1
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Irshad K, Huang YK, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang KC. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci 2023; 13:1424. [PMID: 37891793 PMCID: PMC10605541 DOI: 10.3390/brainsci13101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Benjamin E. Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Tang-Schomer MD, Bookland MJ, Sargent JE, N Jackvony T. Human Patient-Derived Brain Tumor Models to Recapitulate Ependymoma Tumor Vasculature. Bioengineering (Basel) 2023; 10:840. [PMID: 37508868 PMCID: PMC10376907 DOI: 10.3390/bioengineering10070840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Despite in vivo malignancy, ependymoma lacks cell culture models, thus limiting therapy development. Here, we used a tunable three-dimensional (3D) culture system to approximate the ependymoma microenvironment for recapitulating a patient's tumor in vitro. Our data showed that the inclusion of VEGF in serum-free, mixed neural and endothelial cell culture media supported the in vitro growth of all four ependymoma patient samples. The growth was driven by Nestin and Ki67 double-positive cells in a putative cancer stem cell niche, which was manifested as rosette-looking clusters in 2D and spheroids in 3D. The effects of extracellular matrix (ECM) such as collagen or Matrigel superseded that of the media conditions, with Matrigel resulting in the greater enrichment of Nestin-positive cells. When mixed with endothelial cells, the 3D co-culture models developed capillary networks resembling the in vivo ependymoma vasculature. The transcriptomic analysis of two patient cases demonstrated the separation of in vitro cultures by individual patients, with one patient's culture samples closely clustered with the primary tumor tissue. While VEGF was found to be necessary for preserving the transcriptomic features of in vitro cultures, the presence of endothelial cells shifted the gene's expression patterns, especially genes associated with ECM remodeling. The homeobox genes were mostly affected in the 3D in vitro models compared to the primary tumor tissue and between different 3D formats. These findings provide a basis for understanding the ependymoma microenvironment and enabling the further development of patient-derived in vitro ependymoma models for personalized medicine.
Collapse
Affiliation(s)
- Min D Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Markus J Bookland
- Connecticut Children's Medical Center, 282 Washington St., Hartford, CT 06106, USA
| | - Jack E Sargent
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Taylor N Jackvony
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
4
|
Petrilli LL, Fuoco C, Palma A, Pasquini L, Pericoli G, Grabovska Y, Mackay A, Rossi S, Carcaboso AM, Carai A, Mastronuzzi A, Jones C, Cesareni G, Locatelli F, Vinci M. Inter and intra-tumor heterogeneity of paediatric type diffuse high-grade gliomas revealed by single-cell mass cytometry. Front Oncol 2022; 12:1016343. [PMID: 36568177 PMCID: PMC9773089 DOI: 10.3389/fonc.2022.1016343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Paediatric-type diffuse high-grade gliomas (PDHGG) are aggressive tumors affecting children and young adults, with no effective treatment. These highly heterogeneous malignancies arise in different sites of the Central Nervous System (CNS), carrying distinctive molecular alterations and clinical outcomes (inter-tumor heterogeneity). Moreover, deep cellular and molecular profiling studies highlighted the coexistence of genetically and phenotypically different subpopulations within the same tumor mass (intra-tumor heterogeneity). Despite the recent advances made in the field, the marked heterogeneity of PDHGGs still impedes the development of effective targeted therapies and the identification of suitable biomarkers. In order to fill the existing gap, we used mass cytometry to dissect PDHGG inter- and intra-heterogeneity. This is one of the most advanced technologies of the "-omics" era that, using antibodies conjugated to heavy metals, allows the simultaneous measurement of more than 40 markers at single-cell level. To this end, we analyzed eight PDHGG patient-derived cell lines from different locational and molecular subgroups. By using a panel of 15 antibodies, directly conjugated to metals or specifically customized to detect important histone variants, significant differences were highlighted in the expression of the considered antigens. The single-cell multiparametric approach realized has deepened our understanding of PDHGG, confirming a high degree of intra- and inter-tumoral heterogeneity and identifying some antigens that could represent useful biomarkers for the specific PDHGG locational or molecular subgroups.
Collapse
Affiliation(s)
- Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Yura Grabovska
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | - Sabrina Rossi
- Department of Laboratories-Pathology Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital -IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Neuro-oncology Unit, Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | - Gianni Cesareni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| |
Collapse
|
5
|
Ljungblad L, Bergqvist F, Tümmler C, Madawala S, Olsen TK, Andonova T, Jakobsson PJ, Johnsen JI, Pickova J, Strandvik B, Kogner P, Gleissman H, Wickström M. Omega-3 fatty acids decrease CRYAB, production of oncogenic prostaglandin E 2 and suppress tumor growth in medulloblastoma. Life Sci 2022; 295:120394. [PMID: 35157910 DOI: 10.1016/j.lfs.2022.120394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/09/2022]
Abstract
AIMS Medulloblastoma (MB) is one of the most common malignant central nervous system tumors of childhood. Despite intensive treatments that often leads to severe neurological sequelae, the risk for resistant relapses remains significant. In this study we have evaluated the effects of the ω3-long chain polyunsaturated fatty acids (ω3-LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on MB cell lines and in a MB xenograft model. MAIN METHODS Effects of ω3-LCPUFA treatment of MB cells were assessed using the following: WST-1 assay, cell death probes, clonogenic assay, ELISA and western blot. MB cells were implanted into nude mice and the mice were randomized to DHA, or a combination of DHA and EPA treatment, or to control group. Treatment effects in tumor tissues were evaluated with: LC-MS/MS, RNA-sequencing and immunohistochemistry, and tumors, erythrocytes and brain tissues were analyzed with gas chromatography. KEY FINDINGS ω3-LCPUFA decreased prostaglandin E2 (PGE2) secretion from MB cells, and impaired MB cell viability and colony forming ability and increased apoptosis in a dose-dependent manner. DHA reduced tumor growth in vivo, and both PGE2 and prostacyclin were significantly decreased in tumor tissue from treated mice compared to control animals. All ω3-LCPUFA and dihomo-γ-linolenic acid increased in tumors from treated mice. RNA-sequencing revealed 10 downregulated genes in common among ω3-LCPUFA treated tumors. CRYAB was the most significantly altered gene and the downregulation was confirmed by immunohistochemistry. SIGNIFICANCE Our findings suggest that addition of DHA and EPA to the standard MB treatment regimen might be a novel approach to target inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Linda Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Conny Tümmler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Samanthi Madawala
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teodora Andonova
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jana Pickova
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition Karolinska Institutet, NEO, Flemingsberg, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Astrid Lindgrens Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Gleissman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Yuan M, White D, Resar L, Bar E, Groves M, Cohen A, Jackson E, Bynum J, Rubens J, Mumm J, Chen L, Jiang L, Raabe E, Rodriguez FJ, Eberhart CG. Conditional reprogramming culture conditions facilitate growth of lower-grade glioma models. Neuro Oncol 2021; 23:770-782. [PMID: 33258947 DOI: 10.1093/neuonc/noaa263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The conditional reprogramming cell culture method was developed to facilitate growth of senescence-prone normal and neoplastic epithelial cells, and involves co-culture with irradiated fibroblasts and the addition of a small molecule Rho kinase (ROCK) inhibitor. The aim of this study was to determine whether this approach would facilitate the culture of compact low-grade gliomas. METHODS We attempted to culture 4 pilocytic astrocytomas, 2 gangliogliomas, 2 myxopapillary ependymomas, 2 anaplastic gliomas, 2 difficult-to-classify low-grade neuroepithelial tumors, a desmoplastic infantile ganglioglioma, and an anaplastic pleomorphic xanthoastrocytoma using a modified conditional reprogramming cell culture approach. RESULTS Conditional reprogramming resulted in robust increases in growth for a majority of these tumors, with fibroblast conditioned media and ROCK inhibition both required. Switching cultures to standard serum containing media, or serum-free neurosphere conditions, with or without ROCK inhibition, resulted in decreased proliferation and induction of senescence markers. Rho kinase inhibition and conditioned media both promoted Akt and Erk1/2 activation. Several cultures, including one derived from a NF1-associated pilocytic astrocytoma (JHH-NF1-PA1) and one from a BRAF p.V600E mutant anaplastic pleomorphic xanthoastrocytoma (JHH-PXA1), exhibited growth sufficient for preclinical testing in vitro. In addition, JHH-NF1-PA1 cells survived and migrated in larval zebrafish orthotopic xenografts, while JHH-PXA1 formed orthotopic xenografts in mice histopathologically similar to the tumor from which it was derived. CONCLUSIONS These studies highlight the potential for the conditional reprogramming cell culture method to promote the growth of glial and glioneuronal tumors in vitro, in some cases enabling the establishment of long-term culture and in vivo models.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David White
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda Resar
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eli Bar
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | - Mari Groves
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan Cohen
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Bynum
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Rubens
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff Mumm
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liqun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Raabe
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Hetze S, Sure U, Schedlowski M, Hadamitzky M, Barthel L. Rodent Models to Analyze the Glioma Microenvironment. ASN Neuro 2021; 13:17590914211005074. [PMID: 33874781 PMCID: PMC8060738 DOI: 10.1177/17590914211005074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Animal models are still indispensable for understanding the basic principles of glioma development and invasion. Preclinical approaches aim to analyze the treatment efficacy of new drugs before translation into clinical trials is possible. Various animal disease models are available, but not every approach is useful for addressing specific questions. In recent years, it has become increasingly evident that the tumor microenvironment plays a key role in the nature of glioma. In addition to providing an overview, this review evaluates available rodent models in terms of usability for research on the glioma microenvironment.
Collapse
Affiliation(s)
- Susann Hetze
- Department of Neurosurgery, University Hospital of
Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital of
Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for
Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery, University Hospital of
Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
8
|
Xiong A, Spyrou A, Forsberg-Nilsson K. Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:365-403. [PMID: 32274718 DOI: 10.1007/978-3-030-34521-1_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are aggressive and devastating diseases. The most common type of brain tumor, glioblastoma (GBM), is incurable and has one of the worst five-year survival rates of all human cancers. GBMs are invasive and infiltrate healthy brain tissue, which is one main reason they remain fatal despite resection, since cells that have already migrated away lead to rapid regrowth of the tumor. Curative therapy for medulloblastoma (MB), the most common pediatric brain tumor, has improved, but the outcome is still poor for many patients, and treatment causes long-term complications. Recent advances in the classification of pediatric brain tumors reveal distinct subgroups, allowing more targeted therapy for the most aggressive forms, and sparing children with less malignant tumors the side-effects of massive treatment. Heparan sulfate proteoglycans (HSPGs), main components of the neurogenic niche, interact specifically with a large number of physiologically important molecules and vital roles for HS biosynthesis and degradation in neural stem cell differentiation have been presented. HSPGs are composed of a core protein with attached highly charged, sulfated disaccharide chains. The major enzyme that degrades HS is heparanase (HPSE), an important regulator of extracellular matrix (ECM) remodeling which has been suggested to promote the growth and invasion of other types of tumors. This is of clinical interest because GBM are highly invasive and children with metastatic MB at the time of diagnosis exhibit a worse outcome. Here we review the involvement of HS and HPSE in development of the nervous system and some of its most malignant brain tumors, glioblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Anqi Xiong
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Badodi S, Marino S, Guglielmi L. Establishment and Culture of Patient-Derived Primary Medulloblastoma Cell Lines. Methods Mol Biol 2019; 1869:23-36. [PMID: 30324511 DOI: 10.1007/978-1-4939-8805-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Established cell lines have been extensively used in cancer research. They are easy to obtain and expand and are composed of a relatively uniform population of cells. When experimental conditions are kept standard, these cells allow a high reproducibility of experimental findings from independent research groups. However, because these cell lines have been propagated in culture for decades, additional genetic lesions may be acquired leading to modification of their characteristics as compared to the original tumor. Primary cultures represent a valid alternative. Here, we describe standardized protocols to establish medulloblastoma (MB) patient-derived primary cultures from fresh tumor samples. MB primary cells grow as an adherent culture on a laminin coating and can be propagated in vitro for a limited number of passages, therefore reducing the chances to accumulate molecular alterations compared to long-term cultures. Consequently, they better resemble the original tumor both in terms of biological behavior and molecular characteristics. Low-passage MB primary cells can be used as an in vitro model for biochemical studies and functional assays, representing a useful tool to dissect the contribution of molecular pathways to MB pathogenesis. They can also represent a useful screening tool for potential therapeutic agents in preclinical studies.
Collapse
Affiliation(s)
- Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Biswenger V, Baumann N, Jürschick J, Häckl M, Battle C, Schwarz J, Horn E, Zantl R. Characterization of EGF-guided MDA-MB-231 cell chemotaxis in vitro using a physiological and highly sensitive assay system. PLoS One 2018; 13:e0203040. [PMID: 30212492 PMCID: PMC6136702 DOI: 10.1371/journal.pone.0203040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/14/2018] [Indexed: 01/13/2023] Open
Abstract
Chemotactic cell migration is a central mechanism during cancer cell invasion and hence metastasis. In order to mimic in vivo conditions, we used a three-dimensional hydrogel matrix made of collagen I and a stable gradient-generating chemotaxis assay system, which is commercially available (μ-Slide Chemotaxis) to characterize epidermal growth factor (EGF)-induced chemotaxis of the human breast cancer cell line MDA-MB-231. Surprisingly, chemotactic effects of EGF on MDA-MB-231 cells could neither be observed in the standard growth medium DMEM/F-12 supplemented with 10% serum nor in starvation medium. In contrast, after adapting the cells to the serum-free growth medium UltraCULTURETM, significant chemotactic effects could be measured with high sensitivity. The extremely time-stable linear gradients, generated in the chemotaxis chamber, led to consistent directional migration of MDA-MB-231 cells. Dose-response experiments showed increased directional and kinetic response of MDA-MB-231 cells towards stable gradients of EGF. While EGF-guided directional migration (chemotaxis) was highly concentration-dependent with the highest response at 1.5 nM/mm EGF, we found that the chemokinetic effect induced by EGF was concentration-independent. Both, blocking the ligand-binding domain of the EGF receptor by an antibody (monoclonal anti-EGFR antibody 225) and inhibition of its kinase domain by a small molecule inhibitor (AG1478) led to a reduction in EGF-induced directed migration. The high sensitivity of the assay even allowed us to observe synergistic effects in EGF-receptor inhibition using a combination of low doses of both inhibitor types. Those results validate the fact that EGF is a potent guidance cue for MDA-MB-231 cell migration and help to understand the mechanism behind chemotaxis-driven cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Martina Häckl
- ibidi GmbH, Martinsried, Germany
- Hochschule Weihenstephan-Triesdorf, Freising, Germany
| | | | | | | | | |
Collapse
|
11
|
Rutkowski S, Modena P, Williamson D, Kerl K, Nysom K, Pizer B, Bartels U, Puget S, Doz F, Michalski A, von Hoff K, Chevignard M, Avula S, Murray MJ, Schönberger S, Czech T, Schouten-van Meeteren AYN, Kordes U, Kramm CM, van Vuurden DG, Hulleman E, Janssens GO, Solanki GA, van Veelen MLC, Thomale U, Schuhmann MU, Jones C, Giangaspero F, Figarella-Branger D, Pietsch T, Clifford SC, Pfister SM, Van Gool SW. Biological material collection to advance translational research and treatment of children with CNS tumours: position paper from the SIOPE Brain Tumour Group. Lancet Oncol 2018; 19:e419-e428. [PMID: 30102236 DOI: 10.1016/s1470-2045(18)30364-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022]
Abstract
Paediatric CNS tumours are the most common cause of childhood cancer-related morbidity and mortality, and improvements in their diagnosis and treatment are needed. New genetic and epigenetic information about paediatric CNS tumours is transforming the field dramatically. For most paediatric CNS tumour entities, subgroups with distinct biological characteristics have been identified, and these characteristics are increasingly used to facilitate accurate diagnoses and therapeutic recommendations. Future treatments will be further tailored to specific molecular subtypes of disease, specific tumour predisposition syndromes, and other biological criteria. Successful biomaterial collection is a key requirement for the application of contemporary methodologies for the validation of candidate prognostic factors, the discovery of new biomarkers, the establishment of appropriate preclinical research models for targeted agents, a quicker clinical implementation of precision medicine, and for other therapeutic uses (eg, for immunotherapies). However, deficits in organisational structures and interdisciplinary cooperation are impeding the collection of high-quality biomaterial from CNS tumours in most centres. Practical, legal, and ethical guidelines for consent, storage, material transfer, biobanking, data sharing, and funding should be established by research consortia and local institutions to allow optimal collection of primary and subsequent tumour tissue, body fluids, and normal tissue. Procedures for the collection and storage of biomaterials and related data should be implemented according to the individual and organisational structures of the local institutions.
Collapse
Affiliation(s)
- Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Barry Pizer
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ute Bartels
- Department of Paediatrics, Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Stephanie Puget
- Department of Paediatric Neurosurgery, Necker Hospital, APHP, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - François Doz
- SIREDO Centre (Care, Innovation And Research In Paediatric, Adolescents and Young Adults Oncology), Institut Curie and Paris Descartes University, Paris, France
| | - Antony Michalski
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children, London, UK
| | - Katja von Hoff
- Department of Paediatric Haematology and Oncology, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury, Saint Maurice Hospitals, Saint Maurice, France; Laboratory of Biomedical Imaging, National Centre for Scientific Research and National Institute of Health and Medical Research, Sorbonne University, Paris, France
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's National Health Service Foundation Trust, Liverpool, UK
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Stefan Schönberger
- Department of Paediatric Haematology and Oncology, University Children's Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Uwe Kordes
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christof M Kramm
- Division of Paediatric Haematology and Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - Dannis G van Vuurden
- Pediatric Oncology/Hematology, Department of Pediatrics, Cancer Centre Amsterdam, VU University Medical Centre, Amsterdam, Netherlands; Princess Máxima Centre for Paediatric Oncology, Utrecht, Netherlands
| | - Esther Hulleman
- Pediatric Oncology/Hematology, Department of Pediatrics, Cancer Centre Amsterdam, VU University Medical Centre, Amsterdam, Netherlands
| | - Geert O Janssens
- Princess Máxima Centre for Paediatric Oncology, Utrecht, Netherlands; Department of Radiation Oncology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Guirish A Solanki
- Department of Paediatric Neurosurgery, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Marie-Luise C van Veelen
- Paediatric Neurosurgery, Department of Neurosurgery, Erasmus University Medical Centre Rotterdam, Netherlands
| | | | - Martin U Schuhmann
- Division of Paediatric Neurosurgery, Department of Neurosurgery, Eberhard Karls University Hospital of Tübingen, Tübingen, Germany
| | - Chris Jones
- Division of Molecular Pathology and Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Felice Giangaspero
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed-Mediterranean Neurological Institute, Pozzilli, Italy
| | - Dominique Figarella-Branger
- AP-HM, CNRS, Institut de Neurophysiopathologie, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille University, Marseille, France
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumour Reference Centre of the German Society of Neuropathology and Neuroanatomy, University of Bonn Medical Centre, Bonn, Germany; German Centre for Neurodegenerative Diseases, Bonn, Germany
| | - Steve C Clifford
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| | - Stefan M Pfister
- Hopp Children's Cancer Centre at National Centre for Tumour Diseases Heidelberg (KiTZ), Heidelberg, Germany; Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
12
|
Oraiopoulou ME, Tzamali E, Tzedakis G, Vakis A, Papamatheakis J, Sakkalis V. In Vitro/In Silico Study on the Role of Doubling Time Heterogeneity among Primary Glioblastoma Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8569328. [PMID: 29226151 PMCID: PMC5684616 DOI: 10.1155/2017/8569328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
The application of accurate cancer predictive algorithms validated with experimental data is a field concerning both basic researchers and clinicians, especially regarding a highly aggressive form of cancer, such as Glioblastoma. In an aim to enhance prediction accuracy in realistic patient-specific environments, accounting for both inter- and intratumoral heterogeneity, we use patient-derived Glioblastoma cells from different patients. We focus on cell proliferation using in vitro experiments to estimate cell doubling times and sizes for established primary Glioblastoma cell lines. A preclinically driven mathematical model parametrization is accomplished by taking into account the experimental measurements. As a control cell line we use the well-studied U87MG cells. Both in vitro and in silico results presented support that the variance between tumor staging can be attributed to the differential proliferative capacity of the different Glioblastoma cells. More specifically, the intratumoral heterogeneity together with the overall proliferation reflected in both the proliferation rate and the mechanical cell contact inhibition can predict the in vitro evolution of different Glioblastoma cell lines growing under the same conditions. Undoubtedly, additional imaging techniques capable of providing spatial information of tumor cell physiology and microenvironment will enhance our understanding regarding Glioblastoma nature and verify and further improve our predictability.
Collapse
Affiliation(s)
- M.-E. Oraiopoulou
- Department of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - E. Tzamali
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - G. Tzedakis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - A. Vakis
- Department of Medicine, University of Crete, Heraklion, Greece
- Neurosurgery Clinic, University General Hospital of Heraklion, Heraklion, Greece
| | - J. Papamatheakis
- Gene Expression Laboratory, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - V. Sakkalis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
13
|
Sandén E, Dyberg C, Krona C, Gallo-Oller G, Olsen TK, Enríquez Pérez J, Wickström M, Estekizadeh A, Kool M, Visse E, Ekström TJ, Siesjö P, Johnsen JI, Darabi A. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation. Sci Rep 2017; 7:46366. [PMID: 28417956 PMCID: PMC5394470 DOI: 10.1038/srep46366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Medulloblastomas comprise a heterogeneous group of tumours and can be subdivided into four molecular subgroups (WNT, SHH, Group 3 and Group 4) with distinct prognosis, biological behaviour and implications for targeted therapies. Few experimental models exist of the aggressive and poorly characterized Group 3 tumours. In order to establish a reproducible transplantable Group 3 medulloblastoma model for preclinical therapeutic studies, we acquired a patient-derived tumour sphere culture and inoculated low-passage spheres into the cerebellums of NOD-scid mice. Mice developed symptoms of brain tumours with a latency of 17–18 weeks. Neurosphere cultures were re-established and serially transplanted for 3 generations, with a negative correlation between tumour latency and numbers of injected cells. Xenografts replicated the phenotype of the primary tumour, including high degree of clustering in DNA methylation analysis, high proliferation, expression of tumour markers, MYC amplification and elevated MYC expression, and sensitivity to the MYC inhibitor JQ1. Xenografts maintained maintained expression of tumour-derived VEGFA and stromal-derived COX-2. VEGFA, COX-2 and c-Myc are highly expressed in Group 3 compared to other medulloblastoma subgroups, suggesting that these molecules are relevant therapeutic targets in Group 3 medulloblastoma.
Collapse
Affiliation(s)
- Emma Sandén
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Cecilia Dyberg
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Cecilia Krona
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Gabriel Gallo-Oller
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Thale Kristin Olsen
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Julio Enríquez Pérez
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Malin Wickström
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Atosa Estekizadeh
- Karolinska University Hospital, Solna, Center for Molecular Medicine, and Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Marcel Kool
- German Cancer Research Center DKFZ, Division of Pediatric Neurooncology, Heidelberg, Germany
| | - Edward Visse
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Tomas J Ekström
- Karolinska University Hospital, Solna, Center for Molecular Medicine, and Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Peter Siesjö
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden.,Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - John Inge Johnsen
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Anna Darabi
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
14
|
Sreedharan S, Maturi NP, Xie Y, Sundström A, Jarvius M, Libard S, Alafuzoff I, Weishaupt H, Fryknäs M, Larsson R, Swartling FJ, Uhrbom L. Mouse Models of Pediatric Supratentorial High-grade Glioma Reveal How Cell-of-Origin Influences Tumor Development and Phenotype. Cancer Res 2016; 77:802-812. [PMID: 28115362 DOI: 10.1158/0008-5472.can-16-2482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
Abstract
High-grade glioma (HGG) is a group of primary malignant brain tumors with dismal prognosis. Whereas adult HGG has been studied extensively, childhood HGG, a relatively rare disease, is less well-characterized. Here, we present two novel platelet-derived growth factor (PDGF)-driven mouse models of pediatric supratentorial HGG. Tumors developed from two different cells of origin reminiscent of neural stem cells (NSC) or oligodendrocyte precursor cells (OPC). Cross-species transcriptomics showed that both models are closely related to human pediatric HGG as compared with adult HGG. Furthermore, an NSC-like cell-of-origin enhanced tumor incidence, malignancy, and the ability of mouse glioma cells (GC) to be cultured under stem cell conditions as compared with an OPC-like cell. Functional analyses of cultured GC from these tumors showed that cells of NSC-like origin were more tumorigenic, had a higher rate of self-renewal and proliferation, and were more sensitive to a panel of cancer drugs compared with GC of a more differentiated origin. These two mouse models relevant to human pediatric supratentorial HGG propose an important role of the cell-of-origin for clinicopathologic features of this disease. Cancer Res; 77(3); 802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Naga Prathyusha Maturi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Yuan Xie
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.
| |
Collapse
|
15
|
Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels. Sci Rep 2016; 6:31915. [PMID: 27549983 PMCID: PMC4994035 DOI: 10.1038/srep31915] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.
Collapse
|