1
|
Development of Synthetic DNA Circuit and Networks for Molecular Information Processing. NANOMATERIALS 2021; 11:nano11112955. [PMID: 34835719 PMCID: PMC8625377 DOI: 10.3390/nano11112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Deoxyribonucleic acid (DNA), a genetic material, encodes all living information and living characteristics, e.g., in cell, DNA signaling circuits control the transcription activities of specific genes. In recent years, various DNA circuits have been developed to implement a wide range of signaling and for regulating gene network functions. In particular, a synthetic DNA circuit, with a programmable design and easy construction, has become a crucial method through which to simulate and regulate DNA signaling networks. Importantly, the construction of a hierarchical DNA circuit provides a useful tool for regulating gene networks and for processing molecular information. Moreover, via their robust and modular properties, DNA circuits can amplify weak signals and establish programmable cascade systems, which are particularly suitable for the applications of biosensing and detecting. Furthermore, a biological enzyme can also be used to provide diverse circuit regulation elements. Currently, studies regarding the mechanisms and applications of synthetic DNA circuit are important for the establishment of more advanced artificial gene regulation systems and intelligent molecular sensing tools. We therefore summarize recent relevant research progress, contributing to the development of nanotechnology-based synthetic DNA circuits. By summarizing the current highlights and the development of synthetic DNA circuits, this paper provides additional insights for future DNA circuit development and provides a foundation for the construction of more advanced DNA circuits.
Collapse
|
2
|
Huang D, Yang C, Yao Y, Li J, Guo C, Chen J, Zhang Y, Yang S, Yang Q, Tang Y. Versatile and Homogeneous DNA Tetraplex Platform for Constructing Label‐Free Logic Devices: From Design to Application. Chemistry 2019; 25:6996-7003. [PMID: 30933378 DOI: 10.1002/chem.201900734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Huang
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Chunrong Yang
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Ye Yao
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Jicheng Li
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Chen Guo
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Jianchi Chen
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Yi Zhang
- Department West China School of PharmacySichuan University Chengdu 610064 P.R. China
| | - Shu Yang
- Department West China School of PharmacySichuan University Chengdu 610064 P.R. China
| | - Qianfan Yang
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Yalin Tang
- National Laboratory for Molecular SciencesCentre for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable, and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
3
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
4
|
Yang S, Yang C, Huang D, Song L, Chen J, Yang Q. Recent Progress in Fluorescence Signal Design for DNA-Based Logic Circuits. Chemistry 2019; 25:5389-5405. [PMID: 30328639 DOI: 10.1002/chem.201804420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Indexed: 01/06/2023]
Abstract
DNA-based logic circuits, encoding algorithms in DNA and processing information, are pushing the frontiers of molecular computers forward, owing to DNA's advantages of stability, accessibility, manipulability, and especially inherent biological significance and potential medical application. In recent years, numerous logic functions, from arithmetic to nonarithmetic, have been realized based on DNA. However, DNA can barely provide a detectable signal by itself, so that the DNA-based circuits depend on extrinsic signal actuators. The signal strategy of carrying out a response is becoming one of the design focuses in DNA-based logic circuit construction. Although work on sequence and structure design for DNA-based circuits has been well reviewed, the strategy on signal production lacks comprehensive summary. In this review, we focused on the latest designs of fluorescent output for DNA-based logic circuits. Several basic strategies are summarized and a few designs for developing multi-output systems are provided. Finally, some current difficulties and possible opportunities were also discussed.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunrong Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Dan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lingbo Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jianchi Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qianfan Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Zhong W, Tang W, Tan Y, Fan J, Huang Q, Zhou D, Hong W, Liu Y. A DNA arithmetic logic unit for implementing data backtracking operations. Chem Commun (Camb) 2019; 55:842-845. [DOI: 10.1039/c8cc08441f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A data backtracking operation was successfully realized by adding redundant modules to the circuit, greatly improving the system reliability.
Collapse
Affiliation(s)
- Weiye Zhong
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Weiyang Tang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yun Tan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qichen Huang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Danli Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Weimin Hong
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
6
|
Zhang S, Wang K, Li KB, Chen F, Shi W, Jia WP, Zhang J, Han DM. A label-free and universal platform for the construction of an odd/even detector for decimal numbers based on graphene oxide and DNA-stabilized silver nanoclusters. NANOSCALE 2017; 9:11912-11919. [PMID: 28786459 DOI: 10.1039/c7nr03670a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular logic devices with different functions can perform various tasks in the areas of biological molecule detection, disease diagnosis, multivariate analysis, and bioimaging. Herein, a series of logic circuits based on silver nanoclusters (AgNCs)/graphene oxide (GO) are constructed to execute nonarithmetic functions, including 3-, 4-, and 5-bit odd/even checking. The resulting devices can differentiate between even and odd decimal numbers in the range from 0 to 31. Moreover, the devices can be expanded to operate with wider ranges of numbers when more inputs are added. The signal reporter is structured using AgNCs and GO, preventing laborious modification of biomolecules. The designed DNA-based logic nanodevices share the same DNA platform and a constant threshold value, showing great potential for application in information processing at the molecular level. Additionally, these devices can stably carry out their logic operations in a biological matrix, indicating that the AgNC/GO-based system can operate in a complicated biological environment. Given the biocompatibility and design flexibility of DNA, this study provides novel outcomes towards the development of label-free intelligent nanodevices. This may open a new path for the application of AgNCs/GO in molecular logic circuits and fluorescence imaging.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Phapale D, Ghosh R, Das D. Solvent- and DNA-Controlled Phototriggered Linkage Isomerization in a Ruthenium Sulfoxide Complex Incorporating Dipyrido[3,2-a:2′,3′-c]phenazine (dppz). Inorg Chem 2017; 56:6310-6317. [DOI: 10.1021/acs.inorgchem.7b00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daulat Phapale
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga,
Mumbai 400019, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Dipanwita Das
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga,
Mumbai 400019, India
| |
Collapse
|
8
|
Ravan H, Amandadi M, Esmaeili-Mahani S. DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. Anal Chem 2017; 89:6021-6028. [PMID: 28459545 DOI: 10.1021/acs.analchem.7b00607] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the analytical application of logical nanodevices has attracted much attention for making accurate decisions on molecular diagnosis. Herein, a DNA domino-based nanoscale logic circuit has been constructed by integrating three logic gates (AND-AND-YES) for simultaneous analysis of multiple nucleic acid biomarkers. In the first AND gate, a chimeric target DNA comprising of four biomarkers was hybridized to three biomarker-specific oligonucleotides (TRs) via their 5'-end regions and to a capture probe-magnetic microparticle. After harvesting the complex, 3' overhang regions of the TRs were labeled with three distinct monolayer double-stranded (ds) DNA-gold nanoparticles (DNA-AuNPs). Upon gleaning the complex and addition of initiator oligonucleotide, a series of toehold-mediated strand displacement reactions, which are reminiscent of a domino chain, spontaneously occurred between the confined dsDNAs on the nanoparticles' surface in the second AND gate. The output of the second gate entered into the last gate and triggered an exponential hairpin assembly to form four-way junction nanostructures. The resulting nanostructures bear split parts of DNAzyme at each end of the four arms which, in the presence of hemin, form catalytic hemin/G-quadruplex DNAzymes with peroxidase activity. The smart biosensor has exhibited a turn-on signal when all biomarkers are present in the sample. In fact, should any of the biomarkers be nonexistent, the signal remains turned-off. The biosensor can detect the biomarkers with a LOD value of 100 aM and a noticeable capability to discriminate single-nucleotide substitutions.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman , Kerman, Iran 7616914111
| |
Collapse
|
9
|
Foo M, Kim J, Sawlekar R, Bates DG. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes. Comput Chem Eng 2017; 99:145-157. [PMID: 28392606 PMCID: PMC5362158 DOI: 10.1016/j.compchemeng.2017.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.
Collapse
Affiliation(s)
- Mathias Foo
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Jongrae Kim
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Rucha Sawlekar
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Declan G Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
Zhang S, Wang K, Huang C, Li Z, Sun T, Han DM. An enzyme-free and resettable platform for the construction of advanced molecular logic devices based on magnetic beads and DNA. NANOSCALE 2016; 8:15681-15688. [PMID: 27524500 DOI: 10.1039/c6nr04762a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of multiple logic circuits based on magnetic beads and DNA are constructed to perform resettable nonarithmetic functions, including a digital comparator, 4-to-2 encoder and 2-to-3 decoder, 2-to-1 encoder and 1-to-2 decoder. The signal reporter is composed of a G-quadruplex/NMM complex and a AuNP-surface immobilized molecular beacon. It is the first time that the designed DNA-based nonarithmetic nanodevices can share the same DNA platform with a reset function, which has great potential application in information processing at the molecular level. Another novel feature of the designed system is that the developed nanodevices are operated on a simple DNA/magnetic bead platform and share a constant threshold setpoint without the assistance of any negative logic conversion. The reset function is realized by heating the output system and the magnetic separation of the computing modules. Due to the biocompatibility and design flexibility of DNA, these investigations may provide a new route towards the development of resettable advanced logic circuits in biological and biomedical fields.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| | - Kun Wang
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Congcong Huang
- Department of Food Engineering, Shandong Business Institute, Yantai, 264670, China
| | - Zhenyu Li
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| |
Collapse
|
11
|
Fratto BE, Lewer JM, Katz E. An Enzyme-Based Half-Adder and Half-Subtractor with a Modular Design. Chemphyschem 2016; 17:2210-7. [PMID: 27037520 DOI: 10.1002/cphc.201600173] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 01/01/2023]
Abstract
A half-adder and a half-subtractor have been realized using enzymatic reaction cascades performed in a flow cell device. The individual cells were modified with different enzymes and assembled in complex networks to perform logic operations and arithmetic functions. The modular design of the logic devices allowed for easy re-configuration, enabling them to perform various functions. The final output signals, represented by redox species [Fe(CN)6 ](3-/4-) or NADH/NAD(+) , were analyzed optically to derive the calculation results. These output signals might be applicable in the future for actuation processes, for example, substance release activated by logically processed signals.
Collapse
Affiliation(s)
- Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Jessica M Lewer
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
12
|
An iridium(III) complex as a versatile platform for molecular logic gates: an integrated full subtractor and 1:2 demultiplexer. Anal Bioanal Chem 2016; 408:7077-83. [DOI: 10.1007/s00216-016-9443-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 02/02/2023]
|