1
|
Guo X, Wang X, Wei J, Ma Y, Wang F, Sun Q, Sun H, Zhu G. BMP2 is required for granulosa cell proliferation and primordial follicle activation in chicken. Poult Sci 2025; 104:104716. [PMID: 39731872 PMCID: PMC11743103 DOI: 10.1016/j.psj.2024.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
During ovary development, the dormant primordial follicles (PF) are stimulated and begin to develop into primary follicles (PrF), a process called follicle activation. Only activated follicles can continue to grow and release the eggs in the future, making the female animal fertile. The molecular events during PF activation are not fully understood. In this study, we analyzed the transcriptome of ovarian granulosa cells (GCs) before and after PF activation from 4- and 7-day-old chicks and identified that BMP signaling was induced during this process. Further, exogenous addition of Bone Morphogenetic Protein-2 (BMP2) protein significantly promotes the proliferation of GCs, thereby increasing the number of PrF in the in vitro ovary culture system. Conversely, when the BMP2 was blocked, the proliferation of GCs is inhibited, leading to a decrease in the number of PrF generated. These findings reveal the critical role of BMP2 in regulating the activation of chicken PF and provide new strategies for improving egg production performance.
Collapse
Affiliation(s)
- Xiaotong Guo
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Xuzhao Wang
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Jiahui Wei
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Yuxiao Ma
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Feiyi Wang
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Qing Sun
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongcai Sun
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Guiyu Zhu
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China.
| |
Collapse
|
2
|
Chakraborty P, Anderson RL, Roy SK. Bone morphogenetic protein 2- and estradiol-17β-induced changes in ovarian transcriptome during primordial follicle formation†. Biol Reprod 2022; 107:800-812. [PMID: 35639639 PMCID: PMC9767675 DOI: 10.1093/biolre/ioac111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 11/13/2022] Open
Abstract
Estradiol-17β has been shown to promote primordial follicle formation and to involve bone morphogenetic protein 2 (BMP2) as a downstream effector to promote primordial follicle in hamsters. However, the molecular mechanism whereby these factors regulate ovarian somatic cells to pre-granulosa cells transition leading to primordial follicle formation remains unclear. The objective of this study was to determine whether BMP2 and/or estradiol-17β would regulate the expression of specific ovarian transcriptome during pre-granulosa cells transition and primordial follicle formation in the mouse ovary. BMP2 mRNA level increased during the period of primordial follicle formation with the concurrent presence of BMP2 protein in ovarian somatic cells. Estradiol-17β but not BMP2 exposure led to increased expression of ovarian BMP2 messenger RNA (mRNA), and the effect of estradiol-17β could not be suppressed by 4-[6-[4-(1-Piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride (LDN) 193189. BMP2 or estradiol-17β stimulated primordial follicle formation without inducing apoptosis. Ribonucleic acid-sequence analysis (RNA-seq) of ovaries exposed to exogenous BMP2 or estradiol-17β revealed differential expression of several thousand genes. Most of the differentially expressed genes, which were common between BMP2 or estradiol-17β treatment demonstrated concordant changes, suggesting that estradiol-17β and BMP2 affected the same set of genes during primordial follicle formation. Further, we have identified that estradiol-17β, in cooperation with BMP2, could affect the expression of three major transcription factors, GATA binding protein 2, GATA binding protein 4 and Early growth response 2, and one serine protease, hepsin, in pre-granulosa cells during primordial follicle formation. Taken together, results of this study suggest that estradiol-17β and BMP2 may regulate ovarian gene expression that promote somatic cells to pre-granulosa cells transition and primordial follicle formation in the mouse ovary.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L Anderson
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shyamal K Roy
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Yang M, Jin C, Cheng X, Liu T, Ji Y, Meng F, Han X, Liang Q, Cao X, Huang L, Du X, Zeng X, Bu G. Corticosterone triggers anti-proliferative and apoptotic effects, and downregulates the ACVR1-SMAD1-ID3 cascade in chicken ovarian prehierarchical, but not preovulatory granulosa cells. Mol Cell Endocrinol 2022; 552:111675. [PMID: 35577112 DOI: 10.1016/j.mce.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
The coordinated proliferation and apoptosis of granulosa cells plays a critical role in follicular development. To identify the exact mechanisms of how stress-driven glucocorticoid production suppresses reproduction, granulosa cells were isolated from chicken follicles at different developmental stages and then treated with corticosterone. Using CCK-8, EDU and TUNEL assays, we showed that corticosterone could trigger both anti-proliferative and pro-apoptotic effects in granulosa cells from 6 to 8 mm follicles only, while depicting no influence on granulosa cells from any preovulatory follicles. High-throughput transcriptomic analysis identified 1362 transcripts showing differential expression profiles in granulosa cells from 6 to 8 mm follicles after corticosterone treatment. Interestingly, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that 17 genes were enriched in the TGF-β signaling pathway, and 13 showed differential expression patterns consistent with corticosterone-induced effects. The differential expression profiles of these 13 genes were examined by quantitative real-time PCR in cultured chicken ovarian granulosa cells at diverse developmental stages following corticosterone challenge for a short (8 h) or long period (24 h). After 24 h of treatment, INHBB, FST, FMOD, NOG, ACVR1, SMAD1 and ID3 were the genes that responded consistently with corticosterone-induced proliferative and apoptotic events in all granulosa cells detected. However, only ACVR1, SMAD1 and ID3 could initiate coincident expression patterns after being treated for 8 h, suggesting their significance in corticosterone-mediated actions. Collectively, these findings indicate that corticosterone can inhibit proliferation and cause apoptosis in chicken ovarian prehierarchical, but not preovulatory granulosa cells, through impeding ACVR1-SMAD1-ID3 signaling presumptively.
Collapse
Affiliation(s)
- Ming Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Chenchen Jin
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xinyue Cheng
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tuoyuan Liu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Yu Ji
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Linyan Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Guixian Bu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|
4
|
Chang HM, Bai L, Zhu YM, Leung PCK. Connective tissue growth factor mediates bone morphogenetic protein 2-induced increase in hyaluronan production in luteinized human granulosa cells. Reprod Biol Endocrinol 2022; 20:65. [PMID: 35395768 PMCID: PMC8991488 DOI: 10.1186/s12958-022-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hyaluronan is the main component of the cumulus-oocyte complex (COC) matrix, and it maintains the basic structure of the COC during ovulation. As a member of the transforming growth factor β (TGF-β) superfamily, bone morphogenetic protein 2 (BMP2) has been identified as a critical regulator of mammalian folliculogenesis and ovulation. However, whether BMP2 can regulate the production of hyaluronan in human granulosa cells has never been elucidated. METHODS In the present study, we investigated the effect of BMP2 on the production of hyaluronan and the underlying molecular mechanism using both immortalized (SVOG) and primary human granulosa-lutein (hGL) cells. The expression of three hyaluronan synthases (including HAS1, HAS2 and HAS3) were examined following cell incubation with BMP2 at different concentrations. The concentrations of the hyaluronan cell culture medium were determined by enzyme-linked immunosorbent assay (ELISA). The TGF-β type I receptor inhibitors (dorsomorphin and DMH-1) and small interfering RNAs targeting ALK2, ALK3, ALK6 and SMAD4 were used to investigate the involvement of TGF-β type I receptor and SMAD-dependent pathway. RESULTS Our results showed that BMP2 treatment significantly increased the production of hyaluronan by upregulating the expression of hyaluronan synthase 2 (HAS2). In addition, BMP2 upregulates the expression of connective tissue growth factor (CTGF), which subsequently mediates the BMP2-induced increases in HAS2 expression and hyaluronan production because overexpression of CTGF enhances, whereas knockdown of CTGF reverses, these effects. Notably, using kinase inhibitor- and siRNA-mediated knockdown approaches, we demonstrated that the inductive effect of BMP2 on the upregulation of CTGF is mediated by the ALK2/ALK3-mediated SMAD-dependent signaling pathway. CONCLUSIONS Our findings provide new insight into the molecular mechanism by which BMP2 promotes the production of hyaluronan in human granulosa cells.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
5
|
Luo X, Chang HM, Yi Y, Sun Y, Leung PCK. Bone morphogenetic protein 2 inhibits growth differentiation factor 8-induced cell signaling via upregulation of gremlin2 expression in human granulosa-lutein cells. Reprod Biol Endocrinol 2021; 19:173. [PMID: 34838049 PMCID: PMC8626944 DOI: 10.1186/s12958-021-00854-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP2), growth differentiation factor 8 (GDF8) and their functional receptors are expressed in human ovarian follicles, and these two intrafollicular factors play essential roles in regulating follicle development and luteal function. As BMP antagonists, gremlin1 (GREM1) and gremlin2 (GREM2) suppress BMP signaling through blockage of ligand-receptor binding. However, whether BMP2 regulates the expression of GREM1 and GREM2 in follicular development remains to be determined. METHODS In the present study, we investigated the effect of BMP2 on the expression of GREM1 and GREM2 and the underlying mechanisms in human granulosa-lutein (hGL) cells. An established immortalized human granulosa cell line (SVOG) and primary hGL cells were used as study models. The expression of GREM1 and GREM2 were examined following cell incubation with BMP2 at different concentrations and time courses. The TGF-β type I inhibitors (dorsomorphin, DMH-1 and SB431542) and small interfering RNAs targeting ALK2, ALK3, SMAD2/3, SMAD1/5/8 and SMAD4 were used to investigate the involvement of the SMAD-dependent pathway. RESULTS Our results showed that BMP2 significantly increased the expression of GREM2 (but not GREM1) in a dose- and time-dependent manner. Using a dual inhibition approach combining kinase inhibitors and siRNA-mediated knockdown, we found that the BMP2-induced upregulation of GREM2 expression was mediated by the ALK2/3-SMAD1/5-SMAD4 signaling pathway. Moreover, we demonstrated that BMP2 pretreatment significantly attenuated the GDF8-induced phosphorylation of SMAD2 and SMAD3, and this suppressive effect was reversed by knocking down GREM2 expression. CONCLUSIONS Our findings provide new insight into the molecular mechanisms by which BMP2 modulates the cellular activity induced by GDF8 through the upregulated expression of their antagonist (GREM2).
Collapse
Affiliation(s)
- Xiaoyan Luo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, Zhengzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, Zhengzhou, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
6
|
Bai L, Chang HM, Zhang L, Zhu YM, Leung PCK. BMP2 increases the production of BDNF through the upregulation of proBDNF and furin expression in human granulosa-lutein cells. FASEB J 2020; 34:16129-16143. [PMID: 33047388 DOI: 10.1096/fj.202000940r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Locally produced in human granulosa cells of the developing follicle, bone morphogenetic protein 2 (BMP2) plays a crucial role in the regulation of ovarian folliculogenesis and luteal formation. Brain-derived neurotrophic factor (BDNF) is an intraovarian neurotrophic factor that has been shown to promote oocyte maturation and subsequent fertilization competency. At present, little is known regarding the intracellular regulation, assembly and secretion of endogenous BDNF in human granulosa cells. The aim of this study was to explore the effect of BMP2 on the expression and production of BDNF in human granulosa cells and the molecular mechanisms underlying this effect. An immortalized human granulosa cell line (SVOG) and primary human granulosa-lutein (hGL) cells were utilized as in vitro study models. Our results showed that BMP2 significantly increased the mRNA and secreted levels of BDNF. Additionally, BMP2 upregulated the expression of furin at the transcriptional and translational levels. Knockdown of endogenous furin partially attenuated the BMP2-induced increase in BDNF production, indicating that furin is involved in the maturation process of BDNF. Using pharmacological (kinase receptor inhibitors) and siRNA-mediated inhibition approaches, we demonstrated that BMP2-induced upregulation of BDNF and furin expression is most likely mediated by the activin receptor-like kinase (ALK)2/ALK3-SMAD4 signaling pathway. Notably, analysis using clinical samples revealed that there was a positive correlation between follicular fluid concentrations of BMP2 and those of BDNF. These results indicate that BMP2 increases the production of mature BDNF by upregulating the precursor BDNF and promoting the proteolytic processing of mature BDNF. Finally, we also investigated the effects of BMP2 on ovarian steroidogenesis and the results showed that BMP2 treatment significantly increased the accumulated level of estradiol (by upregulating the expression of FSH receptor and cytochrome P450 aromatase), whereas it decreased the accumulated level of progesterone (by downregulating the expression of LH receptors and steroidogenic acute regulatory protein) in primary hGL cells. Our findings provide a novel paracrine mechanism underlying the regulation of an intraovarian growth factor in human granulosa cells.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Liang Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
7
|
Renault L, Patiño LC, Magnin F, Delemer B, Young J, Laissue P, Binart N, Beau I. BMPR1A and BMPR1B Missense Mutations Cause Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2020; 105:5643734. [PMID: 31769494 DOI: 10.1210/clinem/dgz226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a frequently occurring disorder affecting approximately 1% of women under 40 years of age. POI, which is characterized by the premature depletion of ovarian follicles and elevated plasma levels of follicle-stimulating hormone, leads to infertility. Although various etiological factors have been described, including chromosomal abnormalities and gene mutations, most cases remain idiopathic. OBJECTIVE To identify and to functionally validate new sequence variants in 2 genes that play a key role in mammalian ovarian function, BMPR1A and BMPR1B (encoding for bone morphogenic protein receptor), leading to POI. METHODS The impact on bone morphogenic protein (BMP) signaling of BMPR1A and BMPR1B variants, previously identified by whole-exome sequencing on 69 women affected by isolated POI, was established by different in vitro functional experiments. RESULTS We demonstrate that the BMPR1A-p.Arg442His and BMPR1B-p.Phe272Leu variants are correctly expressed and located but lead to an impairment of downstream BMP signaling. CONCLUSION In accordance with infertility observed in mice lacking Bmpr1a in the ovaries and in Bmpr1b-/- mice, our results unveil, for the first time, a link between BMPR1A and BMPR1B variants and the origin of POI. We show that BMP signaling impairment through specific BMPR1A and BMPR1B variants is a novel pathophysiological mechanism involved in human POI. We consider that BMPR1A and BMPR1B variants constitute genetic biomarkers of the origin of POI and have clinical utility.
Collapse
Affiliation(s)
- Lucie Renault
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Liliana C Patiño
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Françoise Magnin
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, Reims, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Ouni E, Vertommen D, Chiti MC, Dolmans MM, Amorim CA. A Draft Map of the Human Ovarian Proteome for Tissue Engineering and Clinical Applications. Mol Cell Proteomics 2019; 18:S159-S173. [PMID: 29475978 PMCID: PMC6427241 DOI: 10.1074/mcp.ra117.000469] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Fertility preservation research in women today is increasingly taking advantage of bioengineering techniques to develop new biomimetic materials and solutions to safeguard ovarian cell function and microenvironment in vitro, and in vivo,. However, available data on the human ovary are limited and fundamental differences between animal models and humans are hampering researchers in their quest for more extensive knowledge of human ovarian physiology and key reproductive proteins that need to be preserved. We therefore turned to multi-dimensional label-free mass spectrometry to analyze human ovarian cortex, as it is a high-throughput and conclusive technique providing information on the proteomic composition of complex tissues like the ovary. In-depth proteomic profiling through two-dimensional liquid chromatography-mass spectrometry, Western blotting, histological and immunohistochemical analyses, and data mining helped us to confidently identify 1508 proteins. Moreover, our method allowed us to chart the most complete representation so far of the ovarian matrisome, defined as the ensemble of extracellular matrix proteins and associated factors, including more than 80 proteins. In conclusion, this study will provide a better understanding of ovarian proteomics, with a detailed characterization of the ovarian follicle microenvironment, in order to enable bioengineers to create biomimetic scaffolds for transplantation and three-dimensional in vitro, culture. By publishing our proteomic data, we also hope to contribute to accelerating biomedical research into ovarian health and disease in general.
Collapse
Affiliation(s)
- Emna Ouni
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Costanza Chiti
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A Amorim
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;.
| |
Collapse
|
9
|
Bai L, Chang HM, Zhu YM, Leung PCK. Bone morphogenetic protein 2 increases lysyl oxidase activity via up-regulation of snail in human granulosa-lutein cells. Cell Signal 2018; 53:201-211. [PMID: 30321593 DOI: 10.1016/j.cellsig.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022]
Abstract
Lysyl oxidase (LOX) is a copper-dependent enzyme that maintains and stabilizes the extracellular matrix (ECM) by catalyzing the cross-linking of elastin and collagen. ECM within the ovarian follicle plays a crucial role in regulating follicular development and oocyte maturation. Bone morphogenetic protein 2 (BMP2) belongs to the BMP subfamily that has been shown to be involved in the process of ovarian folliculogenesis and luteal formation. To date, whether BMP2 regulates the activity of LOX during human follicular development remains to be elucidated. The aim of this study was to investigate the effect of BMP2 on the regulation of LOX expression and activity in human granulosa-lutein cells (hGL) and the underlying mechanisms. Using both primary and immortalized (SVOG cells) hGL cells, we demonstrated that BMP2 up-regulated the expression and activity of LOX and hence decreased the soluble collagens in cultured medium in hGL cells. Additionally, the mRNA and protein levels of two transcriptional factors, SNAIL and SLUG, were increased following cell exposure to BMP2. Knockdown of SNAIL, but not SLUG partially reversed BMP2-induced increases in LOX expression and activity. The BMP2-induced up-regulation of SNAIL expression was abolished by the pre-treatment with two BMP type I receptor inhibitors, dorsomorphin and DMH-1, but not SB431542. Moreover, knockdown of SMAD4 completely abolished BMP2-induced up-regulation of SNAIL expression and the subsequent increases in LOX expression and activity. Our results suggest that BMP2 increases LOX expression and activity via the up-regulation of SNAIL in hGL cells. These findings may provide insights into the functional role of BMP2 in the regulation of ECM formation during folliculogenesis.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Stimulation of primordial follicle assembly by estradiol-17β requires the action of bone morphogenetic protein-2 (BMP2). Sci Rep 2017; 7:15581. [PMID: 29138526 PMCID: PMC5686124 DOI: 10.1038/s41598-017-15833-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/02/2017] [Indexed: 11/24/2022] Open
Abstract
Primordial follicle (PF) pool determines the availability of follicles for ovulation in all mammals. Premature depletion of the PF reserve leads to subfertility or infertility. Bone morphogenetic protein 2 (BMP2) promotes PF formation by facilitating oocyte and granulosa cell development. Estradiol-17β (E2) upregulates PF formation in developing hamster ovaries. However, if BMP2 mediates E2 effect is not known. We hypothesize that E2 facilitates the effect of BMP2 on somatic to granulosa cell transition. BMP2 and E2 together significantly upregulated the percentage of PFs in hamster fetal ovaries in vitro compared with either of the treatments alone. E2 also promoted BMP2 expression in vivo. Inhibition of BMP2 receptors suppressed E2-stimulation of PF formation while knockdown of BMP2 in vitro significantly suppressed the E2 effect. In contrast, estrogen receptor blocker did not affect BMP2 action. Inhibition of the activity of E2 or BMP2 receptors, either alone or combined during the last two days of the culture (C6-C8) resulted in a significant decrease in PF formation by C8, suggesting that both BMP2 and E2 action is essential for somatic cell differentiation for PF formation. Together, the results suggest that E2 activates BMP2-BMPR system leading to the formation of primordial follicles.
Collapse
|
11
|
Bai L, Chang HM, Cheng JC, Chu G, Leung PCK, Yang G. ALK2/ALK3-BMPR2/ACVR2A Mediate BMP2-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa-Lutein Cells. Endocrinology 2017; 158:3501-3511. [PMID: 28977600 DOI: 10.1210/en.2017-00436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor-β superfamily and plays a critical role in regulating ovarian follicle function. Currently, the role of BMP2 during cumulus expansion remains to be determined. The aim of this study was to investigate the effect of BMP2 on the regulation of pentraxin 3 (PTX3) expression (the major component of cumulus expansion) and the underlying mechanisms in human granulosa-lutein (hGL) cells. Both primary and immortalized hGL cells were used as research models. Our results showed that treatment with BMP2 significantly suppressed the basal and luteinizing hormone-induced upregulation of PTX3. In addition, BMP2 stimulated the phosphorylation of SMAD1/5/8, and this effect was abolished by the addition of BMP type I receptor inhibitors, dorsomorphin homolog 1, and dorsomorphin but not SB431542. Moreover, the knockdown of activin receptorlike kinase 2/3 or BMP receptor type II/activin receptor type IIB receptors completely reversed the BMP2-induced phosphorylation of SMAD1/5/8 and restored PTX3 expression. Similarly, the knockdown of SMAD4 completely reversed the suppressive effect of BMP2 on the expression of PTX3. These results improve our understanding of the molecular mechanisms of BMP2 signaling. Our findings suggest that BMP2 may be involved in the regulation of cumulus expansion during the periovulatory stage.
Collapse
Affiliation(s)
- Long Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
12
|
Demiray SB, Yilmaz O, Goker EN, Tavmergen E, Calimlioglu N, Sezerman U, Soykam HO, Oktem G. Expression of the Bone Morphogenetic Protein-2 (BMP2) in the Human Cumulus Cells as a Biomarker of Oocytes and Embryo Quality. J Hum Reprod Sci 2017; 10:194-200. [PMID: 29142448 PMCID: PMC5672725 DOI: 10.4103/jhrs.jhrs_21_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The members of the transforming growth factor-B superfamily, as the bone morphogenetic proteins (BMPs) subfamily and anti-Müllerian hormone (AMH), play a role during follicular development, and the bone morphogenetic protein-2 (BMP2), AMH, and THY1 are expressed in ovaries. AIM This study was designed to define whether or not the expressions of these proteins in human cumulus cells (CCs) can be used as predictors of the oocyte and embryo competence. SETTINGS AND DESIGN The study included nine female patients who were diagnosed as idiopathic infertility, aged 25-33 years (median 30 years) and underwent Assisted Reproductive Technologies. MATERIALS AND METHODS The CCs from 60 oocyte-cumulus complexes obtained from the nine patients were evaluated with immunofluorescence staining in respect of BMPs, AMH and THY1 markers. The CCs surrounding the same oocytes were evaluated separately according to the oocyte and embryo quality. STATISTICAL ANALYSIS Quantitative data were statistically analyzed for differences using the two-sided Mann-Whitney U test (P < 0.05). RESULTS AND CONCLUSIONS Significant differences in immunofluorescence staining were observed in oocyte quality and embryo quality for the BMP2 only (P < 0.05). No significant differences were observed for AMH or CD90/THY1. CONCLUSION These results demonstrated that there is a significant difference in the expression of BMP2 in the CCs of good quality oocytes and subsequently a good embryo.
Collapse
Affiliation(s)
- Sirin B. Demiray
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ozlem Yilmaz
- Department of Histology and Embryology, Ege University Faculty of Medicine, Istanbul, Turkey
| | - Ege N.T. Goker
- Department of Obstetrics and Gynecology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Erol Tavmergen
- Department of Obstetrics and Gynecology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Nilufer Calimlioglu
- Department of Obstetrics and Gynecology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acibadem University, Istanbul, Turkey
| | | | - Gulperi Oktem
- Department of Histology and Embryology, Ege University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev Biol 2017; 427:258-269. [DOI: 10.1016/j.ydbio.2017.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
|
14
|
Bai L, Chang HM, Cheng JC, Klausen C, Chu G, Leung PCK, Yang G. SMAD1/5 mediates bone morphogenetic protein 2-induced up-regulation of BAMBI expression in human granulosa-lutein cells. Cell Signal 2017; 37:52-61. [PMID: 28578012 DOI: 10.1016/j.cellsig.2017.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/04/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is a transforming growth factor β (TGF-β) type I receptor antagonist that negatively regulates TGF-β and bone morphogenetic protein (BMP) signaling. BAMBI has been shown to be regulated by TGF-β signaling; however, whether BAMBI can be regulated by BMP signaling remains to be determined. The aim of this study was to investigate the effect of BMP2 on the regulation of BAMBI expression in human granulosa-lutein cells and the underlying mechanisms. Both primary and immortalized human granulosa-lutein cells were used as research models. Using dual inhibition approaches, our results showed that BMP2 activated SMAD1/5/8 phosphorylation and up-regulated BAMBI mRNA levels, which was reversed by the BMP type I receptor inhibitors, DMH-1 and dorsomorphin, but not by SB431542 (activin/TGF-β type I receptor inhibitor). Moreover, the combined knockdown of SMAD1 and SMAD5 completely abolished the BMP2-induced up-regulation of BAMBI. Similarly, knockdown of SMAD4 reversed the BMP2-induced up-regulation of BAMBI. Pre-treatment with BMP2 inhibited the TGF-β1-induced phosphorylation of SMAD2/3 and up-regulation of MMP2, and these inhibitory effects were reversed by knockdown of endogenous BAMBI. Our findings indicate that BAMBI is a BMP-responsive gene and that BAMBI participates in the negative feedback regulation of TGF-β signaling in the human ovary.
Collapse
Affiliation(s)
- Long Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
15
|
Zhang WW, Jia YF, Wang F, Du QY, Chang ZJ. Identification of differentially-expressed genes in early developmental ovary of Yellow River carp (Cyprinus carpio var) using Suppression Subtractive Hybridization. Theriogenology 2017; 97:9-16. [PMID: 28583615 DOI: 10.1016/j.theriogenology.2017.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Ovary development appears to be under polygenic control, and is influenced by multiple genetic factors that may vary from organism to organism. To gain a better insight into the molecular mechanisms of carp ovary development, Suppression Subtractive Hybridization (SSH) DNA libraries in two species of Yellow River carp were analyzed. Primordial gonads and stage II ovaries were used as testers, and adult ovaries as drivers. One hundred and fifty differentially-expressed candidate genes were examined by Southern blot microarray hybridization. We identified 41 differentially-expressed genes in the PG (Primordial gonad) library and 37 in the stage II ovary library. Gene Ontology Biological Pathway analysis showed the genes were involved in signal transduction, proteolysis process, cell differentiation, TGF-β signal and other biological responses. Twenty-two candidate genes were selected and further characterized using qRT-PCR. Pvalb, epd, and MYH were found specifically expressed in PG, while bmp2b, desmin and fp1 were specifically expressed in stage II ovary. Our results indicate that these genes could be used as biomarkers of the early development of carp ovary. This finding will provide a basis for further understanding of the complex gonad developmental molecular mechanisms in Yellow River carp.
Collapse
Affiliation(s)
- Wan-Wan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Yong-Fang Jia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Fang Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qi-Yan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
16
|
VINODKUMAR D, GULZAR RAHILA, SELVARAJU S, NAZAR S, PARTHIPAN S, JAMUNA KV, PRASAD RV, RAVINDRA JP. Expression pattern of BMPR-2 and Fas and the regulatory role of BMP-2 and IGF-1 on granulosa cells function in buffalo. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i1.66842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The expression pattern of BMPR-2 and Fas was investigated in different developmental stages (1-3 mm, 3-5 mm, 5-8 mm and >8 mm) of follicles and the effect of bone morphogenetic protein-2 (BMP-2), insulin-like growth factor-1 (IGF-1) and Fas-ligand (Fas-L) was studied in vitro on granulosa cell function. BMPR-2 was mainly localized in the granulosa cells, oocytes and theca cells of healthy follicles from primordial to late antral stages and the expression pattern did not differ among different sizes of follicles. The Fas was predominantly expressed in granulosa cells of atretic follicles. In the granulosa cell culture, BMP-2 (30 ng/ml) and IGF-1 (100 ng/ml) significantly increased estradiol-17β production when compared to control in all sizes i.e. small (3-5 mm), medium (5-8 mm) and large (>8 mm) follicles. This first study in buffalo revealed that BMP-2 rescues small size follicles, whereas IGF-1 rescues all size follicles from Fas mediated apoptosis in buffalo.
Collapse
|
17
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 826] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
18
|
Bayne RA, Donnachie DJ, Kinnell HL, Childs AJ, Anderson RA. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2. Mol Hum Reprod 2016; 22:622-33. [PMID: 27385727 PMCID: PMC5013871 DOI: 10.1093/molehr/gaw044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 02/01/2023] Open
Abstract
STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Rosemary A Bayne
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Douglas J Donnachie
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Hazel L Kinnell
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Andrew J Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
19
|
Carré GA, Greenfield A. The Gonadal Supporting Cell Lineage and Mammalian Sex Determination: The Differentiation of Sertoli and Granulosa Cells. Results Probl Cell Differ 2016; 58:47-66. [PMID: 27300175 DOI: 10.1007/978-3-319-31973-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The supporting cell lineage plays a crucial role in nurturing the development of germ cells in the adult gonad. Sertoli cells in the testis support the progression of spermatogonial stem cells through meiosis to the production of motile spermatozoa. Granulosa cells, meanwhile, are a critical component of the ovarian follicle that produces the mature oocyte. It is a distinctive feature of the embryonic gonad that at least some of the supporting cells are derived from a single sexually bipotential precursor lineage. It is the commitment of this somatic lineage to either the Sertoli or granulosa cell fate that defines sex determination. In this chapter we review what is known about the key molecules responsible for this lineage decision in the developing mammalian gonads, relying primarily on data from studies of mice and humans. We focus on recent advances in our understanding of the mutually antagonistic interactions of testis- and ovary-determining pathways and their complexity as revealed by genetic analyses. For the sake of simplicity, we will deal with supporting cells in testis and ovary development in separate sections, but numerous points of contact exist between these accounts of gonadogenesis in male and female embryos, primarily due to the aforementioned mutual antagonisms. The final section will offer a brief synthesis of these organ-specific overviews and a summary of the key themes that emerge in this review of supporting cell differentiation in mammalian sex determination.
Collapse
Affiliation(s)
- Gwenn-Aël Carré
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire, OX11 0RD, UK
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|