1
|
Wu L, Ramirez A, Vo ID, Haglund E, Alvarez JC. Can Electroactive Tracer Molecules Reveal Viscoelastic Structure by Measuring Non-Fickian Diffusion? Angew Chem Int Ed Engl 2025; 64:e202425114. [PMID: 39977278 DOI: 10.1002/anie.202425114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025]
Abstract
We find that viscous and viscoelastic fluids are distinguishable by gauging Non-Fickian diffusion of dissolved electroactive molecules. Typically, such fluids are differentiated by measuring the mean-squared-displacement <Δr2> of embedded tracer particles (~1 μm) diffusing over time (t). From the relationship <Δr2>=6Dtα (D=particle diffusivity), log plots of <Δr2>vs.tα reveal regimes encoded in the slope α. For Fickian diffusion α=1, whereas α<1 and α>1, indicate Non-Fickian sub- and super-diffusion, respectively. Here, we electrolyzed redox reporters as molecular tracers in selected fluids. The current (I) relationship I ∝ ${\propto }$ v1/2 (v=scan-rate) was recast as I2vs.1/tα to introduce α as Non-Fickian quantifier in log plots. When viscosity increased at high concentration of small-molecules, D for the redox reporter declined but α remained constant at ~1 (Fickian). In contrast, both D and α(<1) decreased in viscoelastic hydrogels confirming a molecular sub-diffusive regime. These results agree with particle microrheology on the same fluid types using optical methods that are inapplicable to molecules. By quantifying Non-Fickian diffusion of electroactive molecular tracers, our method can uncover diffusion-structure relationships to identify regulators in neurodegenerative liquid-solid transitions of protein aggregates. Unlike tracer particles, the diffusivity of tracer molecules is controlled by the applied potential and electrode size.
Collapse
Affiliation(s)
- Lei Wu
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., Richmond, VA, 23284, USA
| | - Alfonso Ramirez
- Departamento de Quimica, Universidad del Cauca, Popayan, Colombia
| | - Ivy D Vo
- Chemistry Department, University of Hawaii Manoa, 2545 McCarthy Mall, Honolulu, 96822, USA
| | - Ellinor Haglund
- Chemistry Department, University of Hawaii Manoa, 2545 McCarthy Mall, Honolulu, 96822, USA
| | - Julio C Alvarez
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., Richmond, VA, 23284, USA
| |
Collapse
|
2
|
Barrick T, Ingo C, Hall M, Howe F. Quasi-Diffusion Imaging: Application to Ultra-High b-Value and Time-Dependent Diffusion Images of Brain Tissue. NMR IN BIOMEDICINE 2025; 38:e70011. [PMID: 40017343 PMCID: PMC11868825 DOI: 10.1002/nbm.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025]
Abstract
We demonstrate that quasi-diffusion imaging (QDI) is a signal representation that extends towards the negative power law regime. We evaluate QDI for in vivo human and ex vivo fixed rat brain tissue acrossb $$ b $$ -value ranges from 0 to 25,000 s mm-2, determine whether accurate parameter estimates can be acquired from clinically feasible scan times and investigate their diffusion time-dependence. Several mathematical properties of the QDI representation are presented. QDI describes diffusion magnetic resonance imaging (dMRI) signal attenuation by two fitting parameters within a Mittag-Leffler function (MLF). We present its asymptotic properties at low and highb $$ b $$ -values and define the inflection point (IP) above which the signal tends to a negative power law. To show that QDI provides an accurate representation of dMRI signal, we apply it to two human brain datasets (Dataset 1:0 ≤ b ≤ 15,000 $$ 0\le b\le \mathrm{15,000} $$ s mm-2; Dataset 2:0 ≤ b ≤ 17,800 $$ 0\le b\le \mathrm{17,800} $$ s mm-2) and an ex vivo fixed rat brain (Dataset 3:0 ≤ b ≤ 25,000 $$ 0\le b\le \mathrm{25,000} $$ s mm-2, diffusion times17.5 ≤ ∆ ≤ 200 $$ 17.5\le \Delta \le 200 $$ ms). A clinically feasible 4b $$ b $$ -value subset of Dataset 1 (0 ≤ b ≤ 15,000 $$ 0\le b\le \mathrm{15,000} $$ s mm-2) is also analysed (acquisition time 6 min and 16 s). QDI showed excellent fits to observed signal attenuation, identified signal IPs and provided an apparent negative power law. Stable parameter estimates were identified upon increasing the maximumb $$ b $$ -value of the fitting range to near and above signal IPs, suggesting QDI is a valid signal representation within in vivo and ex vivo brain tissue across largeb $$ b $$ -value ranges with multiple diffusion times. QDI parameters were accurately estimated from clinically feasible shorter data acquisition, and time-dependence was observed with parameters approaching a Gaussian tortuosity limit with increasing diffusion time. In conclusion, QDI provides a parsimonious representation of dMRI signal attenuation in brain tissue that is sensitive to tissue microstructural heterogeneity and cell membrane permeability.
Collapse
Affiliation(s)
- Thomas R. Barrick
- Neurological Disorders and Imaging Section, Neuroscience and Cell Biology Research Institute, School of Health and Medical SciencesCity St George's, University of LondonLondonUK
| | - Carson Ingo
- Department of NeurologyNorthwestern UniversityChicagoIllinoisUSA
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinoisUSA
| | - Matt G. Hall
- Medical, Marine, and Nuclear DepartmentNational Physical LaboratoryTeddingtonUK
| | - Franklyn A. Howe
- Neurological Disorders and Imaging Section, Neuroscience and Cell Biology Research Institute, School of Health and Medical SciencesCity St George's, University of LondonLondonUK
| |
Collapse
|
3
|
Wang W, Liang Y, Chechkin AV, Metzler R. Non-Gaussian behavior in fractional Laplace motion with drift. Phys Rev E 2025; 111:034121. [PMID: 40247486 DOI: 10.1103/physreve.111.034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
We study fractional Laplace motion (FLM) obtained from subordination of fractional Brownian motion (FBM) to a gamma process in the presence of an external drift that acts on the composite process or of an internal drift acting solely on the parental process. We derive the statistical properties of this FLM process and find that the external drift does not influence the mean-squared displacement, whereas the internal drift leads to normal diffusion, dominating at long times in the subdiffusive Hurst exponent regime. We also investigate the intricate properties of the probability density function (PDF), demonstrating that it possesses a central Gaussian region whose expansion in time is influenced by FBM's Hurst exponent. Outside of this region, the PDF follows a non-Gaussian pattern. The kurtosis of this FLM process converges toward the Gaussian limit at long times insensitive to the extreme non-Gaussian tails. Additionally, in the presence of the external drift, the PDF remains symmetric and centered at x=vt. In contrast, for the internal drift this symmetry is broken. The results of our computer simulations are fully consistent with the theoretical predictions. The FLM model is suitable for describing stochastic processes with a non-Gaussian PDF and long-ranged correlations of the motion.
Collapse
Affiliation(s)
- Wei Wang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
| | - Yingjie Liang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Hohai University, College of Mechanics and Engineering Science, 211100 Nanjing, China
| | - Aleksei V Chechkin
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, 50-370 Wrocław, Poland
- Max Planck Institute of Microstructure Physics, German-Ukrainian Core of Excellence, Weinberg 2, 06120 Halle, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Gavrilova A, Korabel N, Allan VJ, Fedotov S. Heterogeneous model for superdiffusive movement of dense core vesicles in C. elegans. Sci Rep 2025; 15:6996. [PMID: 40016327 PMCID: PMC11868511 DOI: 10.1038/s41598-024-83602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
Transport of dense core vesicles (DCVs) in neurons is crucial for distributing molecules like neuropeptides and growth factors. We studied the experimental trajectories of dynein-driven directed movement of DCVs in the ALA neuron in C. elegans over a duration of up to 6 seconds. We analysed the DCV movement in three strains of C. elegans: (1) with normal kinesin-1 function, (2) with reduced function in kinesin light chain 2 (KLC-2), and (3) a null mutation in kinesin light chain 1 (KLC-1). We find that DCVs move superdiffusively with displacement variance [Formula: see text] in all three strains with low reversal rates and frequent immobilization of DCVs. The distribution of DCV displacements fits a beta-binomial distribution with the mean and the variance following linear and quadratic growth patterns, respectively. We propose a simple heterogeneous random walk model to explain the observed superdiffusive retrograde transport behaviour of DCV movement. This model involves a random probability with the beta density for a DCV to resume its movement or remain in the same position. To validate our model further, we measure the first passage time for a DCV to reach a certain threshold for the first time. According to the model, the first passage time distribution should follow a beta-negative binomial distribution with the same parameters as the DCV displacement distributions. Our experimental data confirm this prediction.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester, M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester, M13 9PT, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
5
|
Angstmann CN, Han DS, Henry BI, Huang BZ, Xu Z. Compounded random walk for space-fractional diffusion on finite domains. Phys Rev E 2025; 111:024136. [PMID: 40103149 DOI: 10.1103/physreve.111.024136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
We formulate a compounded random walk that is physically well defined on both finite and infinite domains, and samples space-dependent forces throughout jumps. The governing evolution equation for the walk limits to a space-fractional Fokker-Planck equation valid on bounded domains, and recovers the well known superdiffusive space-fractional diffusion equation on infinite domains. We describe methods for numerical approximation and Monte Carlo simulations and demonstrate excellent correspondence with analytical solutions. This compounded random walk, and its associated fractional Fokker-Planck equation, provides a major advance for modeling space-fractional diffusion through potential fields and on finite domains.
Collapse
Affiliation(s)
- Christopher N Angstmann
- University of New South Wales, School of Mathematics and Statistics, Sydney NSW 2052, Australia
| | - Daniel S Han
- University of New South Wales, School of Mathematics and Statistics, Sydney NSW 2052, Australia
| | - Bruce I Henry
- University of New South Wales, School of Mathematics and Statistics, Sydney NSW 2052, Australia
| | - Boris Z Huang
- University of New South Wales, School of Mathematics and Statistics, Sydney NSW 2052, Australia
| | - Zhuang Xu
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, United Kingdom
| |
Collapse
|
6
|
Dasgupta M, Guha S, Armbruster L, Das D, Mitra MK. Nature of barriers determines first passage times in heterogeneous media. SOFT MATTER 2024; 20:8353-8362. [PMID: 39318347 DOI: 10.1039/d4sm00908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Intuition suggests that passage times across a region increase with the number of barriers along the path. Can this fail depending on the nature of the barrier? To probe this fundamental question, we exactly solve for the first passage time in general d-dimensions for diffusive transport through a spatially patterned array of obstacles - either entropic or energetic, depending on the nature of the obstacles. For energetic barriers, we show that first passage times vary non-monotonically with the number of barriers, while for entropic barriers it increases monotonically. This non-monotonicity for energetic barriers is further reflected in the behaviour of effective diffusivity as well. We then design a simple experiment where a robotic bug navigates in a heterogeneous environment through a spatially patterned array of obstacles to validate our predictions. Finally, using numerical simulations, we show that this non-monotonic behaviour for energetic barriers is general and extends to even super-diffusive transport.
Collapse
Affiliation(s)
| | - Sougata Guha
- Department of Physics, IIT Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| | | | - Dibyendu Das
- Department of Physics, IIT Bombay, Mumbai 400076, India.
| | - Mithun K Mitra
- Department of Physics, IIT Bombay, Mumbai 400076, India.
| |
Collapse
|
7
|
Fernández Casafuz AB, Brigante AMA, De Rossi MAC, Monastra AG, Bruno L. Deciphering the intracellular forces shaping mitochondrial motion. Sci Rep 2024; 14:23914. [PMID: 39397143 PMCID: PMC11471753 DOI: 10.1038/s41598-024-74734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
We propose a novel quantitative method to explore the forces affecting mitochondria within living cells in an almost non-invasive fashion. This new tool enables the detection of localized mechanical impulses on these organelles that occur amidst the stationary fluctuations caused by the thermal jittering in the cytoplasm. Recent experimental evidence shows that the action of mechanical forces has important effects on the dynamics, morphology and distribution of mitochondria in cells. In particular, their crosstalk with the cytoskeleton has been found to alter these organelles function; however, the mechanisms underlying this phenomenon are largely unknown. Our results highlight the different functions that cytoskeletal networks play in shaping mitochondrial dynamics. This work presents a novel technique to extend our knowledge of how the impact of mechanical cues can be quantified at the single organelle level. Moreover, this approach can be expanded to the study of other organelles or biopolymers.
Collapse
Affiliation(s)
- Agustina Belén Fernández Casafuz
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
| | - Azul Marí A Brigante
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, 1428, Argentina
| | - Marí A Cecilia De Rossi
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, 1428, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandro Gabriel Monastra
- Universidad Nacional de General Sarmiento, Instituto de Ciencias, Los Polvorines, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Bruno
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo (IC), Buenos Aires, 1428, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Liang Y, Wang W, Metzler R. Aging and confinement in subordinated fractional Brownian motion. Phys Rev E 2024; 109:064144. [PMID: 39020934 DOI: 10.1103/physreve.109.064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in harmonic confinement, when the measurement of the stochastic process starts a time t_{a}>0 after its original initiation at t=0. Specifically, we consider the aged versions of the ensemble mean-squared displacement (MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to confined CTRW. Specifically, short aging times t_{a} in confined subordinated FBM do not affect the aged MSD, while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
Collapse
|
9
|
Singh C, Chaudhuri A. Anomalous dynamics of a passive droplet in active turbulence. Nat Commun 2024; 15:3704. [PMID: 38697961 PMCID: PMC11066042 DOI: 10.1038/s41467-024-47727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Motion of a passive deformable object in an active environment serves as a representative of both in-vivo systems such as intracellular particle motion in Acanthamoeba castellanii, or in-vitro systems such as suspension of beads inside dense swarms of Escherichia coli. Theoretical modeling of such systems is challenging due to the requirement of well resolved hydrodynamics which can explore the spatiotemporal correlations around the suspended passive object in the active fluid. We address this critical lack of understanding using coupled hydrodynamic equations for nematic liquid crystals with finite active stress to model the active bath, and a suspended nematic droplet with zero activity. The droplet undergoes deformation fluctuations and its movement shows periods of "runs" and "stays". At relatively low interfacial tension, the droplet begins to break and mix with the outer active bath. We establish that the motion of the droplet is influenced by the interplay of spatial correlations of the flow and the size of the droplet. The mean square displacement shows a transition from ballistic to normal diffusion which depends on the droplet size. We discuss this transition in relation to spatiotemporal scales associated with velocity correlations of the active bath and the droplet.
Collapse
Affiliation(s)
- Chamkor Singh
- Department of Physics, Central University of Punjab, Bathinda, India.
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
10
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
12
|
Li Y, Suleiman K, Xu Y. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics. Phys Rev E 2024; 109:014139. [PMID: 38366530 DOI: 10.1103/physreve.109.014139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
Scaled Brownian motions (SBMs) with power-law time-dependent diffusivity have been used to describe various types of anomalous diffusion yet Gaussian observed in granular gases kinetics, turbulent diffusion, and molecules mobility in cells, to name a few. However, some of these systems may exhibit non-Gaussian behavior which can be described by SBM with diffusing diffusivity (DD-SBM). Here, we numerically investigate both free and confined DD-SBM models characterized by fixed or stochastic scaling exponent of time-dependent diffusivity. The effects of distributed scaling exponent, random diffusivity, and confinement are considered. Different regimes of ultraslow diffusion, subdiffusion, normal diffusion, and superdiffusion are observed. In addition, weak ergodic and non-Gaussian behaviors are also detected. These results provide insights into diffusion in time-fluctuating diffusivity landscapes with potential applications to time-dependent temperature systems spreading in heterogeneous environments.
Collapse
Affiliation(s)
- Yongge Li
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kheder Suleiman
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Xu
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
- MOE Key Laboratory for Complexity Science in Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
13
|
Luo X, Bao JD, Fan WY. Multiple diffusive behaviors of the random walk in inhomogeneous environments. Phys Rev E 2024; 109:014130. [PMID: 38366502 DOI: 10.1103/physreve.109.014130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
Anomalous diffusive behaviors are observed in highly inhomogeneous but relatively stable environments such as intracellular media and are increasingly attracting attention. In this paper we develop a coupled continuous-time random walk model in which the waiting time is power-law coupled with the local environmental diffusion coefficient. We provide two forms of the waiting time density, namely, a heavy-tailed density and an exponential density. For different waiting time densities, anomalous diffusions with the diffusion exponent between 0 and 2 and Brownian yet non-Gaussian diffusion can be realized within the present model. The diffusive behaviors are analyzed and discussed by deriving the mean-squared displacement and probability density function. In addition we derive the effective jump length density corresponding to the decoupled form to help distinguish the diffusion types. Our model unifies two kinds of anomalous diffusive behavior with different characteristics in the same inhomogeneous environment into a theoretical framework. The model interprets the random motion of particles in a complex inhomogeneous environment and reproduces the experimental results of different biological and physical systems.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen-Yue Fan
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
14
|
Qu HC, Yang Y, Cui ZC, Wang D, Xue CD, Qin KR. Temperature-mediated diffusion of nanoparticles in semidilute polymer solutions. Electrophoresis 2023; 44:1899-1906. [PMID: 37736676 DOI: 10.1002/elps.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The temperature is often a critical factor affecting the diffusion of nanoparticles in complex physiological media, but its specific effects are still to be fully understood. Here, we constructed a temperature-regulated model of semidilute polymer solution and experimentally investigated the temperature-mediated diffusion of nanoparticles using the particle tracking method. By examining the ensemble-averaged mean square displacements (MSDs), we found that the MSD grows gradually as the temperature increases while the transition time from sublinear to linear stage in MSD decreases. Meanwhile, the temperature-dependent measured diffusivity of the nanoparticles shows an exponential growth. We revealed that these temperature-mediated changes are determined by the composite effect of the macroscale property of polymer solution and the microscale dynamics of polymer chain as well as nanoparticles. Furthermore, the measured non-Gaussian displacement probability distributions were found to exhibit non-Gaussian fat tails, and the tailed distribution is enhanced as the temperature increases. The non-Gaussianity was calculated and found to vary in the same trend with the tailed distribution, suggesting the occurrence of hopping events. This temperature-mediated non-Gaussian feature validates the recent theory of thermally induced activated hopping. Our results highlight the temperature-mediated changes in diffusive transport of nanoparticles in polymer solutions and may provide the possible strategy to improve drug delivery in physiological media.
Collapse
Affiliation(s)
- Heng-Chao Qu
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Yi Yang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Zhi-Chao Cui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Dong Wang
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
| | - Chun-Dong Xue
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
- Faculty of Medicine, Dalian University of Technology, Dalian, P. R. China
| | - Kai-Rong Qin
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- Faculty of Medicine, Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
15
|
Régnier L, Dolgushev M, Bénichou O. Record ages of non-Markovian scale-invariant random walks. Nat Commun 2023; 14:6288. [PMID: 37813834 PMCID: PMC10562453 DOI: 10.1038/s41467-023-41945-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
How long is needed for an observable to exceed its previous highest value and establish a new record? This time, known as the age of a record plays a crucial role in quantifying record statistics. Until now, general methods for determining record age statistics have been limited to observations of either independent random variables or successive positions of a Markovian (memoryless) random walk. Here we develop a theoretical framework to determine record age statistics in the presence of memory effects for continuous non-smooth processes that are asymptotically scale-invariant. Our theoretical predictions are confirmed by numerical simulations and experimental realisations of diverse representative non-Markovian random walk models and real time series with memory effects, in fields as diverse as genomics, climatology, hydrology, geology and computer science. Our results reveal the crucial role of the number of records already achieved in time series and change our view on analysing record statistics.
Collapse
Affiliation(s)
- Léo Régnier
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Maxim Dolgushev
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
16
|
Liang Y, Wang W, Metzler R. Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift. Phys Rev E 2023; 108:024143. [PMID: 37723819 DOI: 10.1103/physreve.108.024143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
The stochastic motion of a particle with long-range correlated increments (the moving phase) which is intermittently interrupted by immobilizations (the trapping phase) in a disordered medium is considered in the presence of an external drift. In particular, we consider trapping events whose times follow a scale-free distribution with diverging mean trapping time. We construct this process in terms of fractional Brownian motion with constant forcing in which the trapping effect is introduced by the subordination technique, connecting "operational time" with observable "real time." We derive the statistical properties of this process such as non-Gaussianity and nonergodicity, for both ensemble and single-trajectory (time) averages. We demonstrate nice agreement with extensive simulations for the probability density function, skewness, kurtosis, as well as ensemble and time-averaged mean-squared displacements. We place a specific emphasis on the comparisons between the cases with and without drift.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
17
|
Kosztołowicz T. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion. Phys Rev E 2023; 107:064103. [PMID: 37464604 DOI: 10.1103/physreve.107.064103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/11/2023] [Indexed: 07/20/2023]
Abstract
We use a subdiffusion equation with fractional Caputo time derivative with respect to another function g (g-subdiffusion equation) to describe a smooth transition from ordinary subdiffusion to superdiffusion. Ordinary subdiffusion is described by the equation with the "ordinary" fractional Caputo time derivative, superdiffusion is described by the equation with a fractional Riesz-type spatial derivative. We find the function g for which the solution (Green's function, GF) to the g-subdiffusion equation takes the form of GF for ordinary subdiffusion in the limit of small time and GF for superdiffusion in the limit of long time. To solve the g-subdiffusion equation we use the g-Laplace transform method. It is shown that the scaling properties of the GF for g-subdiffusion and the GF for superdiffusion are the same in the long time limit. We conclude that for a sufficiently long time the g-subdiffusion equation describes superdiffusion well, despite a different stochastic interpretation of the processes. Then, paradoxically, a subdiffusion equation with a fractional time derivative describes superdiffusion. The superdiffusive effect is achieved here not by making anomalously long jumps by a diffusing particle, but by greatly increasing the particle jump frequency which is derived by means of the g-continuous-time random walk model. The g-subdiffusion equation is shown to be quite general, it can be used in modeling of processes in which a kind of diffusion change continuously over time. In addition, some methods used in modeling of ordinary subdiffusion processes, such as the derivation of local boundary conditions at a thin partially permeable membrane, can be used to model g-subdiffusion processes, even if this process is interpreted as superdiffusion.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
18
|
Arbel-Goren R, McKeithen-Mead SA, Voglmaier D, Afremov I, Teza G, Grossman A, Stavans J. Target search by an imported conjugative DNA element for a unique integration site along a bacterial chromosome during horizontal gene transfer. Nucleic Acids Res 2023; 51:3116-3129. [PMID: 36762480 PMCID: PMC10123120 DOI: 10.1093/nar/gkad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that can transfer by conjugation to recipient cells. Some ICEs integrate into a unique site in the genome of their hosts. We studied quantitatively the process by which an ICE searches for its unique integration site in the Bacillus subtilis chromosome. We followed the motion of both ICEBs1 and the chromosomal integration site in real time within individual cells. ICEBs1 exhibited a wide spectrum of dynamical behaviors, ranging from rapid sub-diffusive displacements crisscrossing the cell, to kinetically trapped states. The chromosomal integration site moved sub-diffusively and exhibited pronounced dynamical asymmetry between longitudinal and transversal motions, highlighting the role of chromosomal structure and the heterogeneity of the bacterial interior in the search. The successful search for and subsequent recombination into the integration site is a key step in the acquisition of integrating mobile genetic elements. Our findings provide new insights into intracellular transport processes involving large DNA molecules.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Dominik Voglmaier
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idana Afremov
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alan D Grossman
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Yan R, Tan F, Wang J, Zhao N. Conformation and dynamics of an active filament in crowded media. J Chem Phys 2023; 158:114905. [PMID: 36948796 DOI: 10.1063/5.0142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The structural and dynamical properties of active filamentous objects under macromolecular crowding have a great relevance in biology. By means of Brownian dynamics simulations, we perform a comparative study for the conformational change and diffusion dynamics of an active chain in pure solvents and in crowded media. Our result shows a robust compaction-to-swelling conformational change with the augment of the Péclet number. The presence of crowding facilitates self-trapping of monomers and, thus, reinforces the activity mediated compaction. In addition, the efficient collisions between the self-propelled monomers and crowders induce a coil-to-globulelike transition, indicated by a marked change of the Flory scaling exponent of the gyration radius. Moreover, the diffusion dynamics of the active chain in crowded solutions demonstrates activity-enhanced subdiffusion. The center of mass diffusion manifests rather new scaling relations with respect to both the chain length and Péclet number. The interplay of chain activity and medium crowding provides a new mechanism to understand the non-trivial properties of active filaments in complex environments.
Collapse
Affiliation(s)
- Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jingli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
21
|
Verdier H, Laurent F, Cassé A, Vestergaard CL, Masson JB. Variational inference of fractional Brownian motion with linear computational complexity. Phys Rev E 2022; 106:055311. [PMID: 36559393 DOI: 10.1103/physreve.106.055311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
We introduce a simulation-based, amortized Bayesian inference scheme to infer the parameters of random walks. Our approach learns the posterior distribution of the walks' parameters with a likelihood-free method. In the first step a graph neural network is trained on simulated data to learn optimized low-dimensional summary statistics of the random walk. In the second step an invertible neural network generates the posterior distribution of the parameters from the learned summary statistics using variational inference. We apply our method to infer the parameters of the fractional Brownian motion model from single trajectories. The computational complexity of the amortized inference procedure scales linearly with trajectory length, and its precision scales similarly to the Cramér-Rao bound over a wide range of lengths. The approach is robust to positional noise, and generalizes to trajectories longer than those seen during training. Finally, we adapt this scheme to show that a finite decorrelation time in the environment can furthermore be inferred from individual trajectories.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
- Histopathology and Bio-Imaging Group, Sanofi, R&D, 94400 Vitry-Sur-Seine, France
| | - François Laurent
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
| | - Alhassan Cassé
- Histopathology and Bio-Imaging Group, Sanofi, R&D, 94400 Vitry-Sur-Seine, France
| | - Christian L Vestergaard
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015 Paris, France
| |
Collapse
|
22
|
Partridge B, Gonzalez Anton S, Khorshed R, Adams G, Pospori C, Lo Celso C, Lee CF. Heterogeneous run-and-tumble motion accounts for transient non-Gaussian super-diffusion in haematopoietic multi-potent progenitor cells. PLoS One 2022; 17:e0272587. [PMID: 36099240 PMCID: PMC9469981 DOI: 10.1371/journal.pone.0272587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Multi-potent progenitor (MPP) cells act as a key intermediary step between haematopoietic stem cells and the entirety of the mature blood cell system. Their eventual fate determination is thought to be achieved through migration in and out of spatially distinct niches. Here we first analyze statistically MPP cell trajectory data obtained from a series of long time-course 3D in vivo imaging experiments on irradiated mouse calvaria, and report that MPPs display transient super-diffusion with apparent non-Gaussian displacement distributions. Second, we explain these experimental findings using a run-and-tumble model of cell motion which incorporates the observed dynamical heterogeneity of the MPPs. Third, we use our model to extrapolate the dynamics to time-periods currently inaccessible experimentally, which enables us to quantitatively estimate the time and length scales at which super-diffusion transitions to Fickian diffusion. Our work sheds light on the potential importance of motility in early haematopoietic progenitor function.
Collapse
Affiliation(s)
- Benjamin Partridge
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Sara Gonzalez Anton
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
| | - Reema Khorshed
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - George Adams
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
| | - Constandina Pospori
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
- * E-mail: (CLC); (CFL)
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (CLC); (CFL)
| |
Collapse
|
23
|
Shityakov S, Skorb EV, Nosonovsky M. Topological bio-scaling analysis as a universal measure of protein folding. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220160. [PMID: 35845855 PMCID: PMC9277272 DOI: 10.1098/rsos.220160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/14/2022] [Indexed: 05/24/2023]
Abstract
Scaling relationships for polymeric molecules establish power law dependencies between the number of molecular segments and linear dimensions, such as the radius of gyration. They also establish spatial topological properties of the chains, such as their dimensionality. In the spatial domain, power exponents α = 1 (linear stretched molecule), α = 0.5 (the ideal chain) and α = 0.333 (compact globule) are significant. During folding, the molecule undergoes the transition from the one-dimensional linear to the three-dimensional globular state within a very short time. However, intermediate states with fractional dimensions can be stabilized by modifying the solubility (e.g. by changing the solution temperature). Topological properties, such as dimension, correlate with the interaction energy, and thus by tuning the solubility one can control molecular interaction. We investigate these correlations using the example of a well-studied short model of Trp-cage protein. The radius of gyration is used to estimate the fractal dimension of the chain at different stages of folding. It is expected that the same principle is applicable to much larger molecules and that topological (dimensional) characteristics can provide insights into molecular folding and interactions.
Collapse
Affiliation(s)
- Sergey Shityakov
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St Petersburg 191002, Russia
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St Petersburg 191002, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St Petersburg 191002, Russia
| |
Collapse
|
24
|
Bera P, Wasim A, Mondal J. Hi-C embedded polymer model of Escherichia coli reveals the origin of heterogeneous subdiffusion in chromosomal loci. Phys Rev E 2022; 105:064402. [PMID: 35854496 DOI: 10.1103/physreve.105.064402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Underneath its apparently simple architecture, the circular chromosome of Escherichia coli is known for displaying complex dynamics in its cytoplasm, with past investigations hinting at inherently diverse mobilities of chromosomal loci across the genome. To decipher its origin, we simulate the dynamics of genome-wide spectrum of E. coli chromosomal loci, via integrating its experimentally derived Hi-C interaction matrix within a polymer-based model. Our analysis demonstrates that, while the dynamics of the chromosome is subdiffusive in a viscoelastic media, the diffusion constants are strongly dependent of chromosomal loci coordinates and diffusive exponents (α) are widely heterogenous with α ≈ 0.36-0.60. The loci-dependent heterogeneous dynamics and mean first-passage times of interloci encounter were found to be modulated via genetically distant interloci communications and is robust even in the presence of active, ATP-dependent noises. Control investigations reveal that the absence of Hi-C-derived interactions in the model would have abolished the traits of heterogeneous loci diffusion, underscoring the key role of loci-specific genetically distant interaction in modulating the underlying heterogeneity of the loci diffusion.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | |
Collapse
|
25
|
Zhou T, Xu P, Deng W. Lévy Walk Dynamics in an External Constant Force Field in Non-Static Media. JOURNAL OF STATISTICAL PHYSICS 2022; 187:9. [PMID: 35250092 PMCID: PMC8883250 DOI: 10.1007/s10955-022-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Based on the recognition of the huge change of the transport properties for diffusion particles in non-static media, we consider a Lévy walk model subjected to an external constant force in non-static media. Since the physical and comoving coordinates of non-static media are related by scale factor, we equivalently transfer the process from physical coordinate into comoving coordinate and derive the master equation governing the probability density function of the position of the particles in comoving coordinate. Utilizing the Hermite orthogonal polynomial expansions, some statistical properties are obtained, including the asymptotic behaviors of the first two moments in both coordinates and kurtosis. For some representative types of non-static media and Lévy walks, the striking and interesting phenomena originating from the interplay between non-static media, external force, and intrinsic stochastic motion are observed. The stationary distribution are also analyzed for some cases through numerical simulations.
Collapse
Affiliation(s)
- Tian Zhou
- Gansu Key Laboratory of Applied Mathematics and Complex Systems, School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Pengbo Xu
- School of Mathematical Sciences, Peking University, Beijing, 100871 People’s Republic of China
| | - Weihua Deng
- Gansu Key Laboratory of Applied Mathematics and Complex Systems, School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
26
|
Mytiliniou M, Wondergem JAJ, Schmidt T, Heinrich D. Impact of neurite alignment on organelle motion. J R Soc Interface 2022; 19:20210617. [PMID: 35135294 PMCID: PMC8825987 DOI: 10.1098/rsif.2021.0617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process have been associated with devastating neurodegenerative diseases, highlighting the need for a deeper understanding of the mechanisms involved. Here, we use an experimental methodology that leads neurites of differentiated PC12 cells into either one of two configurations: a one-dimensional configuration, where the neurites align along lines, or a two-dimensional configuration, where the neurites adopt a random orientation and shape on a flat substrate. We subsequently monitored the motion of functional organelles, the lysosomes, inside the neurites. Implementing a time-resolved analysis of the mean-squared displacement, we quantitatively characterized distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives rise to faster diffusive and super-diffusive lysosomal motion than the situation in which the neurites are randomly oriented. After inducing lysosome swelling through an osmotic challenge by sucrose, we confirmed the predicted slowdown in diffusive mobility. Surprisingly, we found that the swelling-induced mobility change affected each of the (sub-/super-)diffusive motion modes differently and depended on the alignment configuration of the neurites. Our findings imply that intracellular transport is significantly and robustly dependent on cell morphology, which might in part be controlled by the extracellular matrix.
Collapse
Affiliation(s)
- Maria Mytiliniou
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Joeri A J Wondergem
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Thomas Schmidt
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Doris Heinrich
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands.,Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308 Heilbad Heiligenstadt, Germany.,Faculty for Mathematics and Natural Sciences, Technische Universität Ilmenau, 98693 Ilmenau, Germany.,Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany
| |
Collapse
|
27
|
Sahoo R, Theeyancheri L, Chakrabarti R. Transport of a self-propelled tracer through a hairy cylindrical channel: interplay of stickiness and activity. SOFT MATTER 2022; 18:1310-1318. [PMID: 35060583 DOI: 10.1039/d1sm01693h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Active transport of biomolecules assisted by motor proteins is imperative for the proper functioning of cellular activities. Inspired by the diffusion of active agents in crowded cellular channels, we computationally investigate the transport of an active tracer through a polymer grafted cylindrical channel by varying the activity of the tracer and stickiness of the tracer to the polymers. Our results reveal that the passive tracer exhibits profound subdiffusion with increasing stickiness by exploring deep into the grafted polymeric zone, while purely repulsive one prefers to diffuse through the pore-like space created along the cylindrical axis of the channel. In contrast, the active tracer shows faster dynamics and intermediate superdiffusion even though the tracer preferentially stays close to the dense polymeric region. This observation is further supported by the sharp peaks in the density profile of the probability of radial displacement of the tracer. We discover that the activity plays an important role in deciding the pathway that the tracer takes through the narrow channel. Interestingly, increasing the activity washes out the effect of stickiness. Adding to this, van-Hove functions manifest that the active tracer dynamics deviates from Gaussianity, and the degree of deviation grows with the activity. Our work has direct implications on how effective transportation and delivery of cargo can be achieved through a confined medium where activity, interactions, and crowding are interplaying. Looking ahead, these factors will be crucial for understanding the mechanism of artificial self-powered machines navigating through the cellular channels and performing in vivo challenging tasks.
Collapse
Affiliation(s)
- Rajiblochan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
28
|
Wang W, Metzler R, Cherstvy AG. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Phys Chem Chem Phys 2022; 24:18482-18504. [DOI: 10.1039/d2cp01741e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How does a systematic time-dependence of the diffusion coefficient $D (t)$ affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we examine how the behavior of the...
Collapse
|
29
|
Rosen ME, Grant CP, Dallon JC. Mean square displacement for a discrete centroid model of cell motion. PLoS One 2021; 16:e0261021. [PMID: 34928985 PMCID: PMC8687545 DOI: 10.1371/journal.pone.0261021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
The mean square displacement (MSD) is an important statistical measure on a stochastic process or a trajectory. In this paper we find an approximation to the mean square displacement for a model of cell motion. The model is a discrete-time jump process which approximates a force-based model for cell motion. In cell motion, the mean square displacement not only gives a measure of overall drift, but it is also an indicator of mode of transport. The key to finding the approximation is to find the mean square displacement for a subset of the state space and use it as an approximation for the entire state space. We give some intuition as to why this is an unexpectedly good approximation. A lower bound and upper bound for the mean square displacement are also given. We show that, although the upper bound is far from the computed mean square displacement, in rare cases the large displacements are approached.
Collapse
Affiliation(s)
- Mary Ellen Rosen
- Department of Mathematics, Brigham Young University, Provo, Utah, United States of America
| | - Christopher P. Grant
- Department of Mathematics, Brigham Young University, Provo, Utah, United States of America
| | - J. C. Dallon
- Department of Mathematics, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| |
Collapse
|
30
|
Tomkins M, Hughes A, Morris RJ. An update on passive transport in and out of plant cells. PLANT PHYSIOLOGY 2021; 187:1973-1984. [PMID: 35235675 PMCID: PMC8644452 DOI: 10.1093/plphys/kiab406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/30/2021] [Indexed: 05/09/2023]
Abstract
Transport across membranes is critical for plant survival. Membranes are the interfaces at which plants interact with their environment. The transmission of energy and molecules into cells provides plants with the source material and power to grow, develop, defend, and move. An appreciation of the physical forces that drive transport processes is thus important for understanding the plant growth and development. We focus on the passive transport of molecules, describing the fundamental concepts and demonstrating how different levels of abstraction can lead to different interpretations of the driving forces. We summarize recent developments on quantitative frameworks for describing diffusive and bulk flow transport processes in and out of cells, with a more detailed focus on plasmodesmata, and outline open questions and challenges.
Collapse
Affiliation(s)
- Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Aoife Hughes
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
31
|
Górska K. Integral decomposition for the solutions of the generalized Cattaneo equation. Phys Rev E 2021; 104:024113. [PMID: 34525646 DOI: 10.1103/physreve.104.024113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022]
Abstract
We present the integral decomposition for the fundamental solution of the generalized Cattaneo equation with both time derivatives smeared through convoluting them with some memory kernels. For power-law kernels t^{-α}, α∈(0,1] this equation becomes the time fractional one governed by the Caputo derivatives in which the highest order is 2. To invert the solutions from the Fourier-Laplace domain to the space-time domain we use analytic methods based on the Efross theorem and find out that solutions looked for are represented by integral decompositions which tangle the fundamental solution of the standard Cattaneo equation with nonnegative and normalizable functions being uniquely dependent on the memory kernels. Furthermore, the use of methodology arising from the theory of complete Bernstein functions allows us to assign such constructed integral decompositions the interpretation of subordination. This fact is preserved in two limit cases built into the generalized Cattaneo equations, i.e., either the diffusion or the wave equations. We point out that applying the Efross theorem enables us to go beyond the standard approach which usually leads to the integral decompositions involving the Gaussian distribution describing the Brownian motion. Our approach clarifies puzzling situation which takes place for the power-law kernels t^{-α} for which the subordination based on the Brownian motion does not work if α∈(1/2,1].
Collapse
Affiliation(s)
- K Górska
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31342 Kraków, Poland
| |
Collapse
|
32
|
Rotter DAO, Heger C, Oviedo-Bocanegra LM, Graumann PL. Transcription-dependent confined diffusion of enzymes within subcellular spaces of the bacterial cytoplasm. BMC Biol 2021; 19:183. [PMID: 34474681 PMCID: PMC8414670 DOI: 10.1186/s12915-021-01083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Knowledge on the localization and mobility of enzymes inside bacterial cells is scarce, but important for understanding spatial regulation of metabolism. The four central enzymes (Rib enzymes) of the riboflavin (RF) biosynthesis pathway in the Gram positive model bacterium Bacillus subtilis have been studied extensively in vitro, especially the heavy RF synthase, a large protein complex with a capsid structure formed by RibH and an encapsulated RibE homotrimer, which mediates substrate-channeling. However, little is known about the behavior and mobility of these enzymes in vivo. RESULTS We have investigated the localization and diffusion of the Rib enzymes in the cytoplasm of B. subtilis. By characterizing the diffusion of Rib enzymes in live cells using single particle tracking (SPT) we provide evidence for confined diffusion at the cell poles and otherwise Brownian motion. A majority of RibH particles showed clear nucleoid occlusion and a high degree of confined motion, which is largely abolished after treatment with Rifampicin, revealing that confinement is dependent on active transcription. Contrarily, RibE is mostly diffusive within the cell, showing only 14% encapsulation by RibH nanocompartments. By localizing different diffusive populations within single cells, we find that fast diffusion occurs mostly across the nucleoids located in the cell centers, while the slower, confined subdiffusion occurs at the crowded cell poles. CONCLUSIONS Our results provide evidence for locally different motion of active enzymes within the bacterial cytoplasm, setting up metabolic compartmentalization mostly at the poles of cells.
Collapse
Affiliation(s)
- Daniel A O Rotter
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Heger
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Luis M Oviedo-Bocanegra
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
33
|
Kosztołowicz T, Dutkiewicz A. Subdiffusion equation with Caputo fractional derivative with respect to another function. Phys Rev E 2021; 104:014118. [PMID: 34412326 DOI: 10.1103/physreve.104.014118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
We show an application of a subdiffusion equation with Caputo fractional time derivative with respect to another function g to describe subdiffusion in a medium having a structure evolving over time. In this case a continuous transition from subdiffusion to other type of diffusion may occur. The process can be interpreted as "ordinary" subdiffusion with fixed subdiffusion parameter (subdiffusion exponent) α in which timescale is changed by the function g. As an example, we consider the transition from "ordinary" subdiffusion to ultraslow diffusion. The g-subdiffusion process generates the additional aging process superimposed on the "standard" aging generated by "ordinary" subdiffusion. The aging process is analyzed using coefficient of relative aging of g-subdiffusion with respect to "ordinary" subdiffusion. The method of solving the g-subdiffusion equation is also presented.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Aldona Dutkiewicz
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
| |
Collapse
|
34
|
Continuous Real-Time Motility Analysis of Acanthamoeba Reveals Sustained Movement in Absence of Nutrients. Pathogens 2021; 10:pathogens10080995. [PMID: 34451459 PMCID: PMC8398851 DOI: 10.3390/pathogens10080995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Acanthamoeba keratitis is a serious ocular infection which is challenging to treat and can lead to blindness. While this pathogen is ubiquitous and can contaminate contact lenses after contact with water, its habits remain elusive. Understanding this organism’s natural behavior will better inform us on how Acanthamoeba colonize contact lens care systems. Acanthamoeba trophozoites were allowed to adhere to either a glass coverslip or non-nutrient agar (NNA) within a flow cell with nutrients (Escherichia coli or an axenic culture medium (AC6)) or without nutrients (Ringer’s solution). Images were taken once every 24 s over 12 h and compiled, and videos were analyzed using ImageJ Trackmate software. Acanthamoeba maintained continuous movement for the entire 12 h period. ATCC 50370 had limited differences between conditions and surfaces throughout the experiment. Nutrient differences had a noticeable impact for ATCC 30461, where E. coli resulted in the highest total distance and speed during the early periods of the experiment but had the lowest total distance and speed by 12 h. The Ringer’s and AC6 conditions were the most similar between strains, while Acanthamoeba in the E. coli and NNA conditions demonstrated significant differences between strains (p < 0.05). These results indicate that quantifiable visual tracking of Acanthamoeba may be a novel and robust method for identifying the movement of Acanthamoeba in relation to contact lens care products. The present study indicates that Acanthamoeba can undertake sustained movement for at least 12 h with and without nutrients, on both rough and smooth surfaces, and that different strains have divergent behavior.
Collapse
|
35
|
Åberg C, Poolman B. Glass-like characteristics of intracellular motion in human cells. Biophys J 2021; 120:2355-2366. [PMID: 33887228 DOI: 10.1016/j.bpj.2021.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The motion in the cytosol of microorganisms such as bacteria and yeast has been observed to undergo a dramatic slowing down upon cell energy depletion. These observations have been interpreted as the motion being "glassy," but whether this notion is useful also for active, motor-protein-driven transport in eukaryotic cells is less clear. Here, we use fluorescence microscopy of beads in human (HeLa) cells to probe the motion of membrane-surrounded structures that are carried along the cytoskeleton by motor proteins. Evaluating several hallmarks of glassy dynamics, we show that at short length scales, the motion is heterogeneous, is nonergodic, is well described by a model for the displacement distribution in glassy systems, and exhibits a decoupling of the exchange and persistence times. Overall, these results suggest that the short length scale behavior of objects that can be transported actively by motor proteins in human cells shares features with the motion in glassy systems.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
36
|
Zhou T, Xu P, Deng W. Lévy walk dynamics in mixed potentials from the perspective of random walk theory. Phys Rev E 2021; 103:032151. [PMID: 33862717 DOI: 10.1103/physreve.103.032151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/14/2021] [Indexed: 11/07/2022]
Abstract
Lévy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in micro- and macrodynamics. From the perspective of random walk theory, here we investigate the dynamics of Lévy walks under the influences of the constant force field and the one combined with harmonic potential. Utilizing Hermite polynomial approximation to deal with the spatiotemporally coupled analysis challenges, some striking features are detected, including non-Gaussian stationary distribution, faster diffusion, still strongly anomalous diffusion, etc.
Collapse
Affiliation(s)
- Tian Zhou
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Pengbo Xu
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Weihua Deng
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
37
|
Wang Z, Wang X, Zhang Y, Xu W, Han X. Principles and Applications of Single Particle Tracking in Cell Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005133. [PMID: 33533163 DOI: 10.1002/smll.202005133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
It is a tough challenge for many decades to decipher the complex relationships between cell behaviors and cellular physical properties. Single particle tracking (SPT) with high spatial and temporal resolution has been applied extensively in cell research to understand physicochemical properties of cells and their bio-functions by tracking endogenous or exogenous probes. This review describes the fundamental principles of SPT as well as its applications in intracellular mechanics, membrane dynamics, organelles distribution, and processes of internalization and transport. Finally, challenges and future directions of SPT are also discussed.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuejing Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- School of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150027, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
38
|
Balcerek M, Burnecki K. Testing of Multifractional Brownian Motion. ENTROPY 2020; 22:e22121403. [PMID: 33322676 PMCID: PMC7764075 DOI: 10.3390/e22121403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Fractional Brownian motion (FBM) is a generalization of the classical Brownian motion. Most of its statistical properties are characterized by the self-similarity (Hurst) index 0<H<1. In nature one often observes changes in the dynamics of a system over time. For example, this is true in single-particle tracking experiments where a transient behavior is revealed. The stationarity of increments of FBM restricts substantially its applicability to model such phenomena. Several generalizations of FBM have been proposed in the literature. One of these is called multifractional Brownian motion (MFBM) where the Hurst index becomes a function of time. In this paper, we introduce a rigorous statistical test on MFBM based on its covariance function. We consider three examples of the functions of the Hurst parameter: linear, logistic, and periodic. We study the power of the test for alternatives being MFBMs with different linear, logistic, and periodic Hurst exponent functions by utilizing Monte Carlo simulations. We also analyze mean-squared displacement (MSD) for the three cases of MFBM by comparing the ensemble average MSD and ensemble average time average MSD, which is related to the notion of ergodicity breaking. We believe that the presented results will be helpful in the analysis of various anomalous diffusion phenomena.
Collapse
|
39
|
Joo S, Durang X, Lee OC, Jeon JH. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory. SOFT MATTER 2020; 16:9188-9201. [PMID: 32840541 DOI: 10.1039/d0sm01200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantitatively understanding the dynamics of an active Brownian particle (ABP) interacting with a viscoelastic polymer environment is a scientific challenge. It is intimately related to several interdisciplinary topics such as the microrheology of active colloids in a polymer matrix and the athermal dynamics of the in vivo chromosomes or cytoskeletal networks. Based on Langevin dynamics simulation and analytic theory, here we explore such a viscoelastic active system in depth using a star polymer of functionality f with the center cross-linker particle being ABP. We observe that the ABP cross-linker, despite its self-propelled movement, attains an active subdiffusion with the scaling ΔR2(t) ∼ tα with α ≤ 1/2, through the viscoelastic feedback from the polymer. Counter-intuitively, the apparent anomaly exponent α becomes smaller as the ABP is driven by a larger propulsion velocity, but is independent of functionality f or the boundary conditions of the polymer. We set forth an exact theory and show that the motion of the active cross-linker is a Gaussian non-Markovian process characterized by two distinct power-law displacement correlations. At a moderate Péclet number, it seemingly behaves as fractional Brownian motion with a Hurst exponent H = α/2, whereas, at a high Péclet number, the self-propelled noise in the polymer environment leads to a logarithmic growth of the mean squared displacement (∼ln t) and a velocity autocorrelation decaying as -t-2. We demonstrate that the anomalous diffusion of the active cross-linker is precisely described by a fractional Langevin equation with two distinct random noises.
Collapse
Affiliation(s)
- Sungmin Joo
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - Xavier Durang
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - O-Chul Lee
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| | - Jae-Hyung Jeon
- Department of Physics, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
40
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
41
|
Wang W, Cherstvy AG, Liu X, Metzler R. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Phys Rev E 2020; 102:012146. [PMID: 32794926 DOI: 10.1103/physreve.102.012146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x)=D_{0}|x|^{α}. Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble- and time-averaged mean-squared displacements couple the scaling exponents α of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y∼|x|^{1/(2/(2-α))}/t^{H} coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), P_{HDP-FBM}(y)=e^{-y^{2}}/sqrt[π]. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.
Collapse
Affiliation(s)
- Wei Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Xianbin Liu
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
42
|
Janušonis S, Detering N, Metzler R, Vojta T. Serotonergic Axons as Fractional Brownian Motion Paths: Insights Into the Self-Organization of Regional Densities. Front Comput Neurosci 2020; 14:56. [PMID: 32670042 PMCID: PMC7328445 DOI: 10.3389/fncom.2020.00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
All vertebrate brains contain a dense matrix of thin fibers that release serotonin (5-hydroxytryptamine), a neurotransmitter that modulates a wide range of neural, glial, and vascular processes. Perturbations in the density of this matrix have been associated with a number of mental disorders, including autism and depression, but its self-organization and plasticity remain poorly understood. We introduce a model based on reflected Fractional Brownian Motion (FBM), a rigorously defined stochastic process, and show that it recapitulates some key features of regional serotonergic fiber densities. Specifically, we use supercomputing simulations to model fibers as FBM-paths in two-dimensional brain-like domains and demonstrate that the resultant steady state distributions approximate the fiber distributions in physical brain sections immunostained for the serotonin transporter (a marker for serotonergic axons in the adult brain). We suggest that this framework can support predictive descriptions and manipulations of the serotonergic matrix and that it can be further extended to incorporate the detailed physical properties of the fibers and their environment.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nils Detering
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Thomas Vojta
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
43
|
Xu P, Zhou T, Metzler R, Deng W. Lévy walk dynamics in an external harmonic potential. Phys Rev E 2020; 101:062127. [PMID: 32688557 DOI: 10.1103/physreve.101.062127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Lévy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs-their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some longstanding puzzles around LWs.
Collapse
Affiliation(s)
- Pengbo Xu
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tian Zhou
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-St 24/25, 14476 Potsdam, Germany
| | - Weihua Deng
- School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
44
|
Park J, Bailey EJ, Composto RJ, Winey KI. Single-Particle Tracking of Nonsticky and Sticky Nanoparticles in Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric J. Bailey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Xu Z, Gao L, Chen P, Yan LT. Diffusive transport of nanoscale objects through cell membranes: a computational perspective. SOFT MATTER 2020; 16:3869-3881. [PMID: 32236197 DOI: 10.1039/c9sm02338k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion is an essential and fundamental means of transport of substances on cell membranes, and the dynamics of biomembranes plays a crucial role in the regulation of numerous cellular processes. The understanding of the complex mechanisms and the nature of particle diffusion have a bearing on establishing guidelines for the design of efficient transport materials and unique therapeutic approaches. Herein, this review article highlights the most recent advances in investigating diffusion dynamics of nanoscale objects on biological membranes, focusing on the approaches of tailored computer simulations and theoretical analysis. Due to the presence of the complicated and heterogeneous environment on native cell membranes, the diffusive transport behaviors of nanoparticles exhibit unique and variable characteristics. The general aspects and basic theories of normal diffusion and anomalous diffusion have been introduced. In addition, the influence of a series of external and internal factors on the diffusion behaviors is discussed, including particle size, membrane curvature, particle-membrane interactions or particle-inclusion, and the crowding degree of membranes. Finally, we seek to identify open problems in the existing experimental, simulation, and theoretical research studies, and to propose challenges for future development.
Collapse
Affiliation(s)
- Ziyang Xu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Lijuan Gao
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
46
|
Timmermann M, Lukat N, Schneider LP, Shields CW, López GP, Selhuber-Unkel C. Migration of Microparticle-Containing Amoeba through Constricted Environments. ACS Biomater Sci Eng 2020; 6:889-897. [PMID: 32215319 PMCID: PMC7082834 DOI: 10.1021/acsbiomaterials.9b00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/30/2019] [Indexed: 12/28/2022]
Abstract
![]()
In many situations,
cells migrate through tiny orifices.
Examples
include the extravasation of immune cells from the bloodstream for
fighting infections, the infiltration of cancer cells during metastasis,
and the migration of human pathogens. An extremely motile and medically
relevant type of human pathogen is Acanthamoeba castellanii. In the study presented here, we investigated how a combination
of microparticles and microstructured interfaces controls the migration
of A. castellanii trophozoites. The
microinterfaces comprised well-defined micropillar arrays, and the
trophozoites easily migrated through the given constrictions by adapting
the shape and size of their intracellular vacuoles and by adapting
intracellular motion. After feeding the trophozoite cells in microinterfaces
with synthetic, stiff microparticles of various sizes and shapes,
their behavior changed drastically: if the particles were smaller
than the micropillar gap, migration was still possible. If the cells
incorporated particles larger than the pillar gap, they could become
immobilized but could also display remarkable problem-solving capabilities.
For example, they turned rod-shaped microparticles such that their
short axis fit through the pillar gap or they transported the particles
above the structure. As migration is a crucial contribution to A. castellanii pathogenicity and is also relevant
to other biological processes in microenvironments, such as cancer
metastasis, our results provide an interesting strategy for controlling
the migration of cells containing intracellular particles by microstructured
interfaces that serve as migration-limiting environments.
Collapse
Affiliation(s)
- Michael Timmermann
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Nils Lukat
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Lindsay P Schneider
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Durham, North Carolina 27708, United States.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gabriel P López
- NSF Research Triangle Materials Research Science and Engineering Center, Durham, North Carolina 27708, United States.,Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Christine Selhuber-Unkel
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
47
|
Jung W, Tabatabai AP, Thomas JJ, Tabei SMA, Murrell MP, Kim T. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton (Hoboken) 2019; 76:517-531. [PMID: 31758841 DOI: 10.1002/cm.21582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut
| | - Jacob J Thomas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, 215 Begeman Hall, Cedar Falls, Iowa
| | - Michael P Murrell
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut.,Department of Physics, Yale University. 217 Prospect Street, New Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| |
Collapse
|
48
|
Basak S, Sengupta S, Chattopadhyay K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys Rev 2019; 11:851-872. [PMID: 31444739 PMCID: PMC6957588 DOI: 10.1007/s12551-019-00580-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/24/2023] Open
Abstract
In order to maintain cellular function, biomolecules like protein, DNA, and RNAs have to diffuse to the target spaces within the cell. Changes in the cytosolic microenvironment or in the nucleus during the fulfillment of these cellular processes affect their mobility, folding, and stability thereby impacting the transient or stable interactions with their adjacent neighbors in the organized and dynamic cellular interior. Using classical Brownian motion to elucidate the diffusion behavior of these biomolecules is hard considering their complex nature. The understanding of biomolecular diffusion inside cells still remains elusive due to the lack of a proper model that can be extrapolated to these cases. In this review, we have comprehensively addressed the progresses in this field, laying emphasis on the different aspects of anomalous diffusion in the different biochemical reactions in cell interior. These experiment-based models help to explain the diffusion behavior of biomolecules in the cytosolic and nuclear microenvironment. Moreover, since understanding of biochemical reactions within living cellular system is our main focus, we coupled the experimental observations with the concept of sub-diffusion from in vitro to in vivo condition. We believe that the pairing between the understanding of complex behavior and structure-function paradigm of biological molecules would take us forward by one step in order to solve the puzzle around diseases caused by cellular dysfunction.
Collapse
Affiliation(s)
- Sujit Basak
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Sombuddha Sengupta
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
49
|
Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01364-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Mukherjee A, Behkam B, Nain AS. Cancer Cells Sense Fibers by Coiling on them in a Curvature-Dependent Manner. iScience 2019; 19:905-915. [PMID: 31513975 PMCID: PMC6742781 DOI: 10.1016/j.isci.2019.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023] Open
Abstract
Metastatic cancer cells sense the complex and heterogeneous fibrous extracellular matrix (ECM) by formation of protrusions, and our knowledge of how cells physically recognize these fibers remains in its infancy. Here, using suspended ECM-mimicking isodiameter fibers ranging from 135 to 1,000 nm, we show that metastatic breast cancer cells sense fiber diameters differentially by coiling (wrapping-around) on them in a curvature-dependent manner, whereas non-tumorigenic cells exhibit diminished coiling. We report that coiling occurs at the tip of growing protrusions and the coil width and coiling rate increase in a curvature-dependent manner, but time to maximum coil width occurs biphasically. Interestingly, bundles of 135-nm diameter fibers recover coiling width and rate on 1,000-nm-diameter fibers. Coiling also coincides with curvature-dependent persistent and ballistic transport of endogenous granules inside the protrusions. Altogether, our results lay the groundwork to link biophysical sensing with biological signaling to quantitate pro- and anti-invasive fibrous environments. Video Abstract
Cells sense ECM-mimicking suspended fibers by coiling (wrapping around) Coiling occurs at the tip of growing protrusions in a curvature-dependent manner Non-tumorigenic cells exhibit diminished coiling compared with metastatic cells A bundle of small-diameter fibers recover coiling observed on a large-diameter fiber
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|