1
|
Philibert M, Milea D. Basics, benefits, and pitfalls of pupillometers assessing visual function. Eye (Lond) 2024; 38:2415-2421. [PMID: 38802485 PMCID: PMC11306737 DOI: 10.1038/s41433-024-03151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Numerous commercially and non-commercially available pupillometers are nowadays able to assess various biological functions in humans, by evaluating pupils' dynamics in response to specific stimuli. However, the use of pupillometers for ophthalmic afferent evaluations (i.e., photoreceptoral responses) in real-world settings is relatively limited. Recent scientific and technological advances, coupled with artificial intelligence methods have improved the performance of such devices to objectively detect, quantify, and classify functional disturbances of the retina and the optic nerve. This review aims to summarize the scientific principles, indications, outcomes, and current limitations of pupillometry used for evaluation of afferent pathways in ophthalmic clinical settings.
Collapse
Affiliation(s)
| | - Dan Milea
- Rothschild Foundation Hospital, Paris, France.
- Copenhagen University Hospital, Copenhagen, Denmark.
- Singapore National Eye Centre, Singapore, Singapore.
- Angers University Hospital, Angers, France.
- Duke-NUS Medical School, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| |
Collapse
|
2
|
Maloca PM, Carvalho ER, Hasler PW, Balaskas K, Inglin N, Petzold A, Egan C, Tufail A, Scholl HPN, Valmaggia P. Dynamic volume-rendered optical coherence tomography pupillometry. Acta Ophthalmol 2021; 100:654-664. [PMID: 34750988 DOI: 10.1111/aos.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To assess intrapupillary space (IPS) changes in healthy subjects with regard to decreased iris motility in patients with pseudoexfoliation glaucoma (PEXG) or non-arteritic anterior ischaemic optic neuropathy (NAION) in a feasibility study in a clinical environment. METHODS Scotopic and photopic IPS measurements using three-dimensionally rendered swept-source optical coherence tomography (SS-OCT) data were obtained and compared for all subjects. Intrapupillary space (IPS) parameters were evaluated such as absolute volumetric differences, relative light response for volumetric ratios and pupillary ejection fraction (PEF) for functional contraction measurements. RESULTS From a total of 122 IPS from 66 subjects, 106 IPS were eligible for comparison providing values for 72 normal, 30 PEXG and 4 NAION eyes. In healthy, PEXG and NAION subjects, scotopic overall mean IPS was 8.90, 3.45 and 4.16 mm3 , and photopic overall mean IPS was 0.87, 0.74 and 1.13 mm3 , respectively. Three-dimensional contractility showed a mean absolute difference of 8.03 mm3 for normals (defined as 100% contractility), 2.72 mm3 for PEXG (33.88% of normal) and 3.03 mm3 for NAION (38.50% of normal) with a relative light response ratio between scotopic and photopic volumes of 10.26 (100%), 4.69 (45.70%) and 3.67 (35.78%), respectively. Pupillary ejection fraction (PEF) showed a contractile pupillary emptying of 88.11% for normals, 76.92% for PEXG and 70.91% for NAION patients. CONCLUSION This 3D pupillometry OCT assessment allows for quantitative measurements of pupil function, contractility and response to light. More specifically, PEF is presented as a potential (neuro)-pupillary outcome measure that could be useful in the monitoring of ophthalmic disorders that affect pupillary function.
Collapse
Affiliation(s)
- Peter M. Maloca
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
- Moorfields Eye Hospital London UK
| | | | - Pascal W. Hasler
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
| | | | - Nadja Inglin
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
| | - Axel Petzold
- Moorfields Eye Hospital London UK
- National Hospital for Neurology and Neurosurgery UCLH & UCL Institute of Neurology Queen Square London UK
- Dutch Expertise Centre Neuro‐ophthalmology Amsterdam UMC The Netherlands
| | | | | | - Hendrik P. N. Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
| | - Philippe Valmaggia
- Institute of Molecular and Clinical Ophthalmology Basel (IOB) Basel Switzerland
- OCTlab Department of Ophthalmology University Hospital Basel Basel Switzerland
- Department of Ophthalmology University of Basel Basel Switzerland
| |
Collapse
|
3
|
Pinheiro HM, da Costa RM. Pupillary light reflex as a diagnostic aid from computational viewpoint: A systematic literature review. J Biomed Inform 2021; 117:103757. [PMID: 33826949 DOI: 10.1016/j.jbi.2021.103757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/06/2023]
Abstract
This work presents a detailed and complete review of publications on pupillary light reflex (PLR) used to aid diagnoses. These are computational techniques used in the evaluation of pupillometry, as well as their application in computer-aided diagnoses (CAD) of pathologies or physiological conditions that can be studied by observing the movements of miosis and mydriasis of the human pupil. A careful survey was carried out of all studies published over the last 10 years which investigated, electronic devices, recording protocols, image treatment, computational algorithms and the pathologies related to PLR. We present the frontier of existing knowledge regarding methods and techniques used in this field of knowledge, which has been expanding due to the possibility of performing diagnoses with high precision, at a low cost and with a non-invasive method.
Collapse
|
4
|
Kawasaki A, Udry M, El Wardani M, Münch M. Can Extra Daytime Light Exposure Improve Well-Being and Sleep? A Pilot Study of Patients With Glaucoma. Front Neurol 2021; 11:584479. [PMID: 33519670 PMCID: PMC7843442 DOI: 10.3389/fneur.2020.584479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
Glaucoma damages retinal ganglion cells, including intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells modulate various non-visual physiological and psychological functions which are modulated by light. In patients with glaucoma, we assessed the effect of daily bright light exposure (LE) on several melanopsin-dependent functions, such as the pupil constriction, circadian rest-activity cycles, sleep and subjective well-being including relaxation, alertness and mood. Twenty patients participated in the study (9 women, 11 men, mean age = 67.6 ± 7.5 y). Pupillometry was performed before the LE weeks and repeated on the last day of LE. The post-illumination pupil response (PIPR) was calculated as a proxy for melanopsin-dependent activation. Participants continuously wore an activity monitor and self-assessed sleep quality, well-being and visual comfort for 7 days before and during 4 weeks of daily bright LE (30 min to 10,000 lux polychromatic bright white light). After the LE, there was a significantly greater PIPR and higher subjective sleep quality when compared to the pre-LE week (p < 0.05), but no significant changes in 24-h rhythms or sleep parameters. A greater PIPR was correlated with an increase in circadian amplitude and higher inter-daily stability (derived from rest-activity cycles; p < 0.05). In a small group of patients with glaucoma, scheduled daily bright light exposure could improve subjective sleep quality. These findings highlight the importance to evaluate and maintain non-visual functions at different levels in patients with progressive loss of ipRGCs.
Collapse
Affiliation(s)
- Aki Kawasaki
- Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Morgane Udry
- Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mohamad El Wardani
- Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Ophthalmology Department, Calderdale and Huddersfield NHS Foundation, Huddersfield, United Kingdom
| | - Mirjam Münch
- Sleep/Wake Research Centre, Massey University, Wellington, New Zealand
| |
Collapse
|
5
|
Ba-Ali S, Brøndsted AE, Andersen HU, Jennum P, Lund-Andersen H. Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy. Acta Ophthalmol 2020; 98:477-484. [PMID: 31943805 DOI: 10.1111/aos.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/20/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We assessed the function of rod/cones and melanopsin in type 1 (T1DM) and type 2 diabetes mellitus (T2DM) with and without non-proliferative diabetic retinopathy (NPDR). METHODS We performed pupillometry on 22 healthy controls and four diabetic groups: 12 T1DM patients without NPDR and 12 with moderate NPDR, and 16 T2DM patients without NPDR and 12 with moderate NPDR. Monocular stimulations of 20 seconds with red (λ = 633 nm) and blue light (λ = 463 nm) at ~15 log quanta/cm2 /second were performed. The primary outcome was the melanopsin-mediated late redilation phase of postillumination pupillary light response (PIPRL ate ) to blue light. The secondary outcomes were the mixed rod/cone and melanopsin responses, that is maximal pupil constriction and the early redilation phase of PIPR (PIPRE arly ). RESULTS Late redilation phase of PIPR (PIPRL ate ) to blue and red light stimuli was not significantly different between healthy control and the four diabetic groups (n.s.). The maximal pupil contractions to blue light stimulus were significantly reduced in T1DM patients as well as in T2DM patients with NPDR (p ≤ 0.02), whereas for red light stimuli, the maximal pupil constriction was only reduced in T2DM with NPDR (p < 0.01). Early redilation phase of PIPR (PIPRE arly ) to blue and red light stimuli was not significantly different between healthy controls and diabetic patients (n.s.). CONCLUSION Neither the PIPRE arly nor the PIPRL ate was significantly reduced in diabetics with or without NPDR compared to healthy controls. The reduced maximal pupil constrictions in diabetics with NPDR indicate decreased mixed rod/cone and melanopsin responses.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Poul Jennum
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Centre for Sleep Medicine, Neurophysiology Clinic, Rigshospitalet, Glostrup, Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Centre, Gentofte, Denmark
| |
Collapse
|
6
|
Rukmini AV, Chew MC, Finkelstein MT, Atalay E, Baskaran M, Nongpiur ME, Gooley JJ, Aung T, Milea D, Najjar RP. Effects of low and moderate refractive errors on chromatic pupillometry. Sci Rep 2019; 9:4945. [PMID: 30894608 PMCID: PMC6426861 DOI: 10.1038/s41598-019-41296-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Chromatic pupillometry is an emerging modality in the assessment of retinal and optic nerve disorders. Herein, we evaluate the effect of low and moderate refractive errors on pupillary responses to blue- and red-light stimuli in a healthy older population. This study included 139 participants (≥50 years) grouped by refractive error: moderate myopes (>−6.0D and ≤−3.0D, n = 24), low myopes (>−3.0D and <−0.5D, n = 30), emmetropes (≥−0.5D and ≤0.5D, n = 31) and hyperopes (>0.5D and <6.0D, n = 54). Participants were exposed to logarithmically ramping-up blue (462 nm) and red (638 nm) light stimuli, designed to sequentially activate rods, cones and intrinsically-photosensitive retinal ganglion cells. Pupil size was assessed monocularly using infra-red pupillography. Baseline pupil diameter correlated inversely with spherical equivalent (R = −0.26, P < 0.01), and positively with axial length (R = 0.37, P < 0.01) and anterior chamber depth (R = 0.43, P < 0.01). Baseline-adjusted pupillary constriction amplitudes to blue light did not differ between groups (P = 0.45), while constriction amplitudes to red light were greater in hyperopes compared to emmetropes (P = 0.04) at moderate to bright light intensities (12.25–14.0 Log photons/cm²/s). Our results demonstrate that low and moderate myopia do not alter pupillary responses to ramping-up blue- and red-light stimuli in healthy older individuals. Conversely, pupillary responses to red light should be interpreted cautiously in hyperopic eyes.
Collapse
Affiliation(s)
- A V Rukmini
- Singapore Eye Research Institute, Singapore, Singapore
| | | | | | - Eray Atalay
- Singapore Eye Research Institute, Singapore, Singapore.,Eskisehir Osmangazi University, Faculty of Medicine, Eskisehir, Turkey
| | - Mani Baskaran
- Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Monisha E Nongpiur
- Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Centre for Cognitive Neuroscience, Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Raymond P Najjar
- Singapore Eye Research Institute, Singapore, Singapore. .,The Ophthalmology & Visual Sciences ACP (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore.
| |
Collapse
|
7
|
Rukmini AV, Milea D, Gooley JJ. Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Front Neurol 2019; 10:76. [PMID: 30809186 PMCID: PMC6379484 DOI: 10.3389/fneur.2019.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The pupillary light reflex is mediated by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs), which also receive input from rods and cones. Melanopsin-dependent pupillary light responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower to activate and de-activate compared with rod/cone-mediated responses. Given that rod/cone photoreceptors and melanopsin differ in their response properties, light stimuli can be designed to stimulate preferentially each of the different photoreceptor types, providing a read-out of their function. This has given rise to chromatic pupillometry methods that aim to assess the health of outer retinal photoreceptors and ipRGCs by measuring pupillary responses to blue or red light stimuli. Here, we review different types of chromatic pupillometry protocols that have been tested in patients with retinal or optic nerve disease, including approaches that use short-duration light exposures or continuous exposure to light. Across different protocols, patients with outer retinal disease (e.g., retinitis pigmentosa or Leber congenital amaurosis) show reduced or absent pupillary responses to dim blue-light stimuli used to assess rod function, and reduced responses to moderately-bright red-light stimuli used to assess cone function. By comparison, patients with optic nerve disease (e.g., glaucoma or ischemic optic neuropathy, but not mitochondrial disease) show impaired pupillary responses during continuous exposure to bright blue-light stimuli, and a reduced post-illumination pupillary response after light offset, used to assess melanopsin function. These proof-of-concept studies demonstrate that chromatic pupillometry methods can be used to assess damage to rod/cone photoreceptors and ipRGCs. In future studies, it will be important to determine whether chromatic pupillometry methods can be used for screening and early detection of retinal and optic nerve diseases. Such methods may also prove useful for objectively evaluating the degree of recovery to ipRGC function in blind patients who undergo gene therapy or other treatments to restore vision.
Collapse
Affiliation(s)
- A V Rukmini
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology and Visual Sciences Academic Clinical Programme (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
8
|
La Morgia C, Carelli V, Carbonelli M. Melanopsin Retinal Ganglion Cells and Pupil: Clinical Implications for Neuro-Ophthalmology. Front Neurol 2018; 9:1047. [PMID: 30581410 PMCID: PMC6292931 DOI: 10.3389/fneur.2018.01047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs that mediate many relevant non-image forming functions of the eye, including the pupillary light reflex, through the projections to the olivary pretectal nucleus. In particular, the post-illumination pupil response (PIPR), as evaluated by chromatic pupillometry, can be used as a reliable marker of mRGC function in vivo. In the last years, pupillometry has become a promising tool to assess mRGC dysfunction in various neurological and neuro-ophthalmological conditions. In this review we will present the most relevant findings of pupillometric studies in glaucoma, hereditary optic neuropathies, ischemic optic neuropathies, idiopathic intracranial hypertension, multiple sclerosis, Parkinson's disease, and mood disorders. The use of PIPR as a marker for mRGC function is also proposed for other neurodegenerative disorders in which circadian dysfunction is documented.
Collapse
Affiliation(s)
- Chiara La Morgia
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| |
Collapse
|
9
|
Zivcevska M, Blakeman A, Lei S, Goltz HC, Wong AMF. Binocular Summation in Postillumination Pupil Response Driven by Melanopsin-Containing Retinal Ganglion Cells. ACTA ACUST UNITED AC 2018; 59:4968-4977. [DOI: 10.1167/iovs.18-24639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marija Zivcevska
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alan Blakeman
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shaobo Lei
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Herbert C. Goltz
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- The Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Agnes M. F. Wong
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- The Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
10
|
Crippa SV, Pedrosa Domellöf F, Kawasaki A. Chromatic Pupillometry in Children. Front Neurol 2018; 9:669. [PMID: 30174642 PMCID: PMC6107754 DOI: 10.3389/fneur.2018.00669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Abstract
Chromatic pupillometry is a technique that is increasingly used to assess retinal disorders. As age may be one of the various factors which can influence the pupillary light reaction, this study aimed to evaluate the pupil responses to colored light stimuli in the pediatric population. Fifty-three children with normal vision and without any history of ocular disorders were tested with a portable pupillometer. Four test sequences were used: five dim blue (470 nm) stimuli presented in half log steps ranging from −3.15 to −1.15 log cd/m2 after 3 min of dark adaptation, five red (622 nm) stimuli of −1.15, −0.7, −0.15, 0.3, and 0.85 log cd/m2 after 1 min light adaptation, one bright blue stimulus of 2.2 log cd/m2 and one bright red of 2 log cd/m2. The results were grouped by age: a younger group included 27 children aged from 3 to 10 years old and an older group included 26 from 10 and 1 month to 18 years old. The younger group had a smaller pupil diameter after dark adaptation compared with the older group. A linear regression defining the photopic threshold showed that younger subjects had a higher threshold, e.g., needed a brighter red stimulus to evoke a threshold pupil response comparable that of subjects. Age thus seems to influence outer retinal sensitivity at least as evaluated by the pupillary photopic threshold intensity. The post-illumination pupillary reaction was used as a marker of intrinsic melanopsin activity and did not show any difference between the two age groups.
Collapse
Affiliation(s)
- Sylvain V Crippa
- Neuro-Ophthalmology Unit, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland.,Group for Retinal Disorder Research, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Aki Kawasaki
- Neuro-Ophthalmology Unit, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Ba-Ali S, Jensen RH, Larsen LS, Lund-Andersen H, Hamann S. The Melanopsin-Mediated Pupillary Light Response Is Not Changed in Patients with Newly Diagnosed Idiopathic Intracranial Hypertension. Neuroophthalmology 2018; 42:65-72. [PMID: 29563950 DOI: 10.1080/01658107.2017.1344251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/07/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022] Open
Abstract
Previously, it has been reported that melanopsin-mediated pupillary light response (PLR), measured with pupillometry, is reduced in patients with idiopathic intracranial hypertension (IIH), indicating the clinical utility of the tool in the diagnosis of IIH. In the current study, the authors aimed to measure the PLR in 13 treatment-naive patients with new-onset IIH and 13 healthy controls. In contrast to the previous report, which was based on patients with longstanding IIH (n = 13), the authors found no significant difference in the melanopsin-mediated PLR (p = 0.48).
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor Højland Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| | - Line Sofie Larsen
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ba-Ali S, Christensen SK, Sander B, Rosenberg T, Larsen M, Lund-Andersen H. Choroideremia: melanopsin-mediated postillumination pupil relaxation is abnormally slow. Acta Ophthalmol 2017; 95:809-814. [PMID: 28271634 DOI: 10.1111/aos.13394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the rod-cone and melanopsin pupillary light response (PLR) pathways in choroideremia. METHODS Eight patients with choroideremia and 18 healthy age-matched controls underwent chromatic pupillometry by applying blue (463 nm) and red light (643 nm) at 100 lux intensity to the right eye while recording pupil diameters. Absolute baseline pupil size (mm), normalized maximal pupil constriction and the early and late postillumination pupillary dilation, from 0 to 10 seconds and 10 to 30 seconds after the end of illumination, respectively, were determined. Postillumination responses to blue light were considered to be primarily driven by melanopsin activation of the intrinsic photosensitive retinal ganglion cells. RESULTS Baseline pupil diameters were comparable in patients with choroideremia and control subjects (p = 0.48). The maximum pupil constriction in patients with choroideremia was severely weakened in red light but only mildly weakened in blue light (p < 0.05). Postillumination dilation of the pupil was normal after red illumination but extremely protracted after blue illumination. Also, in contrast to healthy subjects, no abrupt change in the dilation curve was seen in the patients after the end of blue illumination, the early-phase dilation being completely abolished (p < 0.01). CONCLUSION Rod-cone-driven pupil responses were decreased as expected in an outer retinal degeneration, and near-normal pupil constriction in blue light supports that the melanopsin system is normal. In contrast, the lack of brisk early-phase dilation after blue illumination in choroideremia is remarkable and may be interpreted to mean that the absence of photoreceptor inhibition promotes a tonic contraction of the pupil.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Birgit Sander
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
| | | | - Michael Larsen
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
13
|
Münch M, Ladaique M, Roemer S, Hashemi K, Kawasaki A. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts. Front Neurol 2017; 8:464. [PMID: 28955293 PMCID: PMC5601987 DOI: 10.3389/fneur.2017.00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group, visual function was not impaired yet these participants showed a lack of seasonal changes in the pupil response to blue light and poorer sleep in winter. These findings raise the question for tailored lighting conditions for cataract patients in order to counter potentially deleterious effects of living with chronically lower light exposure.
Collapse
Affiliation(s)
- Mirjam Münch
- Group Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité University Médicine Berlin, Berlin, Germany
| | - Myriam Ladaique
- Hôpital Ophtalmique Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Ségolène Roemer
- Hôpital Ophtalmique Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Kattayoon Hashemi
- Hôpital Ophtalmique Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Aki Kawasaki
- Hôpital Ophtalmique Jules Gonin, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Ba-Ali S, Lund-Andersen H. Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies. Mitochondrion 2017; 36:124-129. [PMID: 28716667 DOI: 10.1016/j.mito.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/29/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
In recent years, chromatic pupillometry is used in humans to evaluate the activity of melanopsin expressing intrinsic photosensitive retinal ganglion cells (ipRGCs). Blue light is used to stimulate the ipRGCs and red light activates the rod/cone photoreceptors. The late re-dilation phase of pupillary light reflex is primarily driven by the ipRGCs. Optic neuropathies i.e. Leber hereditary optic neuropathy (LHON), autosomal dominant optic atrophy (ADOA), nonarteritic anterior ischemic optic neuropathy (NAION), glaucoma, optic neuritis and idiopathic intracranial hypertension (IIH) are among the diseases, which have been subject to pupillometric studies. The ipRGCs are differentially affected in these various optic neuropathies. In mitochondrial optic neuropathies, the ipRGCs are protected against degeneration, whereas in glaucoma, NAION, optic neuritis and IIH the ipRGCs are damaged. Here, we will review the results of pupillometric, histopathological and animal studies evaluating the ipRGCs in mitochondrial and non-mitochondrial optic neuropathies.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Lund-Andersen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Adhikari P, Feigl B, Zele AJ. Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR). PLoS One 2016; 11:e0161175. [PMID: 27548480 PMCID: PMC4993463 DOI: 10.1371/journal.pone.0161175] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
Melanopsin expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) entirely control the post-illumination pupil response (PIPR) from 6 s post-stimulus to the plateau during redilation after light offset. However, the photoreceptor contributions to the early redilation phase of the PIPR (< 6 s post-stimulus) have not been reported. Here, we evaluated the photoreceptor contributions to the early phase PIPR (0.6 s to 5.0 s) by measuring the spectral sensitivity of the criterion PIPR amplitude in response to 1 s light pulses at five narrowband stimulus wavelengths (409, 464, 508, 531 and 592 nm). The retinal irradiance producing a criterion PIPR was normalised to the peak and fitted by either a single photopigment nomogram or the combined melanopsin and rhodopsin spectral nomograms with the +L+M cone photopic luminous efficiency (Vλ) function. We show that the PIPR spectral sensitivity at times ≥ 1.7 s after light offset is best described by the melanopsin nomogram. At times < 1.7 s, the peak PIPR sensitivity shifts to longer wavelengths (range: 482 to 498 nm) and is best described by the combined photoreceptor nomogram, with major contributions from melanopsin and rhodopsin. This first report of melanopsin and rhodopsin contributions to the early phase PIPR is in line with the electrophysiological findings of ipRGC and rod signalling after the cessation of light stimuli and provides a cut-off time for isolating photoreceptor specific function in healthy and diseased eyes.
Collapse
Affiliation(s)
- Prakash Adhikari
- Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Beatrix Feigl
- Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Queensland Eye Institute, Brisbane, Queensland, Australia
| | - Andrew J. Zele
- Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
16
|
Park JC, Moss HE, McAnany JJ. The Pupillary Light Reflex in Idiopathic Intracranial Hypertension. Invest Ophthalmol Vis Sci 2016; 57:23-9. [PMID: 26746015 PMCID: PMC4713014 DOI: 10.1167/iovs.15-18181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose To evaluate the effects of idiopathic intracranial hypertension (IIH) on rod-, cone-, and melanopsin-mediated pupillary light reflexes (PLRs). Methods Pupillary light reflexes elicited by full-field, brief-flash stimuli were recorded in 13 IIH patients and 13 normal controls. Subjects were dark-adapted for 10 minutes and the PLR was recorded in response to short-wavelength flashes (0.001 cd/m2: rod condition; 450 cd/m2: melanopsin condition). Subjects were then exposed to a rod-suppressing field and 10 cd/m2 long-wavelength flashes were presented (cone condition). Pupillary light reflexes were quantified as the maximum transient constriction (rod and cone conditions) and the post-illumination pupil constriction (melanopsin condition), relative to the baseline pupil size. Diagnostic power was evaluated using receiver operating characteristic (ROC) analysis. Results The IIH patients had significantly smaller PLRs under the melanopsin (P < 0.001) and rod (P = 0.04) paradigms; a trend for reduced cone-mediated PLRs was also found (P = 0.08). Receiver operating characteristic analysis indicated areas under the curves (AUC) of 0.83 (melanopsin-meditated; P = 0.001), 0.71 (rod-mediated; P = 0.07), and 0.77 (cone-mediated; P = 0.02). The AUC (0.90, P < 0.001), sensitivity (85%), and specificity (85%) were high for ROC analysis performed on the mean of the rod, cone, and melanopsin PLRs. Conclusions Pupillary light reflex reductions in IIH patients indicate compromised RGC function. PLR measurement, particularly under rod- and melanopsin-mediated conditions, may be a useful adjunct to standard clinical measures of visual function in IIH.
Collapse
Affiliation(s)
- Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Heather E Moss
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States 2Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, United States
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States 3Department of Psychology, University of Illinois at Chicago, Chicago, Illinois, United States 4Department of Bioengineering, University o
| |
Collapse
|