1
|
McClellan JC, Li JL, Gao G, Huo D. Expression- and splicing-based multi-tissue transcriptome-wide association studies identified multiple genes for breast cancer by estrogen-receptor status. Breast Cancer Res 2024; 26:51. [PMID: 38515142 PMCID: PMC10958972 DOI: 10.1186/s13058-024-01809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Although several transcriptome-wide association studies (TWASs) have been performed to identify genes associated with overall breast cancer (BC) risk, only a few TWAS have explored the differences in estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancer. Additionally, these studies were based on gene expression prediction models trained primarily in breast tissue, and they did not account for alternative splicing of genes. METHODS In this study, we utilized two approaches to perform multi-tissue TWASs of breast cancer by ER subtype: (1) an expression-based TWAS that combined TWAS signals for each gene across multiple tissues and (2) a splicing-based TWAS that combined TWAS signals of all excised introns for each gene across tissues. To perform this TWAS, we utilized summary statistics for ER + BC from the Breast Cancer Association Consortium (BCAC) and for ER- BC from a meta-analysis of BCAC and the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). RESULTS In total, we identified 230 genes in 86 loci that were associated with ER + BC and 66 genes in 29 loci that were associated with ER- BC at a Bonferroni threshold of significance. Of these genes, 2 genes associated with ER + BC at the 1q21.1 locus were located at least 1 Mb from published GWAS hits. For several well-studied tumor suppressor genes such as TP53 and CHEK2 which have historically been thought to impact BC risk through rare, penetrant mutations, we discovered that common variants, which modulate gene expression, may additionally contribute to ER + or ER- etiology. CONCLUSIONS Our study comprehensively examined how differences in common variation contribute to molecular differences between ER + and ER- BC and introduces a novel, splicing-based framework that can be used in future TWAS studies.
Collapse
Affiliation(s)
- Julian C McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology & Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Risk Association of TOX3 and MMP7 Gene Polymorphisms with Sporadic Breast Cancer in Mexican Women. Curr Oncol 2022; 29:1008-1017. [PMID: 35200585 PMCID: PMC8870835 DOI: 10.3390/curroncol29020086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
Breast cancer (BC) has one of the highest incidences and mortality worldwide. Single nucleotide polymorphisms (SNPs) in TOX3 rs3803662 and MMP7 rs1943779 have been associated with susceptibility to BC. In this case-control study, we evaluated the association of rs3803662 (TOX3)/rs1943779 (MMP7) SNPs with clinical features, immunohistochemical reactivity, and risk association with BC in women from northeastern Mexico. We compared 212 BC cases and 212 controls. DNA was isolated from peripheral blood to perform the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. We calculated genotype frequencies, odds ratios, and 95% confidence intervals. We found that CT (Cytocine-Thymine) and TT (Thymine -Thymine) genotypes, and T alleles of TOX3 rs3803662, were associated with BC risk (p = 0.034, p = 0.011, respectively). SNP TOX3 rs3803662 was associated with positive progesterone receptors (PR) and triple-negative BC (TNBC) but not with estrogen receptor (ER) or HER2 reactivity. CT and TT genotypes (p = 0.006) and T alleles (p = 0.002) of SNP MMP7 rs1943779 were associated with risk of BC. We found that T alleles of TOX3 rs3803662 and MMP7 rs1943779 SNPs are associated with BC risk. These findings contribute to personalized medicine in Mexican women.
Collapse
|
3
|
Nguyen Thi Ngoc Thanh, Tram PB, Tuyet NHH, Uyen NHP, Tien LTM, Anh DN, Van LTT, Luan HH, Hue NT. Association of Polymorphisms in Genes Involved in DNA Repair and Cell Cycle Arrest with Breast Cancer in a Vietnamese Case-Control Cohort. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Fehlmann T, Sahay S, Keller A, Backes C. A review of databases predicting the effects of SNPs in miRNA genes or miRNA-binding sites. Brief Bioinform 2020; 20:1011-1020. [PMID: 29186316 DOI: 10.1093/bib/bbx155] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Modern precision medicine comprises the knowledge and understanding of individual differences in the genomic sequence of patients to provide tailor-made treatments. Regularly, such variants are considered in coding regions only, and their effects are predicted based on their impact on the amino acid sequence of expressed proteins. However, assessing the effects of variants in noncoding elements, in particular microRNAs (miRNAs) and their binding sites, is important as well, as a single miRNA can influence the expression patterns of many genes at the same time. To analyze the effects of variants in miRNAs and their target sites, several databases storing variant impact predictions have been published. In this review, we will compare the core functionalities and features of these databases and discuss the importance of up-to-date data resources in the context of web applications. Finally, we will outline some recommendations for future developments in the field.
Collapse
Affiliation(s)
- Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Shashwat Sahay
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Association of the functional genetic variants of TOX3 gene with breast cancer in Iran: A case-control study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Özgöz A, Mutlu İçduygu F, Yükseltürk A, ŞamlI H, Hekİmler Öztürk K, Başkan Z. Low-penetrance susceptibility variants and postmenopausal oestrogen receptor positive breast cancer. J Genet 2020. [DOI: 10.1007/s12041-019-1174-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Akhtar M, Jamal T, Din JU, Hayat C, Rauf M, Ul Haq SM, Sher Khan R, Shah AA, Jamal M, Jalil F. An in silico approach to characterize nonsynonymous SNPs and regulatory SNPs in human TOX3 gene. J Genet 2019; 98:104. [PMID: 31819019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer is one of the deadliest complex diseases having multigene nature where the role of single-nucleotide polymorphism (SNP) has been well explored in multiple genes. TOX high mobility group box family member 3 (TOX3) is one such gene, in which SNPs have been found to be associated with breast cancer. In this study, we have examined the potentially damaging nonsynonymous SNPs(nsSNPs) in TOX3 gene using in silico tools, namely PolyPhen2, SNP&GO, PhD-SNP and PROVEAN, which were further confirmed by I-Mutant, MutPred1.2 and ConSurf for their stability, functional and structural effects. nsSNPs rs368713418 (A266D), rs751141352 (P273S, P273T), rs200878352 (A275T) have been found to be the most deleterious that may have a vital role in breast cancer. Premature stop codon producing SNPs (Q527STOP), rs1259790811 (G495STOP), rs1294465822 (S395STOP) and rs1335372738 (G8STOP) were also found having prime importance in truncated and malfunctional protein formation. We also characterized regulatory SNPs for its potential effect on TOX3 gene regulation and found nine SNPs that may affect the gene regulation. Further, we have also designed 3D models using I-TASSER for the wild type and four mutant TOX3 proteins. Our study concludes that these SNPs can be of prime importance while studying breast cancer and other associated diseases as well. They are required to be studied in model organisms and cell cultures, and may have potential importance in personalized medicines and gene therapy.
Collapse
Affiliation(s)
- Mehran Akhtar
- Department of Biotechnology, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
An in silico approach to characterize nonsynonymous SNPs and regulatory SNPs in human TOX3 gene. J Genet 2019. [DOI: 10.1007/s12041-019-1153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Danková Z, Žúbor P, Grendár M, Zelinová K, Jagelková M, Stastny I, Kapinová A, Vargová D, Kasajová P, Dvorská D, Kalman M, Danko J, Lasabová Z. Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study. J Biotechnol 2019; 299:1-7. [DOI: 10.1016/j.jbiotec.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
|
10
|
Significant association of TOX3/LOC643714 locus-rs3803662 and breast cancer risk in a cohort of Iranian population. Mol Biol Rep 2018; 46:805-811. [PMID: 30515698 DOI: 10.1007/s11033-018-4535-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies normally focus on low penetrance and moderate to high-frequency single nucleotide polymorphisms (SNPs), which lead to genetic susceptibility to breast cancer. In this regard, the T allele of rs3803662 has been associated with breast cancer risk and with lower expression level of TOX3. We aimed to assess the risk of breast cancer associated with this polymorphism in an Iranian population. Using Tetra Primer ARMS PCR, rs3803662 was analyzed in a total of 943 individuals (430 cases and 513 healthy controls form North East of Iran). Allele frequencies and genotype distribution were analyzed in case and control samples to find out any association using the Chi-squared test and Logistic regression. All cases were pathologically confirmed; all controls were mainly healthy individuals. Genotype frequencies were found to be in agreement with HWE in controls and cases. TOX3-rs3803662 SNP was associated with breast cancer risk in our study (T vs. C allele contrast model: OR 1.36, 95% CI 1.12-1.64, Pvalue = 0.002; TT vs. CT + TT dominant model: OR 0.67, 95% CI 0.51-0.87, Pvalue = 0.003; TT vs. CT + CC recessive model: OR 1.54, 95% CI 1.02-2.30, Pvlue = 0.036). Moreover, after adjusting for age, BMI, history of previous cancer and also family history of cancer, all results, except for the recessive model, were remained significant. TOX3-rs3803662, may confer some degrees of risk of breast cancer in Iranian population. This finding is in line with similar results in other populations. It highlights the importance of TOX3 pathway in tumorigenesis.
Collapse
|
11
|
Li JY, Jing R, Wei H, Wang M, Xiaowei Q, Liu H, Jian L, Ou JH, Jiang WH, Tian FG, Sheng Y, Li HY, Xu H, Zhang RS, Guan AH, Liu K, Jiang HC, Ren Y, He JJ, Huang W, Liao N, Cai X, Ming J, Ling R, Xu Y, Hu CY, Zhang J, Guo B, Ouyang L, Shuai P, Liu Z, Zhong L, Zeng Z, Zhang T, Xuan Z, Tan X, Liang J, Pan Q, Chen L, Zhang F, Fan LJ, Zhang Y, Yang X, BoLi J, Chen C, Jiang J. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer. Int J Cancer 2018; 144:281-289. [PMID: 29752822 DOI: 10.1002/ijc.31601] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
Abstract
Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n = 937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n = 18), PALB2 (n = 11), CHEK2 (n = 6), ATM (n = 6) and BARD1 (n = 5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rate (1.9 and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes.
Collapse
Affiliation(s)
- Jun-Yan Li
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Ruilin Jing
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Hongyi Wei
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Minghao Wang
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Qi Xiaowei
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Haoxi Liu
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Liu Jian
- Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Jiang-Hua Ou
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Wei-Hua Jiang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Fu-Guo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Yuan Sheng
- Department of Thyroid and Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Heng-Yu Li
- Department of Thyroid and Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hong Xu
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China
| | - Rui-Shan Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China
| | - Ai-Hua Guan
- Department of Breast Surgery, Jilin Cancer Hospital & Institute, Changchun, Jilin, 130000, China
| | - Ke Liu
- Department of Breast Surgery, Jilin Cancer Hospital & Institute, Changchun, Jilin, 130000, China
| | - Hong-Chuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian-Jun He
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Weiwei Huang
- Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Ning Liao
- Department of Breast, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xiangjun Cai
- Department of Hepatobiliary and General Surgery, PLA No.202 Hospital, Shenyang Liaoning, 110812, China
| | - Jia Ming
- Department of Breast, Thyroid, and Pancreas Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Ling
- Depatement of Thyroid, Breast and Vascular Surgery, Xijing hospital, Forth Military University, Xi'an, Shaanxi, 710032, China
| | - Yan Xu
- Department of Breast surgery, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, 400038, China
| | - Chun-Yan Hu
- Department of Breast surgery, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, 400038, China
| | - Jianguo Zhang
- Department of Breast Surgery, the Second Affiliated Hospital of Harbin Medical College, Harbin, Heilongjiang, 150086, China
| | - Baoliang Guo
- Department of Breast Surgery, the Second Affiliated Hospital of Harbin Medical College, Harbin, Heilongjiang, 150086, China
| | - Lizhi Ouyang
- Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 4100013, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Zhenzhen Liu
- Department of Breast Surgery, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Ling Zhong
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Zhen Zeng
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Ting Zhang
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Zhaoling Xuan
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Xuanni Tan
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Junbin Liang
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Qinwen Pan
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Li Chen
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Fan Zhang
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Lin-Jun Fan
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Xinhua Yang
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Jing BoLi
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Chongjian Chen
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Jun Jiang
- Department of Breast Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
12
|
Jiang C, Yu S, Qian P, Guo R, Zhang R, Ao Z, Li Q, Wu G, Chen Y, Li J, Wang C, Yao W, Xu J, Qian G, Ji F. The breast cancer susceptibility-related polymorphisms at the TOX3/LOC643714 locus associated with lung cancer risk in a Han Chinese population. Oncotarget 2018; 7:59742-59753. [PMID: 27486757 PMCID: PMC5312345 DOI: 10.18632/oncotarget.10874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
It has been well established that besides environmental factors, genetic factors are also associated with lung cancer risk. However, to date, the prior identified genetic variants and loci only explain a small fraction of the familial risk of lung cancer. Hence it is vital to investigate the remaining missing heritability to understand the development and process of lung cancer. In the study, to test our hypothesis that the previously identified breast cancer risk-associated genetic polymorphisms at the TOX3/LOC643714 locus might contribute to lung cancer risk, 16 SNPs at the TOX3/LOC643714 locus were evaluated in a Han Chinese population based on a case-control study. Pearson's chi-square test or Fisher's exact test revealed that rs9933638, rs12443621, and rs3104746 were significantly associated with lung cancer risk (P < 0.001, P < 0.001, and P = 0.005, respectively). Logistic regression analyses displayed that lung cancer risk of individuals with rs9933638(GG+GA) were 1.89 times higher than that of rs9933638AA carriers (OR = 1.893, 95% CI = 1.308-2.741, P = 0.001). Similar findings were manifested for rs12443621 (OR = 1.824, 95% CI = 1.272-2.616, P = 0.001, rs12443621(GG+GA) carriers vs. rs12443621AA carriers) and rs3104746 (OR = 1.665, 95% CI = 1.243-2.230, P = 0.001, rs3104746TT carriers vs. rs3104746(TA+AA) carriers). The study discovered for the first time that three SNPs (rs9933638, rs12443621, and rs3104746) at the TOX3/LOC643714 locus contributed to lung cancer risk, providing new evidences that lung cancer and breast cancer are linked at the molecular and genetic level to a certain extent.
Collapse
Affiliation(s)
- Chaowen Jiang
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Shilong Yu
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Pin Qian
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Ruiling Guo
- Department of Respiratory Diseases, 324th Hospital of People's Liberation Army (No.324 Hospital of PLA), Chongqing 400020, China
| | - Ruijie Zhang
- Department of Respiratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhi Ao
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Qi Li
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Guoming Wu
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yan Chen
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Jin Li
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Changzheng Wang
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Wei Yao
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Jiancheng Xu
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Guisheng Qian
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Fuyun Ji
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
13
|
Low SK, Zembutsu H, Nakamura Y. Breast cancer: The translation of big genomic data to cancer precision medicine. Cancer Sci 2017; 109:497-506. [PMID: 29215763 PMCID: PMC5834810 DOI: 10.1111/cas.13463] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer is a complex genetic disease that develops from the accumulation of genomic alterations in which germline variations predispose individuals to cancer and somatic alterations initiate and trigger the progression of cancer. For the past 2 decades, genomic research has advanced remarkably, evolving from single-gene to whole-genome screening by using genome-wide association study and next-generation sequencing that contributes to big genomic data. International collaborative efforts have contributed to curating these data to identify clinically significant alterations that could be used in clinical settings. Focusing on breast cancer, the present review summarizes the identification of genomic alterations with high-throughput screening as well as the use of genomic information in clinical trials that match cancer patients to therapies, which further leads to cancer precision medicine. Furthermore, cancer screening and monitoring were enhanced greatly by the use of liquid biopsies. With the growing data complexity and size, there is much anticipation in exploiting deep machine learning and artificial intelligence to curate integrative "-omics" data to refine the current medical practice to be applied in the near future.
Collapse
Affiliation(s)
- Siew-Kee Low
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitoshi Zembutsu
- Project for Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Nakamura
- Department of Medicine, Center for Personalized Therapeutics, The University of Chicago, Chicago, IL, USA.,Department of Surgery, Center for Personalized Therapeutics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Wang Z, Liu X, Wang X, Chong T, Lin S, Wang M, Ma X, Liu K, Xu P, Feng Y, Dai Z. Polymorphisms in TIM-3 and breast cancer susceptibility in Chinese women: A case-control study. Oncotarget 2016; 7:43703-43712. [PMID: 27248321 PMCID: PMC5190054 DOI: 10.18632/oncotarget.9665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/12/2016] [Indexed: 12/29/2022] Open
Abstract
Previous studies have found associations between polymorphisms in T cell immunoglobulin and mucin domain 3 (TIM-3) and increased risks of various cancers. However, the association between TIM-3 polymorphisms and breast cancer (BC) remains uncertain. In this study, a total of 560 BC patients and 583 age, sex, and ethnicity-matched healthy controls from Northwest China were included. The polymorphisms were genotyped using Sequenom MassARRAY. The expression level of TIM-3 protein was detected by immunohistochemistry. We observed rs10053538 had a significantly increased risk of BC, comparing with the wild-type genotype even after Bonferroni correction. In addition, the rs4704853 G>A variants were more frequent among BC patients than the controls (GA + AA vs. GG: OR = 1.32, 95% CI = 1.03-1.69, P = 0.026); However, the significance was lost after Bonferroni correction (P = 0.078). Furthermore, rs10053538 was associated with lymph node metastasis. Age stratification revealed that among patients aged <49 years, those with the rs4704853 GA/AA genotype had a higher risk of BC; But there was no difference when Bonferroni correction was conducted. Immunohistochemical analysis showed that the expression of TIM-3 protein in the breast cancer tissues was higher in patients carrying the rs10053538 GT+TT genotype than those with GG genotype (P = 0.012). However, we failed to find any difference between BC patients and controls in any rs1036199 genetic model. These findings suggested that rs10053538 in TIM-3 might increase susceptibility to BC and promote the progression of BC in Chinese women.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Medical Oncology, Xi'an Central Hospital, Xi'an 710004, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xijing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Tie Chong
- Department of Urologic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaobin Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kang Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Peng Xu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yanjing Feng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|