1
|
Gharia AA, Bradfield CJ, Jenkins EPW, Fraser IDC, Malliaras GG. Efficient electroporation in primary cells with PEDOT:PSS electrodes. SCIENCE ADVANCES 2024; 10:eado5042. [PMID: 39454003 PMCID: PMC11506140 DOI: 10.1126/sciadv.ado5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Precise and efficient delivery of macromolecules into cells enhances basic biology research and therapeutic applications in cell therapies, drug delivery, and personalized medicine. While pulsed electric field electroporation effectively permeabilizes cell membranes to deliver payloads without the need for toxic chemical or viral transduction agents, conventional bulk electroporation devices face major challenges with cell viability and heterogeneity due to variations in fields generated across cells and electrochemistry at the electrode-electrolyte interface. Here, we introduce the use of microfabricated electrodes based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), which substantially increases cell viability and transfection efficiency. As a proof of concept, we demonstrate the enhanced delivery of Cas9 protein, guide RNA, and plasmid DNA into cell lines and primary cells. This use of PEDOT:PSS enables rapid modification of difficult-to-transfect cell types to accelerate their study and use as therapeutic platforms.
Collapse
Affiliation(s)
- Asmaysinh A. Gharia
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Clinton J. Bradfield
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Elise P. W. Jenkins
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain D. C. Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Hu T, Kumar AR, Luo Y, Tay A. Automating CAR-T Transfection with Micro and Nano-Technologies. SMALL METHODS 2024; 8:e2301300. [PMID: 38054597 DOI: 10.1002/smtd.202301300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Cancer poses a significant health challenge, with traditional treatments like surgery, radiotherapy, and chemotherapy often lacking in cell specificity and long-term curative potential. Chimeric antigen receptor T cell (CAR-T) therapy,utilizing genetically engineered T cells to target cancer cells, is a promising alternative. However, its high cost limits widespread application. CAR-T manufacturing process encompasses three stages: cell isolation and activation, transfection, and expansion.While the first and last stages have straightforward, commercially available automation technologies, the transfection stage lags behind. Current automated transfection relies on viral vectors or bulk electroporation, which have drawbacks such as limited cargo capacity and significant cell disturbance. Conversely, micro and nano-tool methods offer higher throughput and cargo flexibility, yet their automation remains underexplored.In this perspective, the progress in micro and nano-engineering tools for CAR-T transfection followed by a discussion to automate them is described. It is anticipated that this work can inspire the community working on micro and nano transfection techniques to examine how their protocols can be automated to align with the growing interest in automating CAR-T manufacturing.
Collapse
Affiliation(s)
- Tianmu Hu
- Engineering Science Programme, National University of Singapore, Singapore, 117575, Singapore
| | - Arun Rk Kumar
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yikai Luo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Tissue Engineering Programme, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
3
|
Huang S, Henderson TR, Dojo Soeandy C, Lezhanska A, Henderson JT. An efficient low cost means of biophysical gene transfection in primary cells. Sci Rep 2024; 14:13179. [PMID: 38849388 PMCID: PMC11161637 DOI: 10.1038/s41598-024-62996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Efficient, facile gene modification of cells has become an indispensable part of modern molecular biology. For the majority of cell lines and several primary populations, such modifications can be readily performed through a variety of methods. However, many primary cell lines such as stem cells frequently suffer from poor transfection efficiency. Though several physical approaches have been introduced to circumvent these issues, they often require expensive/specialized equipment and/or consumables, utilize substantial cell numbers and often still suffer from poor efficiency. Viral methods are capable of transducing difficult cellular populations, however such methods can be time consuming for large arrays of gene targets, present biohazard concerns, and result in expression of viral proteins; issues of concern for certain experimental approaches. We report here a widely applicable, low-cost (< $100 CAD) method of electroporation, applicable to small (1-10 μl) cell volumes and composed of equipment readily available to the average investigator. Using this system we observe a sixfold increase in transfection efficiency in embryonic stem cell lines compared to commercial devices. Due to efficiency gains and reductions in volume and applied voltage, this process improves the survival of sensitive stem cell populations while reducing reagent requirements for protocols such as Cas9/gRNAs transfections.
Collapse
Affiliation(s)
- Shudi Huang
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St. Rm 962, Toronto, ON, M5S 3M2, Canada
| | - Tyler R Henderson
- Department of Medical Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chesarahmia Dojo Soeandy
- Tumour Immunotherapy Program Cell Manufacturing Team, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Rm 8-207, Toronto, ON, M5G 2M9, Canada
| | - Anastasiya Lezhanska
- Department of Medicine, Queen's University, 94 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St. Rm 962, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
4
|
Maphanga C, Manoto S, Mabena C, Ombinda-Lemboumba S, Maaza M, Mthunzi-Kufa P. Laser-enabled delivery of antiretroviral drugs into HIV-1 infected TZM-bl cells. JOURNAL OF BIOPHOTONICS 2022; 15:e202200043. [PMID: 35852044 DOI: 10.1002/jbio.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The use of femtosecond laser to create sub-microscopic transient pores on the cell membrane allowing exogenous material into mammalian cells has become a very efficient optical delivery method over the past decade. This study focuses on laser-enabled delivery of antiretroviral (ARV) drugs into HIV-1 infected TZM-bl cells in vitro. A 1 kHz femtosecond laser emitting at a wavelength of 800 nm was used to photoporate cells at 6.5 μW. Trypan blue was used for characterisation and its uptake was quantified using Matlab software. Cell membrane damage was assessed using the lactate dehydrogenase (LDH) assay while HIV-1 infection was assessed using luciferase assay. Our results showed successful delivery of ARVs into HIV-1 infected cells without compromising their cell membranes, subsequently reducing the level of infection. The LDH assay showed no significant cell membrane damage of laser-treated cells, and the luciferase assay demonstrated significant reduction in the level of HIV-1 infection.
Collapse
Affiliation(s)
- Charles Maphanga
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Physics, NB Pityana Building, University of South Africa, Science Campus, Florida, South Africa
| | - Sello Manoto
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Chemist Mabena
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | - Malik Maaza
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
5
|
Heinemann D, Zabic M, Terakawa M, Boch J. Laser-based molecular delivery and its applications in plant science. PLANT METHODS 2022; 18:82. [PMID: 35690858 PMCID: PMC9188231 DOI: 10.1186/s13007-022-00908-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
Collapse
Affiliation(s)
- Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany.
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Miroslav Zabic
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Mitsuhiro Terakawa
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Jens Boch
- Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
6
|
Patskovsky S, Qi M, Meunier M. Single point single-cell nanoparticle mediated pulsed laser optoporation. Analyst 2020; 145:523-529. [PMID: 31761924 DOI: 10.1039/c9an01869g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This article presents an optical platform for studying the dynamics of nanoparticle assisted pulsed laser optoporation of individual living cells. Here plasmonic nanoparticles (NPs) act as markers of the exact spatial position of living cell membranes and as an enhancer for localized pulsed laser perforation. High contrast NP imaging using reflected light microscopy (RLM) allows accurate and automatic laser targeting at individual NPs for spatially controlled laser optoporation of single cells at a single point. The NP imaging method is compatible with fluorescence microscopy and a cellular incubator that allows study of real-time perforation kinetics of live cells and the optomechanical interaction of NPs with membranes. These parameters are of great interest for the development and experimental implementation of the technology of pulsed laser optoporation and transfection applied to single living cells as well as to bulk-level assays.
Collapse
Affiliation(s)
- Sergiy Patskovsky
- Engineering Physics Department, Ecole Polytechnique de Montréal, Laser Processing and Plasmonics Laboratory, Montréal, Québec H3C 3A7, Canada.
| | | | | |
Collapse
|
7
|
Gupta P, Balasubramaniam N, Chang HY, Tseng FG, Santra TS. A Single-Neuron: Current Trends and Future Prospects. Cells 2020; 9:E1528. [PMID: 32585883 PMCID: PMC7349798 DOI: 10.3390/cells9061528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The brain is an intricate network with complex organizational principles facilitating a concerted communication between single-neurons, distinct neuron populations, and remote brain areas. The communication, technically referred to as connectivity, between single-neurons, is the center of many investigations aimed at elucidating pathophysiology, anatomical differences, and structural and functional features. In comparison with bulk analysis, single-neuron analysis can provide precise information about neurons or even sub-neuron level electrophysiology, anatomical differences, pathophysiology, structural and functional features, in addition to their communications with other neurons, and can promote essential information to understand the brain and its activity. This review highlights various single-neuron models and their behaviors, followed by different analysis methods. Again, to elucidate cellular dynamics in terms of electrophysiology at the single-neuron level, we emphasize in detail the role of single-neuron mapping and electrophysiological recording. We also elaborate on the recent development of single-neuron isolation, manipulation, and therapeutic progress using advanced micro/nanofluidic devices, as well as microinjection, electroporation, microelectrode array, optical transfection, optogenetic techniques. Further, the development in the field of artificial intelligence in relation to single-neurons is highlighted. The review concludes with between limitations and future prospects of single-neuron analyses.
Collapse
Affiliation(s)
- Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| | - Nandhini Balasubramaniam
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; (P.G.); (N.B.)
| |
Collapse
|
8
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
9
|
Holguin SY, Thadhani NN, Prausnitz MR. Effect of laser fluence, nanoparticle concentration and total energy input per cell on photoporation of cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1667-1677. [PMID: 29719217 DOI: 10.1016/j.nano.2018.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022]
Abstract
Intracellular delivery of molecules can be increased by laser-exposure of carbon black nanoparticles to cause photoporation of the cells. Here we sought to determine effects of multiple laser exposure parameters on intracellular uptake and cell viability with the goal of determining a single unifying parameter that predicts cellular bioeffects. DU145 human prostate cancer cells in suspension with nanoparticles were exposed to near-infrared nanosecond laser pulses over a range of experimental conditions. Increased bioeffects (i.e., uptake and viability loss determined by flow cytometry) were seen when increasing laser fluence, number of pulses and nanoparticle concentration, and decreasing cell concentration. Bioeffects caused by different combinations of these four parameters were generally predicted by their cumulative energy input per cell, which served as a unifying parameter. This indicates that photoporation depends on what appears to be the cumulative effect of multiple cell-nanoparticle interactions from neighboring nanoparticles during a series of laser pulses.
Collapse
Affiliation(s)
- Stefany Y Holguin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Breunig HG, Batista A, Uchugonova A, König K. Cell optoporation with a sub-15 fs and a 250-fs laser. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:60501. [PMID: 27251075 DOI: 10.1117/1.jbo.21.6.060501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/05/2016] [Indexed: 05/03/2023]
Abstract
We employed two commercially available femtosecond lasers, a Ti:sapphire and a ytterbium-based oscillator, to directly compare from a user’s practical point-of-view in one common experimental setup the efficiencies of transient laser-induced cell membrane permeabilization, i.e., of so-called optoporation. The experimental setup consisted of a modified multiphoton laser-scanning microscope employing high-NA focusing optics. An automatic cell irradiation procedure was realized with custom-made software that identified cell positions and controlled relevant hardware components. The Ti:sapphire and ytterbium-based oscillators generated broadband sub-15-fs pulses around 800 nm and 250-fs pulses at 1044 nm, respectively. A higher optoporation rate and posttreatment viability were observed for the shorter fs pulses, confirming the importance of multiphoton effects for efficient optoporation.
Collapse
Affiliation(s)
- Hans Georg Breunig
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, Germany
| | - Ana Batista
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, GermanybSaarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| | - Aisada Uchugonova
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, GermanybSaarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| | - Karsten König
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, GermanybSaarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Yapp C, Rogers C, Savitsky P, Philpott M, Müller S. Frapid: achieving full automation of FRAP for chemical probe validation. BIOMEDICAL OPTICS EXPRESS 2016; 7:422-441. [PMID: 26977352 PMCID: PMC4771461 DOI: 10.1364/boe.7.000422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Fluorescence Recovery After Photobleaching (FRAP) is an established method for validating chemical probes against the chromatin reading bromodomains, but so far requires constant human supervision. Here, we present Frapid, an automated open source code implementation of FRAP that fully handles cell identification through fuzzy logic analysis, drug dispensing with a custom-built fluid handler, image acquisition & analysis, and reporting. We successfully tested Frapid on 3 bromodomains as well as on spindlin1 (SPIN1), a methyl lysine binder, for the first time.
Collapse
Affiliation(s)
- Clarence Yapp
- Target Discovery Institute, NDMRB, University of Oxford, Oxford, OX3 7FZ, UK
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, OX3 7LD, UK
| | - Catherine Rogers
- Target Discovery Institute, NDMRB, University of Oxford, Oxford, OX3 7FZ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, ORCRB, University of Oxford, Oxford, OX3 7DQ, UK
| | - Martin Philpott
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, OX3 7LD, UK
| | - Susanne Müller
- Target Discovery Institute, NDMRB, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
12
|
Zhou H, Sharma M, Berezin O, Zuckerman D, Berezin MY. Nanothermometry: From Microscopy to Thermal Treatments. Chemphyschem 2016; 17:27-36. [PMID: 26443335 PMCID: PMC7396319 DOI: 10.1002/cphc.201500753] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/01/2023]
Abstract
Measuring temperature in cells and tissues remotely, with sufficient sensitivity, and in real time presents a new paradigm in engineering, chemistry and biology. Traditional sensors, such as contact thermometers, thermocouples, and electrodes, are too large to measure the temperature with subcellular resolution and are too invasive to measure the temperature in deep tissue. The new challenge requires novel approaches in designing biocompatible temperature sensors-nanothermometers-and innovative techniques for their measurements. In the last two decades, a variety of nanothermometers whose response reflected the thermal environment within a physiological temperature range have been identified as potential sensors. This review covers the principles and aspects of nanothermometer design driven by two emerging areas: single-cell thermogenesis and image guided thermal treatments. The review highlights the current trends in nanothermometry illustrated with recent representative examples.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Monica Sharma
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | | | - Darryl Zuckerman
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA.
- Institute for Materials Science and Engineering, Washington University, 1 Brookings Dr, St. Louis, MO, 63130, USA.
| |
Collapse
|
13
|
König K, Andersen P, Le T, Breunig HG. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator. Microsc Res Tech 2015; 78:1154-8. [DOI: 10.1002/jemt.22599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Karsten König
- JenLab GmbH; Jena D-07745 Germany
- Department of Biophotonics and Laser Technology; Saarland University; Saarbrücken D-66123 Germany
| | - Peter Andersen
- DTU Fotonik, Department of Photonics Engineering; Technical University of Denmark; Roskilde DK- 4000 Denmark
| | - Tuan Le
- FemtoLasers; Vienna A-1100 Austria
| | | |
Collapse
|
14
|
Uchugonova A, Breunig HG, Batista A, König K. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115008. [PMID: 26618522 DOI: 10.1117/1.jbo.20.11.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.
Collapse
Affiliation(s)
- Aisada Uchugonova
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, GermanybJenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany
| | - Hans Georg Breunig
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, GermanybJenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany
| | - Ana Batista
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| | - Karsten König
- Saarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, GermanybJenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany
| |
Collapse
|