1
|
Babakhani N, Sobhanardakani S, Mansouri B, Cheraghi M, Lorestani B. Bioaccumulation of Silver Nanoparticles (AgNPs) Co-Exposed with Graphene Oxide Nanosheets (GNs) in the Gill and Intestine Tissues of Guppy (Poecilia reticulata). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:61. [PMID: 40186788 DOI: 10.1007/s00128-025-04020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 04/07/2025]
Abstract
Silver nanoparticles (AgNPs) and graphene oxide nanoparticles (GNs) have known health effects on humans and other organisms. Therefore, this study aimed to assess the bioaccumulation and depuration of AgNPs in guppy (Poecilia reticulata) tissues in the presence of GNs. In so doing, two non-lethal concentrations of AgNPs, one non-lethal concentration of GNs, and two concentrations of the combination of AgNPs and GNs were used along with a control group. Based on the results obtained, on day 28, the level of silver in the gill tissue was 0.980 and 1.22 mg/g in the individual groups and 1.34 and 1.23 mg/g in the combined groups, respectively. Conversely, the silver uptake in the intestine tissue on day 28 was 0.377 and 0.267 mg/g in the individual groups and 0.659 and 0.475 mg/g in the combined groups, respectively. Silver uptake in guppy tissues increased with higher concentrations and longer exposure times, and it varied depending on the specific tissues involved. Also, findings show that the depuration rate within 14 days for both tissues is similar across individual and mixture exposure modes, indicating a comparable capacity for the depuration of silver particles. In conclusion, this study demonstrated that the presence of GNs has a synergistic effect on the uptake of silver in guppy tissues.
Collapse
Affiliation(s)
- Naseh Babakhani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
2
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Sayadi MH, Pavlaki MD, Loureiro S, Martins R, Tyler CR, Mansouri B, Kharkan J, Shekari H. Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (Capoeta fusca): evaluation of lethal, behavioural, and histopathological effects. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:425-439. [PMID: 35089487 DOI: 10.1007/s10646-022-02521-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 05/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and multi-layer graphenes (MLGs) are widely used, and due to the lack of appropriate wastewater treatment may end up in the aquatic environment, with unknown consequences to biota. The main purpose of this study was to assess the acute toxicity, histopathological and behavioural changes caused by the exposure of ZnO NPs and MLGs, alone and combined, to the blackfish Capoeta fusca. The estimated mean 96 h-LC50 for ZnO NPs was 4.9 mg L-1 and 68.4 mg L-1 for MLGs. In combination, MLGs increased the acute toxicity of the ZnO NPs. The effects of the different NPs on the gills included hyperplasia, aneurisms, and fusion of the lamellae. In the intestine, exposure to the NPs resulted in an increase in the number and swelling of goblet cells and tissue degeneration. Loss of balance, restlessness, erratic and abnormal swimming patterns were the most common behavioural changes seen in the ZnO NPs' exposed blackfish. In contrast with the acute toxicity findings, MLGs decreased the histopathological and behavioural effects of the ZnO NPs on both gills and intestinal tissues as well as fish behaviour. Our experimental results illustrated insights into the simultaneous exposure assessment of metal-based NPs and carbon nanomaterials, although further research is needed on the interactions exposure of these substances to interpreting the toxicological effects of metal-based nanomaterials seen in exposed organisms.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
- Department of Environmental Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran
| | - Maria D Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
4
|
Sayadi MH, Pavlaki MD, Martins R, Mansouri B, Tyler CR, Kharkan J, Shekari H. Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (Capoeta fusca). CHEMOSPHERE 2021; 269:128689. [PMID: 33127112 DOI: 10.1016/j.chemosphere.2020.128689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 05/24/2023]
Abstract
In this study, we investigated the bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) alone and in the presence of graphene nanosheets (GNs) in the blackfish (Capoeta fusca). Blackfish were exposed via water to two ZnO NPs concentrations alone or as a combination with GNs and uptake of Zn into the gills, intestine, liver, and kidney was assessed at 7, 14 and 28 d. Zn elimination from these tissues was then assessed after a further 7, 14 and 28 d in clean water for both ZnO NPs concentrations and combined ZnO NPs/GN exposures. In the body tissues analyzed of exposed fish, the highest amounts of Zn occurred in the intestine and the lowest amount in the liver. Zn levels in blackfish after 28 d of exposure were higher in all treatment groups compared to those on 7 d (p < 0.05). For both ZnO NPs exposure concentrations, the highest amount of Zn was eliminated from the intestine, followed by the gills. Furthermore, elimination kinetics for both ZnO NPs concentrations alone and in combination with GNs showed that the shortest half-life for Zn is occurring in the intestine. Moreover, uptake rates of Zn in fish exposed to ZnO NPs + GNs followed the same pattern observed for the ZnO NP, with intestine and gills having the highest levels followed by kidney and liver. Thus, we show accumulation and elimination of Zn from ZnO NPs in blackfish depends on the tissue, exposure concentration and duration, and is dependent on the presence of GNs.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran; Department of Environmental Sciences & Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Maria D Pavlaki
- CESAM- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Roberto Martins
- CESAM- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| |
Collapse
|
5
|
Roy R, Lüderwald S, Alawi Ahmed Maknoon A, Metreveli G, Schulz R, Bundschuh M. Effects of copper in Daphnia are modulated by nanosized titanium dioxide and natural organic matter: what is the impact of aging duration? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13991-13999. [PMID: 33205277 PMCID: PMC7943511 DOI: 10.1007/s11356-020-11578-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
During its aquatic life cycle, nanosized titanium dioxide (nTiO2) may interact with natural organic matter (NOM) ultimately altering the ecotoxicity of co-occurring chemical stressors such as heavy metals (e.g. copper (Cu)). In this context, the following hypotheses were tested: (1) aging of nTiO2 along with Cu reduces Cu toxicity, (2) nTiO2 agglomerates have a lower potential to reduce Cu toxicity and (3) aging of nTiO2 in presence of NOM reduces Cu toxicity further. A multifactorial test design crossing three nTiO2 levels (0.0, 0.6 and 3.0 mg/L) with two levels of NOM (0 versus 8 mg total organic carbon (TOC)/L) and seven nominal Cu concentrations (ranging from 0 to 1536 μg/L) aged in ASTM medium for 0, 1, 3 and 6 days was realised, while two aging scenarios were applied (type 1: nTiO2 jointly aged with Cu; type 2: Cu added after nTiO2 aging). Subsequently, Cu toxicity was assessed using the immobility of Daphnia magna after 48 h of exposure as response variable. The experiments revealed that neither aging duration nor the extent of agglomeration (type 1 vs. type 2 aging) has a substantial impact on Cu induced toxicity. Moreover, it was confirmed that the presence of NOM substantially reduced Cu induced toxicity, independent of the aging scenario and duration. More importantly, the data suggest the ingestion of Cu loaded nTiO2 as additional exposure pathway contributing to Cu toxicity. In conclusion, it seems unlikely that nTiO2 concentrations currently detected in or predicted for aquatic ecosystems, which are at least one order of magnitude below the concentration tested here, influence Cu toxicity meaningfully.
Collapse
Affiliation(s)
- Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
| | - Simon Lüderwald
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Asawer Alawi Ahmed Maknoon
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - George Metreveli
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
6
|
Lekamge S, Ball AS, Shukla R, Nugegoda D. The Toxicity of Nanoparticles to Organisms in Freshwater. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:1-80. [PMID: 30413977 DOI: 10.1007/398_2018_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology is a rapidly growing industry yielding many benefits to society. However, aquatic environments are at risk as increasing amounts of nanoparticles (NPs) are contaminating waterbodies causing adverse effects on aquatic organisms. In this review, the impacts of environmental exposure to NPs, the influence of the physicochemical characteristics of NPs and the surrounding environment on toxicity and mechanisms of toxicity together with NP bioaccumulation and trophic transfer are assessed with a focus on their impacts on bacteria, algae and daphnids. We identify several gaps which need urgent attention in order to make sound decisions to protect the environment. These include uncertainty in both estimated and measured environmental concentrations of NPs for reliable risk assessment and for regulating the NP industry. In addition toxicity tests and risk assessment methodologies specific to NPs are still at the research and development stage. Also conflicting and inconsistent results on physicochemical characteristics and the fate and transport of NPs in the environment suggest the need for further research. Finally, improved understanding of the mechanisms of NP toxicity is crucial in risk assessment of NPs, since conventional toxicity tests may not reflect the risks associated with NPs. Behavioural effects may be more sensitive and would be efficient in certain situations compared with conventional toxicity tests due to low NP concentrations in field conditions. However, the development of such tests is still lacking, and further research is recommended.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Liu S, Cui M, Li X, Thuyet DQ, Fan W. Effects of hydrophobicity of titanium dioxide nanoparticles and exposure scenarios on copper uptake and toxicity in Daphnia magna. WATER RESEARCH 2019; 154:162-170. [PMID: 30782558 DOI: 10.1016/j.watres.2019.01.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) encounter heavy metals in the environment under different scenarios. However, the mechanism of their joint toxicity effects on Daphnia magna remains vague. This study assessed the effects of hydrophobicity of TiO2 NPs (TDONPs) and exposure scenarios on copper uptake and toxicity in Daphnia magna. In the individual exposure scenario, hydrophilic and hydrophobic TDONPs both showed no acute toxicity to Daphnia magna, whereas individual Cu2+ exposure resulted in a 30% mortality rate. Co-exposure and sequential exposure to the two types of TDONP and Cu2+ resulted in mortality rates of 40%-50%. The mechanisms of the increased Cu2+ toxicity caused by hydrophilic and hydrophobic TDONP were different. In the presence of hydrophobic TDONPs, the Cu toxicity could be attributed to the increased bioaccumulation of Cu and Ti, leading to high oxidative stress injury. The Cu toxicity due to hydrophilic TDONPs could be induced by intensified intestinal membrane damage. The obtained data suggest that the hydrophobicity of the TDONPs plays a critical role in regulating the toxicity of Cu2+.
Collapse
Affiliation(s)
- Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Minming Cui
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China; Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Dang Quoc Thuyet
- Institute of Agricultural Machinery, National Agriculture and Food Research Organization, 1-40-2 Nisshin, Kita-ku, Saitama City, Saitama, 331-8537, Japan
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
8
|
Freitas R, Coppola F, De Marchi L, Codella V, Pretti C, Chiellini F, Morelli A, Polese G, Soares AMVM, Figueira E. The influence of Arsenic on the toxicity of carbon nanoparticles in bivalves. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:484-493. [PMID: 29908840 DOI: 10.1016/j.jhazmat.2018.05.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Although an increasing number of studies have been published on the effects of emergent pollutants such as carbon nanoparticles, there is still scarce information on the impact of these contaminants on marine organisms when acting in combination with classical pollutants such as meta(loid)s. The present study evaluated the impacts of Arsenic and Multi-Walled Carbon Nanotubes (MWCNTs) in the clam Ruditapes philippinarum, assessing the effects induced when both contaminants were acting individually (As, NP) and as a mixture (As + NP). Metabolic capacity (electron transport system activity), oxidative stress (antioxidant and biotransformation enzymes activity and cellular damage) and neurotoxicity (Acetylcholinesterase activity) biomarkers were evaluated in clams after a 28 days exposure period. The results obtained showed that the accumulation of As was not affected by the presence of the NPs. Our results demonstrated that higher injuries were noticed in clams exposed to NPs, with higher metabolic depression and oxidative stress, regardless of the presence of As. Furthermore, higher neurotoxicity was observed in clams exposed to the combination of both contaminants in comparison to the effects of As and NPs individually.
Collapse
Affiliation(s)
- Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valeria Codella
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Napoli Federico II, 80126, Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 2017; 11:978-995. [DOI: 10.1080/17435390.2017.1388861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Tom K. Hei
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Zhaoxiang Deng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| |
Collapse
|
10
|
Mukherjee A, Hawthorne J, White JC, Kelsey JW. Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1864-1871. [PMID: 27925275 DOI: 10.1002/etc.3698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/26/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Although the use of engineered nanomaterials continues to increase, how these materials interact with coexisting contaminants in the environment is largely unknown. The effect of silver (Ag) in bulk, ionic, and nanoparticle (NP; bare and polyvinyl pyrrolidone-coated) forms at 3 concentrations (0 mg/kg, 500 mg/kg, 1000 mg/kg, 2000 mg/kg; ion at 69 mg/kg, 138 mg/kg, 276 mg/kg) on the accumulation of field-weathered chlordane and dichlorodiphenyldichloroethylene + metabolites (DDX) by Eisenia fetida (earthworm) was investigated. Earthworm biomass and survival were unaffected by treatment. At the 500 mg/kg and 1000 mg/kg exposure levels, NP-exposed earthworms contained significantly greater Ag (194-245%) than did the bulk exposed organisms; NP size or coating had no impact on element content. Generally, exposure to Ag of any type or at any concentration significantly reduced pesticide accumulation, although reductions for DDX (35.1%; 8.9-47.0%) were more modest than those for chlordane (79.0%; 17.4-92.9%). For DDX, the reduction in pesticide accumulation was not significantly affected by Ag type or concentration. For chlordane, the 3 NP exposures suppressed chlordane accumulation significantly more than did bulk exposure; earthworms exposed to bulk Ag contained 1170 ng/g chlordane, but levels in the NP-exposed earthworms were 279 ng/g. At the 500 mg/kg exposure, the smallest coated NPs exerted the greatest suppression in chlordane accumulation; at the 2 higher concentrations, chlordane uptake was unaffected by NP size or coating. The findings show that in exposed earthworms Ag particle size does significantly impact accumulation of the element itself, as well as that of coexisting weathered pesticides. The implications of these findings with regard to NP exposure and risk are unknown but are the topic of current investigation. Environ Toxicol Chem 2017;36:1864-1871. © 2016 SETAC.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Joseph Hawthorne
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Jason W Kelsey
- Program in Environmental Science, Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania, USA
| |
Collapse
|
11
|
Fan W, Peng R, Li X, Ren J, Liu T, Wang X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. WATER RESEARCH 2016; 105:129-137. [PMID: 27611640 DOI: 10.1016/j.watres.2016.08.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 08/28/2016] [Indexed: 05/29/2023]
Abstract
Inevitably released into natural water, titanium dioxide nanoparticles (nano-TiO2) may affect the toxicity of other contaminants. Ubiquitous organic matter (OM) may influence their combined toxicity, which has been rarely reported. This study investigated the effect of nano-TiO2 on Cu toxicity to Daphnia magna and the role of OM (dissolved or particle surface bound) in inducing combined effects. The effect of nano-TiO2 on heavy metal accumulation depended on the adsorption capacity for heavy metals of nano-TiO2 and the uptake of nano-TiO2-metal complexes by organisms. Nano-TiO2 significantly decreased Cu accumulation in D. magna, but the reducing effect of nano-TiO2 was eliminated in the presence of humic acid (HA, a model OM). In the Cu and HA solution, nano-TiO2 slightly affected the bioavailability of Cu2+ and Cu-HA complexes and thus slightly influenced Cu toxicity. The nanoparticle surface-bound HA reduced the effect of nano-TiO2 on the speciation of the accumulated Cu; therefore, the combined effects of nano-TiO2 and Cu on biomarkers similarly weakened. HA-altered Cu speciation may be the main factor responsible for the influence of HA on the combined effects of nano-TiO2 and Cu. This study provides insights into the combined effects of nano-TiO2 and heavy metals in natural water.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Ruishuang Peng
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tong Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiangrui Wang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
12
|
Mansouri B, Maleki A, Johari SA, Shahmoradi B, Mohammadi E, Shahsavari S, Davari B. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO 2 and CuO Nanoparticles. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:541-552. [PMID: 27638716 DOI: 10.1007/s00244-016-0313-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
Metal oxide nanoparticles (NPs), such as TiO2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO2 NPs, CuO NPs, and a mixture of TiO2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO2 NPs.
Collapse
Affiliation(s)
- Borhan Mansouri
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Behzad Shahmoradi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Siros Shahsavari
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Behroz Davari
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Medical Entomology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|