (PGCs), and SSCs, 33 SSC-specific TFs and 958 targeting genes were obtained. RNA-seq and WGCNA revealed that the key modules (turquoise and red) were the most significantly related to 958 SSC-specific genes, and a total of 10 hub SSC-specific genes were identified. Next, when compared with the cell-specific TFs in human ESCs, PGCs, and SSCs, we obtained five overlapping SSC-specific TF motifs, including the NF1 family TF motifs (NFIA, NFIB, NFIC, and NFIX), GRE, Fox:Ebox, PGR, and ARE. Among these, Nfib and Nfix exhibited abnormally high expression levels relative to mouse ESCs and PGCs. Moreover, Nfib and Nfix were upregulated in the testis sample with impaired spermatogenesis when compared with the normal group. Finally, the ChIP-seq data results showed that NFIB most likely targeted the hub SSC-specific genes of the turquoise module (Rpl36al, Rps27, Rps21, Nedd8, and Sec61b) and the red module (Vcam1 and Ccl2). Conclusion: Our findings preliminarily revealed cell-specific TFs and cell-specific TF-mediated GRNs in the process of SSC formation. The hub SSC-specific genes and the key SSC-specific TFs were identified and suggested complex network regulation, which may play key roles in optimizing the induction efficiency of the differentiation of ESCs into SSCs in vitro.
Collapse
|
2
|
Cep215 is essential for morphological differentiation of astrocytes. Sci Rep 2020; 10:17000. [PMID: 33046744 PMCID: PMC7550586 DOI: 10.1038/s41598-020-72728-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022] Open
Abstract
Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specific subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological differentiation of astrocytes. Cep215 was specifically localized at the glial processes as well as centrosomes in developing astrocytes. Morphological differentiation of astrocytes was suppressed in the Cep215-deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confirm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specification. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte differentiation.
Collapse
|
3
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
4
|
Pajtler KW, Wei Y, Okonechnikov K, Silva PBG, Vouri M, Zhang L, Brabetz S, Sieber L, Gulley M, Mauermann M, Wedig T, Mack N, Imamura Kawasawa Y, Sharma T, Zuckermann M, Andreiuolo F, Holland E, Maass K, Körkel-Qu H, Liu HK, Sahm F, Capper D, Bunt J, Richards LJ, Jones DTW, Korshunov A, Chavez L, Lichter P, Hoshino M, Pfister SM, Kool M, Li W, Kawauchi D. YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nat Commun 2019; 10:3914. [PMID: 31477715 PMCID: PMC6718408 DOI: 10.1038/s41467-019-11884-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation. Chromatin immunoprecipitation-sequencing analyses of human YAP1-MAMLD1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, suggesting a role for these transcription factors in YAP1-MAMLD1-driven tumorigenesis. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAMLD1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors. The molecular mechanisms driving proliferation in the pediatric brain cancer epdendymoma are poorly understood. Here the authors show that a YAP1- MAMLD1 fusion drives tumor formation in mice and show that the fusion protein can collaborate with the TEAD and NFI transcription factors.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Yiju Wei
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Patricia B G Silva
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mikaella Vouri
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lei Zhang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Sebastian Brabetz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Laura Sieber
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Melissa Gulley
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Monika Mauermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tatjana Wedig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Norman Mack
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.,Department of Pharmacology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Tanvi Sharma
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Marc Zuckermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, Ste. Anne Hospital, 75014, Paris, France
| | - Eric Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kendra Maass
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Huiqin Körkel-Qu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - David Capper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - David T W Jones
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Lukas Chavez
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Wei Li
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Department of Biochemistry and Molecular Biology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany. .,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L, Gronostajski RM, Richards LJ, Piper M. Combined allelic dosage of Nfia and Nfib regulates cortical development. Brain Neurosci Adv 2017; 1:2398212817739433. [PMID: 32166136 PMCID: PMC7058261 DOI: 10.1177/2398212817739433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of Nfia and Nfib would culminate in more severe defects in the cerebral cortex than loss of a single member. Methods: We combined immunofluorescence, co-immunoprecipitation, gene expression analysis and immunohistochemistry on knockout mouse models to investigate whether nuclear factor I A and nuclear factor I B function similarly and whether increasing allelic loss of Nfia and Nfib caused a more severe phenotype. Results: We determined that the biological functions of nuclear factor I A and nuclear factor I B overlap during early cortical development. These proteins are co-expressed and can form heterodimers in vivo. Differentially regulated genes that are shared between Nfia and Nfib knockout mice are highly enriched for nuclear factor I binding sites in their promoters and are associated with neurodevelopment. We found that compound heterozygous deletion of both genes resulted in a cortical phenotype similar to that of single homozygous Nfia or Nfib knockout embryos. This was characterised by retention of the interhemispheric fissure, dysgenesis of the corpus callosum and a malformed dentate gyrus. Double homozygous knockout of Nfia and Nfib resulted in a more severe phenotype, with increased ventricular enlargement and decreased numbers of differentiated glia and neurons. Conclusion: In the developing cerebral cortex, nuclear factor I A and nuclear factor I B share similar biological functions and function additively, as the combined allelic loss of these genes directly correlates with the severity of the developmental brain phenotype.
Collapse
Affiliation(s)
- Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason M Osinski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan Wc Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunan Ye
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R O'Connor
- School of Chemical and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Transcriptional regulation of Nfix by NFIB drives astrocytic maturation within the developing spinal cord. Dev Biol 2017; 432:286-297. [PMID: 29106906 DOI: 10.1016/j.ydbio.2017.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/15/2023]
Abstract
During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown. Here, we reveal that ventricular zone progenitor cells within the spinal cord express NFIX after the onset of NFIA and NFIB expression, and after the gliogenic switch has occurred. Mice lacking NFIX exhibit normal neurogenesis within the spinal cord, and, while early astrocytic differentiation proceeds normally, aspects of terminal astrocytic differentiation are impaired. Finally, we report that, in the absence of Nfia or Nfib, there is a marked reduction in the spinal cord expression of NFIX, and that NFIB can transcriptionally activate Nfix expression in vitro. These data demonstrate that NFIX is part of the downstream transcriptional program through which NFIA and NFIB coordinate gliogenesis within the spinal cord. This hierarchical organisation of NFI protein expression and function during spinal cord gliogenesis reveals a previously unrecognised auto-regulatory mechanism within this gene family.
Collapse
|
8
|
Chen KS, Harris L, Lim JWC, Harvey TJ, Piper M, Gronostajski RM, Richards LJ, Bunt J. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol 2017; 525:2465-2483. [PMID: 28295292 DOI: 10.1002/cne.24206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int J Mol Sci 2016; 17:349. [PMID: 27005616 PMCID: PMC4813210 DOI: 10.3390/ijms17030349] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 02/05/2023] Open
Abstract
Abnormal osteoclast formation and resorption play a fundamental role in osteoporosis pathogenesis. Over the past two decades, much progress has been made to target osteoclasts. The existing therapeutic drugs include bisphosphonates, hormone replacement therapy, selective estrogen receptor modulators, calcitonin and receptor activator of nuclear factor NF-κB ligand (RANKL) inhibitor (denosumab), etc. Among them, bisphosphonates are most widely used due to their low price and high efficiency in reducing the risk of fracture. However, bisphosphonates still have their limitations, such as the gastrointestinal side-effects, osteonecrosis of the jaw, and atypical subtrochanteric fracture. Based on the current situation, research for new drugs to regulate bone resorption remains relevant. MicroRNAs (miRNAs) are a new group of small, noncoding RNAs of 19–25 nucleotides, which negatively regulate gene expression after transcription. Recent studies discovered miRNAs play a considerable function in bone remodeling by regulating osteoblast and osteoclast differentiation and function. An increasing number of miRNAs have been identified to participate in osteoclast formation, differentiation, apoptosis, and resorption. miRNAs show great promise to serve as biomarkers and potential therapeutic targets for osteoporosis. In this review, we will summarize our current understanding of how miRNAs regulate osteoclastogenesis and function. We will further discuss the approach to develop drugs for osteoporosis based on these miRNA networks.
Collapse
|
10
|
The Multiple Roles of Microrna-223 in Regulating Bone Metabolism. Molecules 2015; 20:19433-48. [PMID: 26512640 PMCID: PMC6332311 DOI: 10.3390/molecules201019433] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs) are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.
Collapse
|