1
|
Wang Y, Hu S, Han C. A Simple and Efficient Procedure for Developing Mouse Germline Stem Cell Lines with Gene Knock-in via CRISPR/Cas9 Technology. Curr Protoc 2024; 4:e70002. [PMID: 39264143 DOI: 10.1002/cpz1.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Cultured mammalian spermatogonial stem cells (SSCs), also known as germline stem cells (GSCs), hold great promise for applications such as fertility preservation, gene therapy, and animal breeding, particularly in conjunction with accurate gene editing. Although the in vitro development of mouse GSC (mGSC) lines, and gene-targeting procedures for such lines, were initially established about two decades ago, it remains challenging for beginners to efficiently accomplish these tasks, partly because mGSCs proliferate more slowly and are more resistant to lipid-mediated gene transfection than pluripotent stem cells (PSCs). Meanwhile, methods for mGSC culture and gene editing have been evolving constantly to become simpler and more efficient. Here, we describe how to develop mGSC lines from small mouse testis samples and how to carry out gene knock-in in these cells using CRISPR/Cas9 technology, detailing three basic protocols that constitute a streamlined procedure. Using these simple and efficient procedures, site-specific knock-in mGSC lines can be obtained in 3 months. We hope that these protocols will help researchers use genetically modified GSCs to explore scientific questions of interest and to accumulate experience for application to GSC research in other mammalian species. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Establishment of mouse GSCs lines from small testicular samples Basic Protocol 2: Preparation of plasmids for gene knock-in using the CRISPR/Cas9 system Basic Protocol 3: Establishment of gene knock-in mGSC lines by electroporation gene delivery.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shuaitao Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Choi W, Wu H, Yserentant K, Huang B, Cheng Y. Efficient tagging of endogenous proteins in human cell lines for structural studies by single-particle cryo-EM. Proc Natl Acad Sci U S A 2023; 120:e2302471120. [PMID: 37487103 PMCID: PMC10401002 DOI: 10.1073/pnas.2302471120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
CRISPR/Cas9-based genome engineering has revolutionized our ability to manipulate biological systems, particularly in higher organisms. Here, we designed a set of homology-directed repair donor templates that enable efficient tagging of endogenous proteins with affinity tags by transient transfection and selection of genome-edited cells in various human cell lines. Combined with technological advancements in single-particle cryogenic electron microscopy, this strategy allows efficient structural studies of endogenous proteins captured in their native cellular environment and during different cellular processes. We demonstrated this strategy by tagging six different human proteins in both HEK293T and Jurkat cells. Moreover, analysis of endogenous glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in HEK293T cells allowed us to follow its behavior spatially and temporally in response to prolonged oxidative stress, correlating the increased number of oxidation-induced inactive catalytic sites in GAPDH with its translocation from cytosol to nucleus.
Collapse
Affiliation(s)
- Wooyoung Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
| | - Hao Wu
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
| | - Klaus Yserentant
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA94158
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
- HHMI, University of California, San Francisco, CA94143
| |
Collapse
|
3
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
4
|
Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system. 3 Biotech 2021; 11:90. [PMID: 33520576 DOI: 10.1007/s13205-021-02648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to rapidly and efficiently insert target DNA sequences into predetermined genomic sites in Saccharomyces cerevisiae. In this study, we designed two technical routes for gene insertion in the S. cerevisiae genome based on the CRISPR/Cas9 system, and a CRISPR array was inserted into the Amp site and the crRNA site of the pCRCT plasmid, respectively. The CRISPR array consists of a 100 bp donor sequence, the target gene and guide sequence. A 100 bp donor sequence was designed to have two 50 bp homology arms flanking the Cas9 cutting site and incorporate 8 bp or 1000 bp deletions including the PAM sequence, where the target gene was also inserted. The results showed that using only one pCRCTG plasmid and a 100 bp dsDNA mutagenizing homologous recombination donor, we can successfully insert a 2.9 kb gene fragment at the target site of the S. cerevisiae genome. However, inserting the CRISPR array into the crRNA site has a higher recombination efficiency than inserting into the Amp site. This recombination strategy represents a powerful tool for creating yeast strains with target gene inserts.
Collapse
|
5
|
Ishiuchi T, Ohishi H, Sato T, Kamimura S, Yorino M, Abe S, Suzuki A, Wakayama T, Suyama M, Sasaki H. Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Rep 2020; 27:1742-1754.e6. [PMID: 31067460 DOI: 10.1016/j.celrep.2019.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022] Open
Abstract
Placental development is a key event in mammalian reproduction and embryogenesis. However, the molecular basis underlying placental development is not fully understood. Here, we conduct a forward genetic screen to identify regulators for extraembryonic development and identify Zfp281 as a key factor. Zfp281 overexpression in mouse embryonic stem cells facilitates the induction of trophoblast stem-like cells. Zfp281 is preferentially expressed in the undifferentiated trophoblast stem cell population in an FGF-dependent manner, and disruption of Zfp281 in mice causes severe defects in early placental development. Consistently, Zfp281-depleted trophoblast stem cells exhibit defects in maintaining the transcriptome and differentiation capacity. Mechanistically, Zfp281 interacts with MLL or COMPASS subunits and occupies the promoters of its target genes. Importantly, ZNF281, the human ortholog of this factor, is required to stabilize the undifferentiated status of human trophoblast stem cells. Thus, we identify Zfp281 as a conserved factor for the maintenance of trophoblast stem cell plasticity.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Kamimura
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masayoshi Yorino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Li Y, Li W, Zhou Q. Haploid pluripotent stem cells: twofold benefits with half the effort in genetic screening and reproduction. Curr Opin Genet Dev 2020; 64:6-12. [PMID: 32563751 DOI: 10.1016/j.gde.2020.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
Haploid pluripotent stem cells, which are capable of self-renewal and differentiation into other cell types with only one set of chromosomes, have been established in several species from haploid embryos. Compared with diploid embryonic stem cells (ESCs), haploid embryonic stem cells (haESCs) are smaller in size, have a prolonged metaphase, and undergo self-doubling during culture. The monoallelic expression of haESCs provides great convenience for recessive inheritance research. Genetically modified haESCs also provide benefits in replacement of the gamete genomes, which not only facilitates the study of the function of imprinted genes but also potentially removes barriers to same-sex reproduction. In this review, we focus on strategies for obtaining haESCs and their potential applications in genetic screening, genomic imprinting, and unisexual reproduction.
Collapse
Affiliation(s)
- Yufei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Safier LZ, Zuccaro MV, Egli D. Efficient SNP editing in haploid human pluripotent stem cells. J Assist Reprod Genet 2020; 37:735-745. [PMID: 32162131 PMCID: PMC7183036 DOI: 10.1007/s10815-020-01723-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To correct a potentially damaging mutation in haploid human embryonic stem cells. METHODS Exome sequencing was performed on DNA extracted from parthenogenetically derived embryonic stem cell line (pES12). An SLC10A2 gene mutation, which affects bile acid transport, was chosen as mutation of interest in this proof of concept study to attempt correction in human pluripotent haploid cells. Confirmation of the mutation was verified, and guide RNA and a correction template was designed in preparation of performing CRISPR. Haploid cells underwent serial fluorescence activated cell sorting (FACS) with Hoechst 33342 to create an increasingly haploid (1n) enriched culture. Nucleofection was performed on p. 37 and then cells were sorted for 1n DNA content with +GFP to identify the haploid cells that expressed Cas9 tagged with GFP. RESULTS 104,686 haploid GFP + cells were collected. Cells were cultured, individual colonies picked, and 48 clones were sent for Sanger sequencing. CRIPSR efficiency was 77.1%, with 7/48 (14.6%) clones resulting in a corrected SLC10A2 mutation. Confirmation of persistence of haploid cells was achieved with repeated FACS sorting and centromere quantification. Given the large number of passages and exposure to CRISPR, we also performed analysis of karyotypes and of off-target effects. Cells evaluated were karyotypically normal and there was no evident off target effects. CONCLUSIONS CRISPR/Cas9 can be effectively utilized to edit mutations in haploid human embryonic stem cells. Establishment and maintenance of a haploid cell culture provides a novel way to utilize CRISPR/Cas9 in gene editing, particularly in the study of recessive alleles.
Collapse
Affiliation(s)
- Lauren Zakarin Safier
- Department of Obstetrics and Gynecology and Columbia University Fertility Center, Columbia University, College of Physicians & Surgeons, New York, NY 10032 USA
- Present Address: Island Fertility, Stony Brook Medicine, 500 Commack Road, Suite 202, Commack, NY 11725 USA
| | - Michael V Zuccaro
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032 USA
| | - Dietrich Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY USA
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032 USA
| |
Collapse
|
8
|
Kimura Y, Shofuda T, Higuchi Y, Nagamori I, Oda M, Nakamori M, Onodera M, Kanematsu D, Yamamoto A, Katsuma A, Suemizu H, Nakano T, Kanemura Y, Mochizuki H. Human Genomic Safe Harbors and the Suicide Gene-Based Safeguard System for iPSC-Based Cell Therapy. Stem Cells Transl Med 2019; 8:627-638. [PMID: 30887735 PMCID: PMC6591650 DOI: 10.1002/sctm.18-0039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
The use of human induced pluripotent stem cells (hiPSCs) and recent advances in cell engineering have opened new prospects for cell‐based therapy. However, there are concerns that must be addressed prior to their broad clinical applications and a major concern is tumorigenicity. Suicide gene approaches could eliminate wayward tumor‐initiating cells even after cell transplantation, but their efficacy remains controversial. Another concern is the safety of genome editing. Our knowledge of human genomic safe harbors (GSHs) is still insufficient, making it difficult to predict the influence of gene integration on nearby genes. Here, we showed the topological architecture of human GSH candidates, AAVS1, CCR5, human ROSA26, and an extragenic GSH locus on chromosome 1 (Chr1‐eGSH). Chr1‐eGSH permitted robust transgene expression, but a 2 Mb‐distant gene within the same topologically associated domain showed aberrant expression. Although knockin iPSCs carrying the suicide gene, herpes simplex virus thymidine kinase (HSV‐TK), were sufficiently sensitive to ganciclovir in vitro, the resulting teratomas showed varying degrees of resistance to the drug in vivo. Our findings suggest that the Chr1‐eGSH is not suitable for therapeutic gene integration and highlight that topological analysis could facilitate exploration of human GSHs for regenerative medicine applications. Our data indicate that the HSV‐TK/ganciclovir suicide gene approach alone may be not an adequate safeguard against the risk of teratoma, and suggest that the combination of several distinct approaches could reduce the risks associated with cell therapy. stem cells translational medicine2019;8:627&638
Collapse
Affiliation(s)
- Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tomoko Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yuichiro Higuchi
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Ippei Nagamori
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaaki Oda
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masayuki Nakamori
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Atsuyo Yamamoto
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Asako Katsuma
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toru Nakano
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Gao Q, Zhang W, Ma L, Li X, Wang H, Li Y, Freimann R, Yu Y, Shuai L, Wutz A. Derivation of Haploid Neural Stem Cell Lines by Selection for a Pax6-GFP Reporter. Stem Cells Dev 2019; 27:479-487. [PMID: 29471728 DOI: 10.1089/scd.2017.0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Haploid cells facilitate genetic screening of recessive mutations for a single set of chromosomes. Haploid embryonic stem cells (haESCs) have been achieved in several species and widely utilized in genetic screens. The fact that haESCs undergo substantial diploidization during differentiation has limited the screening to other haploid cell types. In this study, we report a method to establish haploid neural stem cells (haNSCs) by selection for a Pax6 reporter. We inserted a green fluorescence protein (GFP) marker gene by homologous recombination into the Pax6 locus of an haESC line. GFP-positive haploid cells could be sorted and further cultured in the NSC medium for more than 30 passages. The established haNSCs expressed neural lineage markers and could differentiate into neurons, oligodendroglia, and astrocytes. Our study shows the feasibility of deriving haploid proliferative somatic cell lines using a genetically encoded reporter that suggest a system for genetic screening of neural and retinal development.
Collapse
Affiliation(s)
- Qian Gao
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China .,2 Reproductive Medical Center, Department of Gynecology and Obstetrics, Peking University Third Hospital , Beijing, China
| | - Wenhao Zhang
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Lifang Ma
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Xu Li
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Haisong Wang
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Yanni Li
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Remo Freimann
- 3 Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich , Zurich, Switzerland
| | - Yang Yu
- 2 Reproductive Medical Center, Department of Gynecology and Obstetrics, Peking University Third Hospital , Beijing, China
| | - Ling Shuai
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Anton Wutz
- 3 Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich , Zurich, Switzerland
| |
Collapse
|
10
|
Gurumurthy CB, Perez-Pinera P. Technological advances in integrating multi-kilobase DNA sequences into genomes. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Li Y, Li X, Wang H, Gao Q, Zhang J, Zhang W, Zhang Z, Li L, Yu Y, Shuai L. CRISPR/Cas9-edited Pax6-GFP reporter system facilitates the generation of mouse neural progenitor cells during differentiation. J Genet Genomics 2018; 45:277-280. [PMID: 29803732 DOI: 10.1016/j.jgg.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Yanni Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Haisong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China; Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Zhisong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yang Yu
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China.
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Sessions JW, Armstrong DG, Hope S, Jensen BD. A review of genetic engineering biotechnologies for enhanced chronic wound healing. Exp Dermatol 2018; 26:179-185. [PMID: 27574909 DOI: 10.1111/exd.13185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/29/2022]
Abstract
Traditional methods for addressing chronic wounds focus on correcting dysfunction by controlling extracellular elements. This review highlights technologies that take a different approach - enhancing chronic wound healing by genetic modification to wound beds. Featured cutaneous transduction/transfection methods include viral modalities (ie adenoviruses, adeno-associated viruses, retroviruses and lentiviruses) and conventional non-viral modalities (ie naked DNA injections, microseeding, liposomal reagents, particle bombardment and electroporation). Also explored are emerging technologies, focusing on the exciting capabilities of wound diagnostics such as pyrosequencing as well as site-specific nuclease editing tools such as CRISPR-Cas9 used to both transiently and permanently genetically modify resident wound bed cells. Additionally, new non-viral transfection methods (ie conjugated nanoparticles, multi-electrode arrays, and microfabricated needles and nanowires) are discussed that can potentially facilitate more efficient and safe transgene delivery to skin but also represent significant advances broadly to tissue regeneration research.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - David G Armstrong
- Southern Arizona Limb Salvage Alliance (SALSA), University of Arizona, Tucson, AZ, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
13
|
Kesavan G, Hammer J, Hans S, Brand M. Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9. Cell Tissue Res 2018; 372:41-50. [DOI: 10.1007/s00441-018-2798-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022]
|
14
|
Horn M, Kroef V, Allmeroth K, Schuller N, Miethe S, Peifer M, Penninger JM, Elling U, Denzel MS. Unbiased compound-protein interface mapping and prediction of chemoresistance loci through forward genetics in haploid stem cells. Oncotarget 2018. [PMID: 29515774 PMCID: PMC5839405 DOI: 10.18632/oncotarget.24305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Forward genetic screens in haploid mammalian cells have recently emerged as powerful tools for the discovery and investigation of recessive traits. Use of the haploid system provides unique genetic tractability and resolution. Upon positive selection, these screens typically employ analysis of loss-of-function (LOF) alleles and are thus limited to non-essential genes. Many relevant compounds, including anti-cancer therapeutics, however, target essential genes, precluding positive selection of LOF alleles. Here, we asked whether the use of random and saturating chemical mutagenesis might enable screens that identify essential biological targets of toxic compounds. We compare and contrast chemical mutagenesis with insertional mutagenesis. Selecting mutagenized cells with thapsigargin, an inhibitor of the essential Ca2+ pump SERCA2, insertional mutagenesis retrieved cell clones overexpressing SERCA2. With chemical mutagenesis, we identify six single amino acid substitutions in the known SERCA2-thapsigargin binding interface that confer drug resistance. In a second screen, we used the anti-cancer drug MG132/bortezomib (Velcade), which inhibits proteasome activity. Using chemical mutagenesis, we found 7 point mutations in the essential subunit Psmb5 that map to the bortezomib binding surface. Importantly, 4 of these had previously been identified in human tumors with acquired bortezomib resistance. Insertional mutagenesis did not identify Psmb5 in this screen, demonstrating the unique ability of chemical mutagenesis to identify relevant point mutations in essential genes. Thus, chemical mutagenesis in haploid embryonic stem cells can define the interaction of toxic small molecules with essential proteins at amino acid resolution, fully mapping small molecule-protein binding interfaces.
Collapse
Affiliation(s)
- Moritz Horn
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Nicole Schuller
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Stephan Miethe
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne D-50931, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty University of Cologne, Cologne D-50931, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Martin S Denzel
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany.,CECAD-Cluster of Excellence University of Cologne, Cologne D-50931, Germany
| |
Collapse
|
15
|
Gapinske M, Tague N, Winter J, Underhill GH, Perez-Pinera P. Targeted Gene Knock Out Using Nuclease-Assisted Vector Integration: Hemi- and Homozygous Deletion of JAG1. Methods Mol Biol 2018; 1772:233-248. [PMID: 29754232 DOI: 10.1007/978-1-4939-7795-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene editing technologies are revolutionizing fields such as biomedicine and biotechnology by providing a simple means to manipulate the genetic makeup of essentially any organism. Gene editing tools function by introducing double-stranded breaks at targeted sites within the genome, which the host cells repair preferentially by Non-Homologous End Joining. While the technologies to introduce double-stranded breaks have been extensively optimized, this progress has not been matched by the development of methods to integrate heterologous DNA at the target sites or techniques to detect and isolate cells that harbor the desired modification. We present here a technique for rapid introduction of vectors at target sites in the genome that enables efficient isolation of successfully edited cells.
Collapse
Affiliation(s)
- Michael Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nathan Tague
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jackson Winter
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Abstract
Haploid cells are excellent tools to study gene function as they contain a single copy of the genome and are thus unable to mask the effect of mutations. Recently, haploid embryonic stem cells, which are capable of self-renewal and potentially differentiating into other cell types despite having only one set of chromosomes, have been established in several species. These unique haploid cells allow us to seek recessive gene functions in mammals, and have had a profound influence on the field of genetic screening and drug target identification. In this review, we briefly introduce advances and breakthroughs in haploid cell line research and broadly discuss the versatile application thereof.
Collapse
Affiliation(s)
- Yanni Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, College of Pharmacy, Tianjin, 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, College of Pharmacy, Tianjin, 300350, China.
| |
Collapse
|
17
|
Ishizu T, Higo S, Masumura Y, Kohama Y, Shiba M, Higo T, Shibamoto M, Nakagawa A, Morimoto S, Takashima S, Hikoso S, Sakata Y. Targeted Genome Replacement via Homology-directed Repair in Non-dividing Cardiomyocytes. Sci Rep 2017; 7:9363. [PMID: 28839205 PMCID: PMC5571012 DOI: 10.1038/s41598-017-09716-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023] Open
Abstract
Although high-throughput sequencing can elucidate the genetic basis of hereditary cardiomyopathy, direct interventions targeting pathological mutations have not been established. Furthermore, it remains uncertain whether homology-directed repair (HDR) is effective in non-dividing cardiomyocytes. Here, we demonstrate that HDR-mediated genome editing using CRISPR/Cas9 is effective in non-dividing cardiomyocytes. Transduction of adeno-associated virus (AAV) containing sgRNA and repair template into cardiomyocytes constitutively expressing Cas9 efficiently introduced a fluorescent protein to the C-terminus of Myl2. Imaging-based sequential evaluation of endogenously tagged protein revealed that HDR occurs in cardiomyocytes, independently of DNA synthesis. We sought to repair a pathological mutation in Tnnt2 in cardiomyocytes of cardiomyopathy model mice. An sgRNA that avoided the mutated exon minimized deleterious effects on Tnnt2 expression, and AAV-mediated HDR achieved precise genome correction at a frequency of ~12.5%. Thus, targeted genome replacement via HDR is effective in non-dividing cardiomyocytes, and represents a potential therapeutic tool for targeting intractable cardiomyopathy.
Collapse
Affiliation(s)
- Takamaru Ishizu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasuaki Kohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mikio Shiba
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masato Shibamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Akito Nakagawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Sachio Morimoto
- Department of Health and Medical Care, International University of Health and Welfare, Okawa, Fukuoka, 831-8501, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I. CRISPR/Cas9: Transcending the Reality of Genome Editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624197 PMCID: PMC5415201 DOI: 10.1016/j.omtn.2017.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the expansion of the microbiology field of research, a new genome editing tool arises from the biology of bacteria that holds the promise of achieving precise modifications in the genome with a simplicity and versatility that surpasses previous genome editing methods. This new technique, commonly named CRISPR/Cas9, led to a rapid expansion of the biomedical field; more specifically, cancer characterization and modeling have benefitted greatly from the genome editing capabilities of CRISPR/Cas9. In this paper, we briefly summarize recent improvements in CRISPR/Cas9 design meant to overcome the limitations that have arisen from the nuclease activity of Cas9 and the influence of this technology in cancer research. In addition, we present challenges that might impede the clinical applicability of CRISPR/Cas9 for cancer therapy and highlight future directions for designing CRISPR/Cas9 delivery systems that might prove useful for cancer therapeutics.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania
| | - Amin Hajitou
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alina-Andreea Zimta
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania
| | - Pierre Cordelier
- Cancer Research Center of Toulouse, Université Fédérale Toulouse Midi-Pyrénéées, Université Toulouse III Paul Sabatier, INSERM, 31100 Toulouse, France.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta," Cluj-Napoca, Cluj 400015, Romania
| |
Collapse
|
19
|
Cooper DJ, Zunino G, Bixby JL, Lemmon VP. Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration. Mol Cell Neurosci 2017; 80:161-169. [PMID: 27444126 PMCID: PMC5243932 DOI: 10.1016/j.mcn.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 12/13/2022] Open
Abstract
High-throughput, target-based screening techniques have been utilized extensively for drug discovery in the past several decades. However, the need for more predictive in vitro models of in vivo disease states has generated a shift in strategy towards phenotype-based screens. Phenotype based screens are particularly valuable in studying complex conditions such as CNS injury and degenerative disease, as many factors can contribute to a specific cellular response. In this review, we will discuss different screening frameworks and their relative utility in examining mechanisms of neurodegeneration and axon regrowth, particularly in cell-based in vitro disease models.
Collapse
Affiliation(s)
- Daniel J. Cooper
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Giulia Zunino
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - John L. Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
- Center for Computational Science, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| |
Collapse
|
20
|
Sessions JW, Skousen CS, Price KD, Hanks BW, Hope S, Alder JK, Jensen BD. CRISPR-Cas9 directed knock-out of a constitutively expressed gene using lance array nanoinjection. SPRINGERPLUS 2016; 5:1521. [PMID: 27652094 PMCID: PMC5017990 DOI: 10.1186/s40064-016-3037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022]
Abstract
Background CRISPR-Cas9 genome editing and labeling has emerged as an important tool in biologic research, particularly in regards to potential transgenic and gene therapy applications. Delivery of CRISPR-Cas9 plasmids to target cells is typically done by non-viral methods (chemical, physical, and/or electrical), which are limited by low transfection efficiencies or with viral vectors, which are limited by safety and restricted volume size. In this work, a non-viral transfection technology, named lance array nanoinjection (LAN), utilizes a microfabricated silicon chip to physically and electrically deliver genetic material to large numbers of target cells. To demonstrate its utility, we used the CRISPR-Cas9 system to edit the genome of isogenic cells. Two variables related to the LAN process were tested which include the magnitude of current used during plasmid attraction to the silicon lance array (1.5, 4.5, or 6.0 mA) and the number of times cells were injected (one or three times). Results Results indicate that most successful genome editing occurred after injecting three times at a current control setting of 4.5 mA, reaching a median level of 93.77 % modification. Furthermore, we found that genome editing using LAN follows a non-linear injection-dose response, meaning samples injected three times had modification rates as high as nearly 12 times analogously treated single injected samples. Conclusions These findings demonstrate the LAN’s ability to deliver genetic material to cells and indicate that successful alteration of the genome is influenced by a serial injection method as well as the electrical current settings.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Craig S Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Kevin D Price
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Brad W Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Jonathan K Alder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| |
Collapse
|
21
|
Abstract
Haploid cells contain one set of chromosomes and are amenable for genetic analyses. In mammals, haploidy exists only in gametes. An intriguing question is whether haploid cells can be derived from gametes. Recently, by application of haploid cell enrichment using fluorescence-activated cell sorting, stable haploid embryonic stem cells (haESCs) have been successfully derived from oocyte-derived parthenogenetic and sperm-derived androgenetic embryos from several species. Whilst both parthenogenetic and androgenetic (AG)-haESCs enable whole-genome genetic screening at the cellular level, such as screening of drug resistance or disease-related genes, AG-haESCs, after intracytoplasmic injection into oocytes, can also be used to produce alive semi-cloned mice. Nevertheless, one major drawback associated with wild-type AG-haESCs is the very low birth rate of healthy semi-cloned mice. Of interest, after inhibiting the expression of two paternally imprinted genes (H19 and Gtl2) in AG-haESCs by removal of their differentially DNA methylated regions, double-knockout AG-haESCs can efficiently and stably support the generation of healthy semi-cloned pups. Importantly, double-knockout AG-haESCs are feasible for multiple genetic manipulations, followed by efficient generation of semi-cloned mice carrying multiple genetic traits; thus they could be used to validate candidate loci that have been identified in genome-wide association studies of multigenic diseases by generation of mouse models carrying multiple alterations. Of note, by combining a CRISPR-Cas9 library and double-knockout AG-haESCs, semi-cloned mice carrying different mutant genes can be efficiently generated in one step, enabling functional mutagenic screening in mice. HaESCs, therefore, provide a powerful tool for genetic analyses in mammals at both the cellular and organismal levels.
Collapse
Affiliation(s)
- M Bai
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Y Wu
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
| | - J Li
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
22
|
Jin LF, Li JS. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 37:205-13. [PMID: 27469251 PMCID: PMC4975102 DOI: 10.13918/j.issn.2095-8137.2016.4.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches.
Collapse
Affiliation(s)
- Li-Fang Jin
- College of Life Science of Shaoxing University, Shaoxing Zhejiang 312000, China;State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China;Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.
| | - Jin-Song Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China;Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| |
Collapse
|
23
|
Brown A, Woods WS, Perez-Pinera P. Multiplexed Targeted Genome Engineering Using a Universal Nuclease-Assisted Vector Integration System. ACS Synth Biol 2016; 5:582-8. [PMID: 27159246 DOI: 10.1021/acssynbio.6b00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineered nucleases are capable of efficiently modifying complex genomes through introduction of targeted double-strand breaks. However, mammalian genome engineering remains limited by low efficiency of heterologous DNA integration at target sites, which is typically performed through homologous recombination, a complex, ineffective and costly process. In this study, we developed a multiplexable and universal nuclease-assisted vector integration system for rapid generation of gene knock outs using selection that does not require customized targeting vectors, thereby minimizing the cost and time frame needed for gene editing. Importantly, this system is capable of remodeling native mammalian genomes through integration of DNA, up to 50 kb, enabling rapid generation and screening of multigene knockouts from a single transfection. These results support that nuclease assisted vector integration is a robust tool for genome-scale gene editing that will facilitate diverse applications in synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Alexander Brown
- Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Wendy S Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Sessions JW, Hanks BW, Lindstrom DL, Hope S, Jensen BD. Transient Low-Temperature Effects on Propidium Iodide Uptake in Lance Array Nanoinjected HeLa Cells. J Nanotechnol Eng Med 2016. [DOI: 10.1115/1.4033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding environmental factors relative to transfection protocols is key for improving genetic engineering outcomes. In the following work, the effects of temperature on a nonviral transfection procedure previously described as lance array nanoinjection are examined in context of molecular delivery of propidium iodide (PI), a cell membrane impermeable nucleic acid dye, to HeLa 229 cells. For treatment samples, variables include varying the temperature of the injection solution (3C and 23C) and the magnitude of the pulsed voltage used during lance insertion into the cells (+5 V and +7 V). Results indicate that PI is delivered at levels significantly higher for samples injected at 3C as opposed to 23C at four different postinjection intervals (t = 0, 3, 6, 9 mins; p-value ≤ 0.005), reaching a maximum value of 8.3 times the positive control for 3 C/7 V pulsed samples. Suggested in this work is that between 3 and 6 mins postinjection, a large number of induced pores from the injection event close. While residual levels of PI still continue to enter the treatment samples after 6 mins, it occurs at decreased levels, suggesting from a physiological perspective that many lance array nanoinjection (LAN) induced pores have closed, some are still present.
Collapse
Affiliation(s)
- John W. Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| | - Brad W. Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| | - Dallin L. Lindstrom
- Department of Exercise Science, Brigham Young University, Provo, UT 84602 e-mail:
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 e-mail:
| | - Brian D. Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| |
Collapse
|
25
|
An L, Hu Y, Chang S, Zhu X, Ling P, Zhang F, Liu J, Liu Y, Chen Y, Yang L, Presicce GA, Du F. Efficient generation of FVII gene knockout mice using CRISPR/Cas9 nuclease and truncated guided RNAs. Sci Rep 2016; 6:25199. [PMID: 27139777 PMCID: PMC4853708 DOI: 10.1038/srep25199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of 5'-end truncated CRISPR RNA-guided Cas9 nuclease (tru-RGN, 17/18 nucleotides) on genome editing capability in NIH/3T3 cells, and its efficiencies on generating Factor VII (FVII) gene-knockout (KO) mice. In cultured cells, RGNs on-target editing activity had been varied when gRNAs was truncated, higher at Site Two (tF7-2 vs. F7-2, 49.5 vs. 30.1%) while lower in other two sites (Site One, tF7-1 vs.F7-1, 12.1 vs. 23.6%; Site Three, tF7-3 vs.F7-3, 7.7 vs 10.9%) (P < 0.05). Out of 15 predicated off-target sites, tru-RGNs showed significantly decreased frequencies at 5 sites. By microinjecting tru-RGN RNAs into zygotes, FVII KO mice were generated with higher efficiency at Site Two (80.1 vs. 35.8%) and Site One (55.0 vs 3.7%) (P < 0.05), but not at Site three (39.4 vs 27.8%) (P > 0.05) when compared with standard RGN controls. Knockout FVII mice demonstrated a delayed prothrombin time and decreased plasma FVII expression. Our study first demonstrates that truncated gRNAs to 18 complementary nucleotides and Cas9 nucleases, can effectively generate FVII gene KO mice with a significantly higher efficiency in a site-dependent manner. In addition, the off-target frequency was much lower in KO mice than in cell lines via RGN expression vector-mediated genome editing.
Collapse
Affiliation(s)
- Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Yeshu Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Shiwei Chang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Xiumei Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Pingping Ling
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Fenli Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Jiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Yanhong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Yexiang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
| | - Lan Yang
- Lannuo Biotechnologies Wuxi Inc., Wuxi 214000, P R China
| | | | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, P R China
- Renova Life, Inc., College Park, Maryland 20742, USA
| |
Collapse
|
26
|
Abstract
Image-based screening is used to measure a variety of phenotypes in cells and whole organisms. Combined with perturbations such as RNA interference, small molecules, and mutations, such screens are a powerful method for gaining systematic insights into biological processes. Screens have been applied to study diverse processes, such as protein-localization changes, cancer cell vulnerabilities, and complex organismal phenotypes. Recently, advances in imaging and image-analysis methodologies have accelerated large-scale perturbation screens. Here, we describe the state of the art for image-based screening experiments and delineate experimental approaches and image-analysis approaches as well as discussing challenges and future directions, including leveraging CRISPR/Cas9-mediated genome engineering.
Collapse
Affiliation(s)
- Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Christina Laufer
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Genome Editing Using Mammalian Haploid Cells. Int J Mol Sci 2015; 16:23604-14. [PMID: 26437403 PMCID: PMC4632716 DOI: 10.3390/ijms161023604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For example, CRISPR/Cas was used in haploid ESCs to generate multiple knockouts and large deletions at high efficiency. In addition, genome-wide screening is facilitated by haploid cell lines containing gene knockout libraries.
Collapse
|