1
|
Saha-Shah A, Esmaeili M, Sidoli S, Hwang H, Yang J, Klein PS, Garcia BA. Single Cell Proteomics by Data-Independent Acquisition To Study Embryonic Asymmetry in Xenopus laevis. Anal Chem 2019; 91:8891-8899. [PMID: 31194517 PMCID: PMC6688503 DOI: 10.1021/acs.analchem.9b00327] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Techniques that allow single cell analysis are gaining widespread attention, and most of these studies utilize genomics-based approaches. While nanofluidic technologies have enabled mass spectrometric analysis of single cells, these measurements have been limited to metabolomics and lipidomic studies. Single cell proteomics has the potential to improve our understanding of intercellular heterogeneity. However, this approach has faced challenges including limited sample availability, as well as a requirement of highly sensitive methods for sample collection, cleanup, and detection. We present a technique to overcome these limitations by combining a micropipette (pulled glass capillary) based sample collection strategy with offline sample preparation and nanoLC-MS/MS to analyze proteins through a bottom-up proteomic strategy. This study explores two types of proteomics data acquisition strategies namely data-dependent (DDA) and data-independent acquisition (DIA). Results from the study indicate DIA to be more sensitive enabling analysis of >1600 proteins from ∼130 μm Xenopus laevis embryonic cells containing <6 nL of cytoplasm. The method was found to be robust in obtaining reproducible protein quantifications from single cells spanning the 1-128-cell stages of development. Furthermore, we used micropipette sampling to study intercellular heterogeneity within cells in a single embryo and investigated embryonic asymmetry along both animal-vegetal and dorsal-ventral axes during early stages of development. Investigation of the animal-vegetal axis led to discovery of various asymmetrically distributed proteins along the animal-vegetal axis. We have further compared the hits found from our proteomic data sets with other studies and validated a few hits using an orthogonal imaging technique. This study forms the first report of vegetal enrichment of the germ plasm associated protein DDX4/VASA in Xenopus embyos. Overall, the method and data presented here holds promise to enable important leads in developmental biology.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melody Esmaeili
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M. Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan. Sci Rep 2018; 8:8315. [PMID: 29844480 PMCID: PMC5974320 DOI: 10.1038/s41598-018-26592-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs. More than 98% of the maternal mRNAs could be categorized into four localization profile groups: animal, vegetal, extremely vegetal, and a newly described group of mRNAs that we call extremely animal, which are mRNAs enriched in the animal cortex region. 3′UTRs of localized mRNAs were analyzed for localization motifs. Several putative motifs were discovered for vegetal and extremely vegetal mRNAs, while no distinct conserved motifs for the extremely animal mRNAs were identified, suggesting different localization mechanisms. Asymmetric profiles were also found for proteins, with correlation to those of corresponding mRNAs. Based on unexpected observation of the profiles of the homoeologous genes exd2 we propose a possible mechanism of genetic evolution.
Collapse
Affiliation(s)
- Radek Sindelka
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Pavel Abaffy
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Silvie Tomankova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Monika Sidova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Michal Kolar
- Institute of Molecular Genetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Elizabeth Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Norman Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mikael Kubista
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.,TATAA Biocenter, Odinsgatan 28, Göteborg, 411 03, Sweden
| |
Collapse
|
3
|
Pocherniaieva K, Sidova M, Havelka M, Saito T, Psenicka M, Sindelka R, Kaspar V. Comparison of oocyte mRNA localization patterns in sterlet Acipenser ruthenus and African clawed frog Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:181-187. [PMID: 29682883 DOI: 10.1002/jez.b.22802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 01/13/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022]
Abstract
In oocytes, RNA localization has critical implications, as assembly of proteins in particular subcellular domains is crucial to embryo development. The distribution of mRNA molecules can identify and characterize localized transcripts. The goal of this study was to clarify the origin of primordial germ cells in the oocyte body plan and to reveal the generation of cell lineages by localized RNAs. The distribution of 12 selected mRNAs in sterlet Acipenser ruthenus oocytes was investigated by qPCR tomography and compared with known patterns of mRNA localization in Xenopus laevis. We investigated the distribution of two gene clusters in the ooplasm along the animal-vegetal axis of the sturgeon oocyte, both of which showed clearly defined intracellular gradient pattern remarkably similar to their distribution in the frog oocyte. We elucidated the localization of sturgeon egg germplasm markers belonging to the vegetal group of mRNAs. The mRNAs coding otx1, wnt11, and veg1 found to be localized in the sturgeon animal hemisphere are, in contrast, distributed in the vegetal hemisphere in amphibian. Actinopterygii and Sarcopterygii, two major lineages of osteichthyan vertebrates, split about 476 Ma (Blair & Hedges, ), albeit basal lineages share conserved biological features. Acipenseriformes is one the most basal living lineages of Actinopterygii, having evolved about 200 Ma (Bemis, Birstein, & Waldman, ), contemporaneous with modern amphibians (Roelants et al., ).
Collapse
Affiliation(s)
- Kseniia Pocherniaieva
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Monika Sidova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Milos Havelka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic.,Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Taiju Saito
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Martin Psenicka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vojtech Kaspar
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| |
Collapse
|
4
|
Sindelka R, Sidova M, Abaffy P, Kubista M. Asymmetric Localization and Distribution of Factors Determining Cell Fate During Early Development of Xenopus laevis. Results Probl Cell Differ 2017; 61:229-241. [PMID: 28409307 DOI: 10.1007/978-3-319-53150-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Asymmetric division is a property of eukaryotic cells that is fundamental to the formation of higher life forms. Despite its importance, the mechanism behind it remains elusive. Asymmetry in the cell is induced by polarization of cell fate determinants that become unevenly distributed among progeny cells. So far dozens of determinants have been identified. Xenopus laevis is an ideal system to study asymmetric cell division during early development, because of the huge size of its oocytes and early-stage blastomeres. Here, we present the current knowledge about localization and distribution of cell fate determinants along the three body axes: animal-vegetal, dorsal-ventral, and left-right. Uneven distribution of cell fate determinants during early development specifies the formation of the embryonic body plan.
Collapse
Affiliation(s)
- Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Monika Sidova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic-Biocev, Prumyslova 595, 252 50, Vestec, Czech Republic.
- TATAA Biocenter AB, Odinsgatan 28, 411 03, Göteborg, Sweden.
| |
Collapse
|
5
|
Abstract
In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.
Collapse
|
6
|
Tlapakova T, Nguyen TMX, Vegrichtova M, Sidova M, Strnadova K, Blahova M, Krylov V. Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages. Biol Open 2016; 5:1275-82. [PMID: 27464670 PMCID: PMC5051652 DOI: 10.1242/bio.019265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The origin of somatic cell lineages during testicular development is controversial in mammals. Employing basal amphibian tetrapod Xenopus tropicalis we established a cell culture derived from testes of juvenile male. Expression analysis showed transcription of some pluripotency genes and Sertoli cell, peritubular myoid cell and mesenchymal cell markers. Transcription of germline-specific genes was downregulated. Immunocytochemistry revealed that a majority of cells express vimentin and co-express Sox9 and smooth muscle α-actin (Sma), indicating the existence of a common progenitor of Sertoli and peritubular myoid cell lineages. Microinjection of transgenic, red fluorescent protein (RFP)-positive somatic testicular cells into the peritoneal cavity of X. tropicalis tadpoles resulted in cell deposits in heart, pronephros and intestine, and later in a strong proliferation and formation of cell-to-cell net growing through the tadpole body. Immunohistochemistry analysis of transplanted tadpoles showed a strong expression of vimentin in RFP-positive cells. No co-localization of Sox9 and Sma signals was observed during the first three weeks indicating their dedifferentiation to migratory-active mesenchymal cells recently described in human testicular biopsies. Summary: We identified cells co-expressing differentiation markers of Sertoli and peritubular myoid cell lineages in X. tropicalis through the establishment and characterization of cell culture derived from juvenile testis.
Collapse
Affiliation(s)
- Tereza Tlapakova
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic
| | - Thi Minh Xuan Nguyen
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic
| | - Marketa Vegrichtova
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic
| | - Monika Sidova
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 142 20, Czech Republic
| | - Karolina Strnadova
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic
| | - Monika Blahova
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic
| | - Vladimir Krylov
- Charles University in Prague, Faculty of Science, Vinicna 7, Prague 2 128 44, Czech Republic
| |
Collapse
|