1
|
Fitzpatrick-Schmidt T, Mansouri A, Adamec J, Klein J, Coleman L, Edwards KN, Simon L, Molina PE, Salling MC, Edwards S. Proteomic Analysis of Chronic Binge Alcohol-Induced Hippocampal and Anterior Cingulate Cortex Neuroadaptations in Simian Immunodeficiency Virus (SIV)-Infected Female Rhesus Macaques. J Neuroimmune Pharmacol 2025; 20:16. [PMID: 39930298 DOI: 10.1007/s11481-025-10179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 05/08/2025]
Abstract
Human immunodeficiency virus (HIV) infection produces neurological comorbidities including HIV-associated neurocognitive disorder (HAND) and chronic pain. HIV also increases the risk of developing an alcohol use disorder (AUD). With the rising prevalence of AUD in women and people with HIV (PWH), understanding the neurobiological impact of alcohol in these populations is important. We examined proteomic alterations in the hippocampus and anterior cingulate cortex (ACC), brain regions critical for cognition and affective pain, in a female rhesus macaque model of chronic binge alcohol administration and SIV infection. Adult female rhesus macaques received either chronic binge alcohol (CBA, 13-14 g/kg/week of alcohol) or water (VEH) via gastric catheter. All animals were inoculated with simian immunodeficiency virus (SIVmac251) and treated with antiretroviral therapy (ART). Brain samples were processed for proteomic analysis, and quantitative discovery-based proteomics identified differentially expressed proteins in both brain regions comparing CBA treatment to VEH. Ingenuity Pathway Analysis (IPA) was also used to predict pathway activation. CBA significantly altered 147 proteins in the hippocampus and 176 proteins in the ACC. IPA revealed alterations in 39 canonical pathways in the hippocampus and 62 canonical pathways in the ACC. Fourteen common canonical pathways were enriched in both regions, including synaptogenesis and protein kinase A (PKA) signaling. These discoveries expand our understanding of how alcohol alters proteins of critical signaling pathways in vulnerable brain regions in the context of SIV/HIV infection and may lead to the development of new pharmacological treatment avenues for neurological dysfunction in women with HIV who use alcohol.
Collapse
Affiliation(s)
- Taylor Fitzpatrick-Schmidt
- Department of Physiology, LSU Health-New Orleans, 1901 Perdido St. MEB 7205, New Orleans, LA, 70112, USA
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, New Orleans, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, New Orleans, USA
| | - Amirsalar Mansouri
- Proteomics Core, LSU Health-New Orleans, New Orleans, USA
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU Health-New Orleans, New Orleans, USA
| | - Jiri Adamec
- Proteomics Core, LSU Health-New Orleans, New Orleans, USA
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU Health-New Orleans, New Orleans, USA
| | - Jennifer Klein
- Proteomics Core, LSU Health-New Orleans, New Orleans, USA
| | - Larry Coleman
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, New Orleans, USA
| | - Kimberly N Edwards
- Department of Physiology, LSU Health-New Orleans, 1901 Perdido St. MEB 7205, New Orleans, LA, 70112, USA
| | - Liz Simon
- Department of Physiology, LSU Health-New Orleans, 1901 Perdido St. MEB 7205, New Orleans, LA, 70112, USA
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, New Orleans, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, New Orleans, USA
| | - Patricia E Molina
- Department of Physiology, LSU Health-New Orleans, 1901 Perdido St. MEB 7205, New Orleans, LA, 70112, USA
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, New Orleans, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, New Orleans, USA
| | - Michael C Salling
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, New Orleans, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, New Orleans, USA
- Department of Cell Biology and Anatomy, LSU Health-New Orleans, New Orleans, LA, USA
| | - Scott Edwards
- Department of Physiology, LSU Health-New Orleans, 1901 Perdido St. MEB 7205, New Orleans, LA, 70112, USA.
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, New Orleans, USA.
- Neuroscience Center of Excellence, LSU Health-New Orleans, New Orleans, USA.
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, New Orleans, USA.
| |
Collapse
|
2
|
Koca RO, Gormus ZIS, Solak H, Celik FS, Kurar E, Kutlu S. Are the promnestic effects of neurokinin 3 receptor mediated by hippocampal neurogenesis in a Aβ-induced rat model of Alzheimer's disease? Int J Dev Neurosci 2024; 84:688-703. [PMID: 39010691 DOI: 10.1002/jdn.10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region. The aim of the project was to investigate the role of hippocampal neurogenesis in the promnestic effects of NK3R agonist administration in an amyloid beta-induced AD rat model. Wistar albino rats were divided into control, Alzheimer, NK3R agonist and Alzheimer + NK3R agonist groups. The open field (OF) test and Morris water maze (MWM) test were performed for locomotor activity and memory analysis. Peptide gene expression levels (Nestin, DCX, Neuritin, MASH1, Neun, BDNF) were analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR). In the OF test, the group-time relationship was found to be statistically different in the parameters of distance travelled and percentage of movement (p < 0.05). In MWM, the time to reach the platform and the time spent in the target quadrant were statistically significant between the groups (p < 0.05). Statistically significant differences were observed in gene expression levels (Nestin, DCX, Neuritin, MASH1) in the hippocampal tissue of rats between the groups (p < 0.05). NK3 receptor agonism favourably affected hippocampal neurogenesis in AD model rats. It was concluded that NK3 receptor agonism in the hippocampus, which is the first affected region in the physiopathology of AD, may be effective in both the formation of neural precursor cells and the reduction of neuronal degeneration. The positive effect of NK3R on cognitive functions may be mediated by hippocampal neurogenesis.
Collapse
Affiliation(s)
- Raviye Ozen Koca
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Z Isık Solak Gormus
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hatice Solak
- Department of Physiology, Faculty of Medicine, Kütahya Health Sciences University, Kutahya, Turkey
| | - Fatma Secer Celik
- Department of Medical Biology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Selim Kutlu
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
3
|
Winkler-Ferenczi Z, Pelyvas B, Nagy M, Marosi M, Beresova M, Varga R, Bencze J, Szucs P, Berenyi E, Englohner A, Meszar Z, Papp T. Repeated diagnostic ultrasound exposure modifies the structural properties of CA1 dendrites and alters the hippocampal transcriptome. Sci Rep 2024; 14:11713. [PMID: 38778177 PMCID: PMC11111781 DOI: 10.1038/s41598-024-62621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The development of neurons is regulated by several spatiotemporally changing factors, which are crucial to give the ability of neurons to form functional networks. While external physical stimuli may impact the early developmental stages of neurons, the medium and long-term consequences of these influences have yet to be thoroughly examined. Using an animal model, this study focuses on the morphological and transcriptome changes of the hippocampus that may occur as a consequence of fetal ultrasound examination. We selectively labeled CA1 neurons of the hippocampus with in-utero electroporation to analyze their morphological features. Furthermore, certain samples also went through RNA sequencing after repetitive ultrasound exposure. US exposure significantly changed several morphological properties of the basal dendritic tree. A notable increase was also observed in the density of spines on the basal dendrites, accompanied by various alterations in individual spine morphology. Transcriptome analysis revealed several up or downregulated genes, which may explain the molecular background of these alterations. Our results suggest that US-derived changes in the dendritic trees of CA1 pyramidal cells might be connected to modification of the transcriptome of the hippocampus and may lead to an increased dendritic input.
Collapse
Affiliation(s)
| | - Bence Pelyvas
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Marianna Nagy
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Maria Marosi
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Monika Beresova
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Rita Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Janos Bencze
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| | - Ervin Berenyi
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Angelika Englohner
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Zoltan Meszar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Tamas Papp
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
| |
Collapse
|
4
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Šlosar L, Peskar M, Pišot R, Marusic U. Environmental enrichment through virtual reality as multisensory stimulation to mitigate the negative effects of prolonged bed rest. Front Aging Neurosci 2023; 15:1169683. [PMID: 37674784 PMCID: PMC10477372 DOI: 10.3389/fnagi.2023.1169683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Prolonged bed rest causes a multitude of deleterious physiological changes in the human body that require interventions even during immobilization to prevent or minimize these negative effects. In addition to other interventions such as physical and nutritional therapy, non-physical interventions such as cognitive training, motor imagery, and action observation have demonstrated efficacy in mitigating or improving not only cognitive but also motor outcomes in bedridden patients. Recent technological advances have opened new opportunities to implement such non-physical interventions in semi- or fully-immersive environments to enable the development of bed rest countermeasures. Extended Reality (XR), which covers augmented reality (AR), mixed reality (MR), and virtual reality (VR), can enhance the training process by further engaging the kinesthetic, visual, and auditory senses. XR-based enriched environments offer a promising research avenue to investigate the effects of multisensory stimulation on motor rehabilitation and to counteract dysfunctional brain mechanisms that occur during prolonged bed rest. This review discussed the use of enriched environment applications in bedridden patients as a promising tool to improve patient rehabilitation outcomes and suggested their integration into existing treatment protocols to improve patient care. Finally, the neurobiological mechanisms associated with the positive cognitive and motor effects of an enriched environment are highlighted.
Collapse
Affiliation(s)
- Luka Šlosar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Alma Mater Europaea – ECM, Department of Health Sciences, Maribor, Slovenia
| | - Manca Peskar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Alma Mater Europaea – ECM, Department of Health Sciences, Maribor, Slovenia
| |
Collapse
|
6
|
Qu Y, Zhou N, Zhang X, Li Y, Xu XF. Chromatin Remodeling Factor SMARCA5 is Essential for Hippocampal Memory Maintenance via Metabolic Pathways in Mice. Neurosci Bull 2023; 39:1087-1104. [PMID: 36807260 PMCID: PMC10313638 DOI: 10.1007/s12264-023-01032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 02/21/2023] Open
Abstract
Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.
Collapse
Affiliation(s)
- Yu Qu
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xia Zhang
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, K1Z7K4, Canada
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Modern Teaching Technology & College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xu-Feng Xu
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China.
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, K1Z7K4, Canada.
| |
Collapse
|
7
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
8
|
Little B, Sud N, Nobile Z, Bhattacharya D. Teratogenic effects of maternal drug abuse on developing brain and underlying neurotransmitter mechanisms. Neurotoxicology 2021; 86:172-179. [PMID: 34391795 DOI: 10.1016/j.neuro.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
The aim of this review is to highlight our knowledge of the various drugs of abuse that can prove potential teratogens affecting the brain and cognitive development in an individual exposed to maternal consumption of such agents. Among several drugs of abuse in women, we specifically highlighted the commonly used alcohol, nicotine, opioids, cannabis, cocaine and marijuana. These drugs can affect the fetal development and slow the cognitive maturation apart from physical disabilities. However, no known therapy exists to counter the toxic potential of these drugs. Several researchers used animal models of drug abuse to understand the underlying mechanisms affecting brain development and the relevant neurotransmitter system. Identifying such targets can potentially help in drug discovery research. We reported in depth analysis of such mechanisms and discussed the potential targets for drug development research.
Collapse
Affiliation(s)
- Brianna Little
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States
| | - Neilesh Sud
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States
| | - Zachary Nobile
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States
| | - Dwipayan Bhattacharya
- Lake Erie College of Osteopathic Medicine, 1858 Grandview Blvd., Erie, PA, 16509, United States.
| |
Collapse
|
9
|
Garrett ME, Qin XJ, Mehta D, Dennis MF, Marx CE, Grant GA, Injury and Traumatic Stress (INTRuST) Clinical Consortium, Psychiatric Genomics Consortium PTSD Group, Stein MB, Kimbrel NA, Beckham JC, Hauser MA, Ashley-Koch AE. Gene Expression Analysis in Three Posttraumatic Stress Disorder Cohorts Implicates Inflammation and Innate Immunity Pathways and Uncovers Shared Genetic Risk With Major Depressive Disorder. Front Neurosci 2021; 15:678548. [PMID: 34393704 PMCID: PMC8358297 DOI: 10.3389/fnins.2021.678548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex psychiatric disorder that can develop following exposure to traumatic events. The Psychiatric Genomics Consortium PTSD group (PGC-PTSD) has collected over 20,000 multi-ethnic PTSD cases and controls and has identified both genetic and epigenetic factors associated with PTSD risk. To further investigate biological correlates of PTSD risk, we examined three PGC-PTSD cohorts comprising 977 subjects to identify differentially expressed genes among PTSD cases and controls. Whole blood gene expression was quantified with the HumanHT-12 v4 Expression BeadChip for 726 OEF/OIF veterans from the Veterans Affairs (VA) Mental Illness Research Education and Clinical Center (MIRECC), 155 samples from the Injury and Traumatic Stress (INTRuST) Clinical Consortium, and 96 Australian Vietnam War veterans. Differential gene expression analysis was performed in each cohort separately followed by meta-analysis. In the largest cohort, we performed co-expression analysis to identify modules of genes that are associated with PTSD and MDD. We then conducted expression quantitative trait loci (eQTL) analysis and assessed the presence of eQTL interactions involving PTSD and major depressive disorder (MDD). Finally, we utilized PTSD and MDD GWAS summary statistics to identify regions that colocalize with eQTLs. Although not surpassing correction for multiple testing, the most differentially expressed genes in meta-analysis were interleukin-1 beta (IL1B), a pro-inflammatory cytokine previously associated with PTSD, and integrin-linked kinase (ILK), which is highly expressed in brain and can rescue dysregulated hippocampal neurogenesis and memory deficits. Pathway analysis revealed enrichment of toll-like receptor (TLR) and interleukin-1 receptor genes, which are integral to cellular innate immune response. Co-expression analysis identified four modules of genes associated with PTSD, two of which are also associated with MDD, demonstrating common biological pathways underlying the two conditions. Lastly, we identified four genes (UBA7, HLA-F, HSPA1B, and RERE) with high probability of a shared causal eQTL variant with PTSD and/or MDD GWAS variants, thereby providing a potential mechanism by which the GWAS variant contributes to disease risk. In summary, we provide additional evidence for genes and pathways previously reported and identified plausible novel candidates for PTSD. These data provide further insight into genetic factors and pathways involved in PTSD, as well as potential regions of pleiotropy between PTSD and MDD.
Collapse
Affiliation(s)
- Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Xue Jun Qin
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Faculty of Health, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Michelle F. Dennis
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Christine E. Marx
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Murray B. Stein
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Jean C. Beckham
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Michael A. Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
10
|
Pinky PD, Majrashi M, Fujihashi A, Bloemer J, Govindarajulu M, Ramesh S, Reed MN, Moore T, Suppiramaniam V, Dhanasekaran M. Effects of prenatal synthetic cannabinoid exposure on the cerebellum of adolescent rat offspring. Heliyon 2021; 7:e06730. [PMID: 33912711 PMCID: PMC8066425 DOI: 10.1016/j.heliyon.2021.e06730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide. Recently, cannabis use among young pregnant women has greatly increased. However, prenatal cannabinoid exposure leads to long-lasting cognitive, motor, and behavioral deficits in the offspring and alterations in neural circuitry through various mechanisms. Although these effects have been studied in the hippocampus, the effects of prenatal cannabinoid exposure on the cerebellum are not well elucidated. The cerebellum plays an important role in balance and motor control, as well as cognitive functions such as attention, language, and procedural memories. The aim of this study was to investigate the effects of prenatal cannabinoid exposure on the cerebellum of adolescent offspring. Pregnant rats were treated with synthetic cannabinoid agonist WIN55,212-2, and the offspring were evaluated for various cerebellar markers of oxidative stress, mitochondrial function, and apoptosis. Additionally, signaling proteins associated with glutamate dependent synaptic plasticity were examined. Administration of WIN55,212-2 during pregnancy altered markers of oxidative stress by significantly reducing oxidative stress and nitrite content. Mitochondrial Complex I and Complex IV activities were also enhanced following prenatal cannabinoid exposure. With regard to apoptosis, pP38 levels were significantly increased, and proapoptotic factor caspase-3 activity, pERK, and pJNK levels were significantly decreased. CB1R and GluA1 levels remained unchanged; however, GluN2A was significantly reduced. There was a significant decrease in MAO activity although tyrosine hydroxylase activity was unaltered. Our study indicates that the effects of prenatal cannabinoid exposure on the cerebellum are unique compared to other brain regions by enhancing mitochondrial function and promoting neuronal survival. Further studies are required to evaluate the mechanisms by which prenatal cannabinoid exposure alters cerebellar processes and the impact of these alterations on behavior.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| |
Collapse
|
11
|
Biggio F, Mostallino M, Talani G, Locci V, Mostallino R, Calandra G, Sanna E, Biggio G. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats. Neuropharmacology 2019; 151:45-54. [DOI: 10.1016/j.neuropharm.2019.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
12
|
Xu XF, Wang YC, Zong L, Chen ZY, Li Y. Elevating Integrin-linked Kinase expression has rescued hippocampal neurogenesis and memory deficits in an AD animal model. Brain Res 2018; 1695:65-77. [PMID: 29787769 DOI: 10.1016/j.brainres.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/30/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Alterations in adult neurogenesis have been regarded as a major cause of cognitive impairment in Alzheimer's disease (AD). The underlying mechanism of neurogenesis deficiency in AD remains unclear. In this study, we reported that Integrin-linked Kinase (ILK) protein levels and phosphorylation were significantly decreased in the hippocampus of APP/PS1 mice. Increased ILK expression of dentate gyrus (DG) rescued the hippocampus-dependent neurogenesis and memory deficits in APP/PS1 mice. Moreover, we demonstrated that the effect of ILK overexpression in the hippocampus was exerted via AKT-GSK3β pathway. Finally, we found that Fluoxetine, a selective serotonin reuptake inhibitor, could improve the impaired hippocampal neurogenesis and memory by enhancing ILK-AKT-GSK3β pathway activity in APP/PS1 mice. Thus, these findings demonstrated the effects of ILK on neurogenesis and memory recovery, suggesting that ILK is an important therapeutic target for AD prevention and treatment.
Collapse
Affiliation(s)
- Xu-Feng Xu
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, People's Republic of China; Department of Cell and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Basic Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - You-Cui Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| | - Liang Zong
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Zhe-Yu Chen
- Department of Cell and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Basic Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China.
| |
Collapse
|
13
|
Guo XB, Deng X, Wei Y. Homing of Cultured Endothelial Progenitor Cells and Their Effect on Traumatic Brain Injury in Rat Model. Sci Rep 2017. [PMID: 28646184 PMCID: PMC5482798 DOI: 10.1038/s41598-017-04153-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transplanted endothelial progenitor cells (EPCs) may play an important role in reestablishing the endothelial integrity of the vessels after brain injury, and contribute to neurogenesis. We, therefore, tested the homing of ex vivo cultured peripheral blood-derived EPCs and their effect on injured brain tissue after intravenous administration. To track the homing of implanted EPCs in injured brain tissues, EPCs were labeled with DAPI and BrdU in vitro before transplantation. EPCs were transplanted into the host animal through peripheral administration through the femoral vein, and homing of EPCs was evaluated. The integration of intravenously injected EPCs into the injured brain tissue was demonstrated. Immunohistochemical staining showed that microvessel density in the perifocal region of EPCs-transplanted rats was significantly increased, and the numbers of BrdU+ cells in the DG of subventricular zone were increased in EPCs-transplanted rats as compared to the control group. Transplanted EPCs may play an important role in reestablishing the endothelial integrity in the vessels after brain injury and further contribute to neurogenesis. EPCs enhanced recovery following brain injury in a rat model of TBI.
Collapse
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China.
| | - Xin Deng
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Ying Wei
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| |
Collapse
|
14
|
Brooker SM, Bond AM, Peng CY, Kessler JA. β1-integrin restricts astrocytic differentiation of adult hippocampal neural stem cells. Glia 2016; 64:1235-51. [PMID: 27145730 DOI: 10.1002/glia.22996] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 01/10/2023]
Abstract
Integrins are transmembrane receptors that mediate cell-extracellular matrix and cell-cell interactions. The β1-integrin subunit is highly expressed by embryonic neural stem cells (NSCs) and is critical for NSC maintenance in the developing nervous system, but its role in the adult hippocampal niche remains unexplored. We show that β1-integrin expression in the adult mouse dentate gyrus (DG) is localized to radial NSCs and early progenitors, but is lost in more mature progeny. Although NSCs in the hippocampal subgranular zone (SGZ) normally only infrequently differentiate into astrocytes, deletion of β1-integrin significantly enhanced astrocyte differentiation. Ablation of β1-integrin also led to reduced neurogenesis as well as depletion of the radial NSC population. Activation of integrin-linked kinase (ILK) in cultured adult NSCs from β1-integrin knockout mice reduced astrocyte differentiation, suggesting that at least some of the inhibitory effects of β1-integrin on astrocytic differentiation are mediated through ILK. In addition, β1-integrin conditional knockout also resulted in extensive cellular disorganization of the SGZ as well as non-neurogenic regions of the DG. The effects of β1-integrin ablation on DG structure and astrogliogenesis show sex-specific differences, with the effects following a substantially slower time-course in males. β1-integrin thus plays a dual role in maintaining the adult hippocampal NSC population by supporting the structural integrity of the NSC niche and by inhibiting astrocytic lineage commitment. GLIA 2016;64:1235-1251.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, 60611
| | - Allison M Bond
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, 60611
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, 60611
| | - John A Kessler
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, 60611
| |
Collapse
|
15
|
Isoflurane Is More Deleterious to Developing Brain Than Desflurane: The Role of the Akt/GSK3β Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7919640. [PMID: 27057548 PMCID: PMC4753322 DOI: 10.1155/2016/7919640] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Demand is increasing for safer inhalational anesthetics for use in pediatric anesthesia. In this regard, researchers have debated whether isoflurane is more toxic to the developing brain than desflurane. In the present study, we compared the effects of postnatal exposure to isoflurane with those of desflurane on long-term cognitive performance and investigated the role of the Akt/GSK3β signaling pathway. Postnatal day 6 (P6) mice were exposed to either isoflurane or desflurane, after which the phosphorylation levels of Akt/GSK3β and learning and memory were assessed at P8 or P31. The phosphorylation levels of Akt/GSK3β and learning and memory were examined after intervention with lithium. We found that isoflurane, but not desflurane, impaired spatial learning and memory at P31. Accompanied by behavioral change, only isoflurane decreased p-Akt (ser473) and p-GSK3β (ser9) expressions, which led to GSK3β overactivation. Lithium prevented GSK3β overactivation and alleviated isoflurane-induced cognitive deficits. These results suggest that isoflurane is more likely to induce developmental neurotoxicity than desflurane in context of multiple exposures and that the Akt/GSK3β signaling pathway partly participates in this process. GSK3β inhibition might be an effective way to protect against developmental neurotoxicity.
Collapse
|