1
|
Wang S, Cheng T, Chen X, Zeng C, Qin W, Xu Y. IFN-γ induces acute graft-versus-host disease by promoting HMGB1-mediated nuclear-to-cytoplasm translocation and autophagic degradation of p53. Clin Sci (Lond) 2024; 138:1287-1304. [PMID: 39312196 PMCID: PMC11479981 DOI: 10.1042/cs20241144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Acute graft-versus-host disease (aGVHD) poses a significant impediment to achieving a more favourable therapeutic outcome in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our prior investigations disclosed a correlation between p53 down-regulation in CD4+ T cells and the occurrence of aGVHD. Notably, the insufficiency of the CCCTC-binding factor (CTCF) emerged as a pivotal factor in repressing p53 expression. However, the existence of additional mechanisms contributing to the reduction in p53 expression remains unclear. Interferon (IFN)-γ, a pivotal proinflammatory cytokine, assumes a crucial role in regulating alloreactive T-cell responses and plays a complex part in aGVHD development. IFN-γ has the capacity to induce autophagy, a vital catabolic process facilitating protein degradation, in various cell types. Presently, whether IFN-γ participates in the development of aGVHD by instigating the autophagic degradation of p53 in CD4+ T cells remains an unresolved question. In the present study, we demonstrated that heightened levels of IFN-γ in the plasma during aGVHD promoted the activation, proliferation, and autophagic activity of CD4+ T cells. Furthermore, IFN-γ induced the nuclear-to-cytoplasm translocation and autophagy-dependent degradation of p53 in CD4+ T cells. The translocation and autophagic degradation of p53 were contingent upon HMGB1, which underwent up-regulation and translocation from the nucleus to the cytoplasm following IFN-γ stimulation. In conclusion, our data unveil a novel mechanism underlying p53 deficiency in CD4+ T cells among aGVHD patients. This deficiency is induced by IFN-γ and relies on autophagy, establishing a link between IFN-γ, HMGB1-mediated translocation, and the autophagic degradation of p53.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Tingting Cheng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Cong Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Wei Qin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| |
Collapse
|
2
|
Lv L, Wei Q, Zhang J, Dong Y, Shan Z, Chang N, Zhao Y, Bian P, Yi Q. IGF2BP3 prevent HMGB1 mRNA decay in bladder cancer and development. Cell Mol Biol Lett 2024; 29:39. [PMID: 38504159 PMCID: PMC10949762 DOI: 10.1186/s11658-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND IGF2BP3 functions as an RNA-binding protein (RBP) and plays a role in the posttranscriptional control of mRNA localization, stability, and translation. Its dysregulation is frequently associated with tumorigenesis across various cancer types. Nonetheless, our understanding of how the expression of the IGF2BP3 gene is regulated remains limited. The specific functions and underlying mechanisms of IGF2BP3, as well as the potential benefits of targeting it for therapeutic purposes in bladder cancer, are not yet well comprehended. METHODS The mRNA and protein expression were examined by RT-qPCR and western blotting, respectively. The methylation level of CpG sites was detected by Bisulfite sequencing PCR (BSP). The regulation of IGF2BP3 expression by miR-320a-3p was analyzed by luciferase reporter assay. The functional role of IGF2BP3 was determined through proliferation, colony formation, wound healing, invasion assays, and xenograft mouse model. The regulation of HMGB1 by IGF2BP3 was investigated by RNA immunoprecipitation (RIP) and mRNA stability assays. RESULTS We observed a significant elevation in IGF2BP3 levels within bladder cancer samples, correlating with more advanced stages and grades, as well as an unfavorable prognosis. Subsequent investigations revealed that the upregulation of IGF2BP3 expression is triggered by copy number gain/amplification and promoter hypomethylation in various tumor types, including bladder cancer. Furthermore, miR-320a-3p was identified as another negative regulator in bladder cancer. Functionally, the upregulation of IGF2BP3 expression exacerbated bladder cancer progression, including the proliferation, migration, and invasion of bladder cancer. Conversely, IGF2BP3 silencing produced the opposite effects. Moreover, IGF2BP3 expression positively correlated with inflammation and immune infiltration in bladder cancer. Mechanistically, IGF2BP3 enhanced mRNA stability and promoted the expression of HMGB1 by binding to its mRNA, which is a factor that promotes inflammation and orchestrates tumorigenesis in many cancers. Importantly, pharmacological inhibition of HMGB1 with glycyrrhizin, a specific HMGB1 inhibitor, effectively reversed the cancer-promoting effects of IGF2BP3 overexpression in bladder cancer. Furthermore, the relationship between HMGB1 mRNA and IGF2PB3 is also observed in mammalian embryonic development, with the expression of both genes gradually decreasing as embryonic development progresses. CONCLUSIONS Our present study sheds light on the genetic and epigenetic mechanisms governing IGF2BP3 expression, underscoring the critical involvement of the IGF2BP3-HMGB1 axis in driving bladder cancer progression. Additionally, it advocates for the investigation of inhibiting IGF2BP3-HMGB1 as a viable therapeutic approach for treating bladder cancer.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Qinqin Wei
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jianxiao Zhang
- Medical Consulting Center, Hebei Children's Hospital, Shijiazhuang, 050030, Hebei, China
| | - Yitong Dong
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhenglei Shan
- The Second Clinical College, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, People's Republic of China
| | - Ye Zhao
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Po Bian
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Qiyi Yi
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Starkova TY, Polyanichko AM, Artamonova TO, Tsimokha AS, Tomilin AN, Chikhirzhina EV. Structural Characteristics of High-Mobility Group Proteins HMGB1 and HMGB2 and Their Interaction with DNA. Int J Mol Sci 2023; 24:3577. [PMID: 36834988 PMCID: PMC9962726 DOI: 10.3390/ijms24043577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Non-histone nuclear proteins HMGB1 and HMGB2 (High Mobility Group) are involved in many biological processes, such as replication, transcription, and repair. The HMGB1 and HMGB2 proteins consist of a short N-terminal region, two DNA-binding domains, A and B, and a C-terminal sequence of glutamic and aspartic acids. In this work, the structural organization of calf thymus HMGB1 and HMGB2 proteins and their complexes with DNA were studied using UV circular dichroism (CD) spectroscopy. Post-translational modifications (PTM) of HMGB1 and HMGB2 proteins were determined with MALDI mass spectrometry. We have shown that despite the similar primary structures of the HMGB1 and HMGB2 proteins, their post-translational modifications (PTMs) demonstrate quite different patterns. The HMGB1 PTMs are located predominantly in the DNA-binding A-domain and linker region connecting the A and B domains. On the contrary, HMGB2 PTMs are found mostly in the B-domain and within the linker region. It was also shown that, despite the high degree of homology between HMGB1 and HMGB2, the secondary structure of these proteins is also slightly different. We believe that the revealed structural properties might determine the difference in the functioning of the HMGB1 and HMGB2 as well as their protein partners.
Collapse
Affiliation(s)
| | | | | | - Anna S. Tsimokha
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
4
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
6
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
7
|
Li L, Beeraka NM, Xie L, Dong L, Liu J, Wang L. Co-expression of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in the prognosis of esophageal squamous cell carcinoma. Discov Oncol 2022; 13:64. [PMID: 35829833 PMCID: PMC9279518 DOI: 10.1007/s12672-022-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is a malignant type of cancer with a high mortality rate. The aim of this study is to determine co-expression patterns of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in ESCC (esophageal squamous cell carcinoma) conditions and their prognostic role in cancer progression. The expression of HMGB1 and RAGE in ESCC tissues has been analyzed using qRT-PCR and Western blotting. Co-localized expression patterns of HMGB1 and RAGE in ESCC tissues were determined using immunohistochemistry and analyzed for clinical-pathological parameters. Overall survival was performed based on co-expression of HMGB1 and RAGE proteins. A higher expression pattern of HMGB1, and RAGE was observed at mRNA and protein level in the ESCC group compared to the adjacent tissue group. Expression of HMGB1 was significantly correlated with lymph node, metastasis, lymphatic invasion, and venous invasion (p < 0.05). RAGE expression exhibited a significant correlation with venous invasion. Overall survival was significantly shorter (P < 0.05) in the patients with co-expression of HMGB1 and RAGE compared to the patients without co-expression. A significant difference in the overall survival was evident between the patients with co-expression of HMGB1 and RAGE and the patients without coexpression. HMGB1 and RAGE expression patterns were associated with aggressive metastatic characteristics of ESCC. The co-expression of HMGB1 and RAGE was correlated with shorter survival times. Results concluded the co-expression patterns of HMGB1 and RAGE exhibited a prognostic relevance in ESCC conditions.
Collapse
Affiliation(s)
- Lingzhao Li
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991 Russian Federation
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Li Dong
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195# Tongbai Road, Zhengzhou, 450052 Henan People’s Republic of China
| |
Collapse
|
8
|
Singh A, Gupta N, Khandakar H, Kaushal S, Seth A, Pandey RM, Sharma A. Autophagy-associated HMGB-1 as a novel potential circulating non-invasive diagnostic marker for detection of Urothelial Carcinoma of Bladder. Mol Cell Biochem 2022; 477:493-505. [PMID: 34796446 PMCID: PMC8601373 DOI: 10.1007/s11010-021-04299-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
Urothelial carcinoma of bladder (UBC), a highly prevalent urological malignancy associated with high mortality and recurrence rate. Standard diagnostic method currently being used is cystoscopy but its invasive nature and low sensitivity stresses for identifying predictive diagnostic marker. Autophagy, a cellular homeostasis maintaining process, is usually dysregulated in cancer and its role is still enigmatic in UBC. In this study, 30 UBC patients and healthy controls were enrolled. Histopathologically confirmed tumor and adjacent normal tissue were acquired from patients. Molecular expression and tissue localization of autophagy-associated molecules (HMGB-1, RAGE, beclin, LC-3, and p62) were investigated. Serum HMGB-1 concentration was measured in UBC patients and healthy controls. ROC curves were plotted to evaluate diagnostic potential. Transcript, protein, and IHC expression of HMGB-1, RAGE, beclin, and LC-3 displayed upregulated expression, while p62 was downregulated in bladder tumor tissue. Serum HMGB-1 levels were elevated in UBC patients. Transcript and circulatory levels of HMGB-1 showed positive correlation and displayed a positive trend with disease severity. Upon comparison with clinicopathological parameters, HMGB-1 emerged as molecule of statistical significance to exhibit association. HMGB-1 exhibited optimum sensitivity and specificity in serum. The positive correlation between tissue and serum levels of HMGB-1 showcases serum as a representation of in situ scenario, suggesting its clinical applicability for non-invasive testing. Moreover, optimum sensitivity and specificity displayed by HMGB-1 along with significant association with clinicopathological parameters makes it a potential candidate to be used as diagnostic marker for early detection of UBC but requires further validation in larger cohort.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Hena Khandakar
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - R M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
9
|
Lai W, Li X, Kong Q, Chen H, Li Y, Xu LH, Fang J. Extracellular HMGB1 interacts with RAGE and promotes chemoresistance in acute leukemia cells. Cancer Cell Int 2021; 21:700. [PMID: 34933679 PMCID: PMC8693501 DOI: 10.1186/s12935-021-02387-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background Nowadays, acute leukemia (AL) among children has favorable outcome, yet some of them get refractory or relapse mainly due to drug resistance. High-mobility group box 1 (HMGB1) has been proven to have a important role in drug resistance via upregulation of autophagy after chemotherapy treatment in acute leukemia. However, the mechanism how extracellular HMGB1 acts on AL cells and leads to chemoresistance remains elusive. Method CCK8 was used to examine the toxicity of chemotherapeutic drug. Elisa was performed to detect the release of HMGB1. Western blot and mRFP-GFP-LC3 adenoviral particles as well as transmission electron microscopy were used to detect the autophagy flux. Western blot and flow cytometry were applied to evaluate the apoptosis. qPCR and western blot were conducted to detect the expression of drug efflux protein. Lentivirus infection was applied to knock down RAGE. In addition, T-ALL NOD/SCID mice xenograft model was used to observe the effect of inhibiting HMGB1/RAGE axis. Results We found that extracellular HMGB1 do upregulate autophagy and in the meantime downregulate apoptosis, primarily through interaction with receptor for advanced glycation end products (RAGE). Suppression of RAGE by RNA interference alleviated the level of autophagy and enhanced apoptosis. What’s more, HMGB1/RAGE induced autophagy was associated with the activation of ERK1/2 and decreased phosphorylation of mammalian target of rapamycin (mTOR), while HMGB1/RAGE limited apoptosis in a Bcl-2-regulated way mediated by P53. On the other hand, we found that HMGB1/RAGE activated the NF-κB pathway and promoted the expression of P-glycation protein (P-gp) as well as multidrug resistance-associated protein (MRP), both are ATP-binding cassette transporters. In vivo experiment, we found that blocking HMGB1/RAGE axis do have a mild pathological condition and a better survival in T-ALL mice. Conclusion HMGB1/RAGE have a important role in drug resistance after chemotherapy treatment, mainly by regulating autophagy and apoptosis as well as promoting the expression of drug efflux protein such as P-gp and MRP. HMGB1/RAGE might be a promising target to cure AL, especially for those met with relapse and refractory.
Collapse
Affiliation(s)
- Weixin Lai
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangzhou, People's Republic of China.,Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xinyu Li
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Qian Kong
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Han Chen
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yunyao Li
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lu-Hong Xu
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jianpei Fang
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Ning J, Yang R, Wang H, Cui L. HMGB1 enhances chemotherapy resistance in multiple myeloma cells by activating the nuclear factor-κB pathway. Exp Ther Med 2021; 22:705. [PMID: 34007314 PMCID: PMC8120504 DOI: 10.3892/etm.2021.10137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance is a main obstacle in the clinical chemotherapeutic treatment of multiple myeloma (MM). High-mobility group box 1 (HMGB1) has been revealed to be associated with the sensitivity of MM cells to chemotherapy, but how HMGB1 regulates chemotherapy resistance in MM has yet to be fully elucidated. In the present study, the exact molecular mechanism underlying HMGB1-mediated drug resistance in MM was explored using three chemotherapy-resistant MM cells (RPMI8226/ADR, RPMI8226/BOR and RPMI8226/DEX) that were successfully established. Reverse transcription-quantitative polymerase chain reaction revealed that the three chemotherapy-resistant MM cells exhibited a higher release of HMGB1 compared with the parental RPMI8226 cells. Interference with endogenous HMGB1 increased the sensitivity of drug-resistant MM cells to chemotherapy, which was supported by the low IC50 value and the enlargement of cell apoptosis. Furthermore, short hairpin (sh)RNA-transfected MM cells showed an obvious elevation in phosphorylated (p)-IKKα/β, p-IκBα and p-p65 in whole cell lysate and/or nucleus, and treatment of nuclear factor (NF)-κB activator reversed the effect of shHMGB1-mediated cell viability and apoptosis in MM cells. In conclusion, HMGB1 regulates drug resistance in MM cells by regulating NF-κB signaling pathway, suggesting that HMGB1 has the potential to serve as a target for MM treatment.
Collapse
Affiliation(s)
- Jing Ning
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Rui Yang
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hainan Wang
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lijuan Cui
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
11
|
Liu BB, Ma T, Sun W, Gao WY, Liu JM, Li LQ, Li WY, Wang S, Guo YY. Centromere protein U enhances the progression of bladder cancer by promoting mitochondrial ribosomal protein s28 expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:119-129. [PMID: 33602882 PMCID: PMC7893492 DOI: 10.4196/kjpp.2021.25.2.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/26/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Bladder cancer is one of the most common types of cancer. Most gene mutations related to bladder cancer are dominantly acquired gene mutations and are not inherited. Previous comparative transcriptome analysis of urinary bladder cancer and control samples has revealed a set of genes that may play a role in tumor progression. Here we set out to investigate further the expression of two candidate genes, centromere protein U (CENPU) and mitochondrial ribosomal protein s28 (MRPS28) to better understand their role in bladder cancer pathogenesis. Our results confirmed that CENPU is up-regulated in human bladder cancer tissues at mRNA and protein levels. Gain-of-function and loss-of-function studies in T24 human urinary bladder cancer cell line revealed a hierarchical relationship between CENPU and MRPS28 in the regulation of cell viability, migration and invasion activity. CENPU expression was also up-regulated in in vivo nude mice xenograft model of bladder cancer and mice overexpressing CENPU had significantly higher tumor volume. In summary, our findings identify CENPU and MRPS28 in the molecular pathogenesis of bladder cancer and suggest that CENPU enhances the progression of bladder cancer by promoting MRPS28 expression.
Collapse
Affiliation(s)
- Bei-Bei Liu
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Tao Ma
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wei Sun
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wu-Yue Gao
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Jian-Min Liu
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Li-Qiang Li
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wen-Yong Li
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Sheng Wang
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yuan-Yuan Guo
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| |
Collapse
|
12
|
Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020; 21:E7948. [PMID: 33114717 PMCID: PMC7662367 DOI: 10.3390/ijms21217948] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
The functioning of DNA in the cell nucleus is ensured by a multitude of proteins, whose interactions with DNA as well as with other proteins lead to the formation of a complicated, organized, and quite dynamic system known as chromatin. This review is devoted to the description of properties and structure of the progenitors of the most abundant non-histone protein of the HMGB family-the HmgB1 protein. The proteins of the HMGB family are also known as "architectural factors" of chromatin, which play an important role in gene expression, transcription, DNA replication, and repair. However, as soon as HmgB1 goes outside the nucleus, it acquires completely different functions, post-translational modifications, and change of its redox state. Despite a lot of evidence of the functional activity of HmgB1, there are still many issues to be solved related to the mechanisms of the influence of HmgB1 on the development and treatment of different diseases-from oncological and cardiovascular diseases to pathologies during pregnancy and childbirth. Here, we describe molecular structure of the HmgB1 protein and discuss general mechanisms of its interactions with other proteins and DNA in cell.
Collapse
Affiliation(s)
| | | | | | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Tikhoretsky Av. 4, Russia; (T.S.); (A.B.); (A.T.)
| | | |
Collapse
|
13
|
A Small Molecule Stabilizer of the MYC G4-Quadruplex Induces Endoplasmic Reticulum Stress, Senescence and Pyroptosis in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102952. [PMID: 33066043 PMCID: PMC7650714 DOI: 10.3390/cancers12102952] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The DNA G-quadruplex (G4) present in the promoter of the MYC oncogene, commonly amplified in cancers, including multiple myeloma, represents a potential anti-cancer target. A previously identified MYC G4-stablizer, which demonstrated cytotoxicity and senescence in myeloma cells, was discovered to induce endoplasmic reticulum stress and non-apoptotic cell death, pyroptosis. Cancers including myeloma escape apoptosis through upregulation of anti-apoptotic proteins and drug resistance; therefore, induction of pyroptosis provides an alternate therapeutic option. Thus, our study provides a disease-specific experimental strategy for identifying new investigational drugs in cancer treatment. Abstract New approaches to target MYC include the stabilization of a guanine-rich, G-quadruplex (G4) tertiary DNA structure in the NHE III region of its promoter. Recent screening of a small molecule microarray platform identified a benzofuran, D089, that can stabilize the MYC G4 and inhibit its transcription. D089 induced both dose- and time-dependent multiple myeloma cell death mediated by endoplasmic reticulum induced stress. Unexpectedly, we uncovered two mechanisms of cell death: cellular senescence, as evidenced by increased levels of p16, p21 and γ-H2AX proteins and a caspase 3-independent mechanism consistent with pyroptosis. Cells treated with D089 exhibited high levels of the cleaved form of initiator caspase 8; but failed to show cleavage of executioner caspase 3, a classical apoptotic marker. Cotreatment with the a pan-caspase inhibitor Q-VD-OPh did not affect the cytotoxic effect of D089. In contrast, cleaved caspase 1, an inflammatory caspase downstream of caspases 8/9, was increased by D089 treatment. Cells treated with D089 in addition to either a caspase 1 inhibitor or siRNA-caspase 1 showed increased IC50 values, indicating a contribution of cleaved caspase 1 to cell death. Downstream effects of caspase 1 activation after drug treatment included increases in IL1B, gasdermin D cleavage, and HMGB1 translocation from the nucleus to the cytoplasm. Drug treated cells underwent a ‘ballooning’ morphology characteristic of pyroptosis, rather than ‘blebbing’ typically associated with apoptosis. ASC specks colocalized with NLRP3 in proximity ligation assays after drug treatment, indicating inflammasome activation and further confirming pyroptosis as a contributor to cell death. Thus, the small molecule MYC G4 stabilizer, D089, provides a new tool compound for studying pyroptosis. These studies suggest that inducing both tumor senescence and pyroptosis may have therapeutic potential for cancer treatment.
Collapse
|
14
|
Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis. Cancer Lett 2020; 497:1-13. [PMID: 33065249 DOI: 10.1016/j.canlet.2020.10.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Surgery is the only curative treatment option for pancreatic cancer, but patients often develop postoperative recurrence. Surgical invasiveness might be involved in the mechanism of recurrence. The associations among inflammation caused by surgery, neutrophils, and cancer metastasis were investigated. At first, neutrophil extracellular traps (NETs) were examined in clinical specimens, and NETs were observed around metastatic tumors. To explore how NETs were induced, neutrophils were cultured with pancreatic cancer or in cancer-conditioned medium. Neutrophils formed NETs when they were cultured with pancreatic cancer or even its conditioned medium. The effects of NETs on cancer cells were further investigated in vitro and in vivo. NETs induced the epithelial to mesenchymal transition in cancer cells and thereby promoted their migration and invasion. HMGB1 derived from NETs appeared to potentiate the malignancy of cancer cells. In a mouse model of liver metastasis with inflammation, NETs participated in the metastatic process by enhancing extravasation. Interestingly, thrombomodulin degraded HMGB1 and consequently inhibited the induction of NETs, thereby preventing pancreatic cancer metastasis to the liver. In conclusion, NETs interact reciprocally with pancreatic cancer cells, which play a pivotal role in inflammation-associated metastasis. Targeting NETs with thrombomodulin can be a novel strategy to improve the surgical outcome of pancreatic cancer patients.
Collapse
|
15
|
El-Far AH, Sroga G, Al Jaouni SK, Mousa SA. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression. Int J Mol Sci 2020; 21:ijms21103613. [PMID: 32443845 PMCID: PMC7279268 DOI: 10.3390/ijms21103613] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
Interactions of the receptor for advanced glycation end product (RAGE) and its ligands in the context of their role in diabetes mellitus, inflammation, and carcinogenesis have been extensively investigated. This review focuses on the role of RAGE-ligands and anti-RAGE drugs capable of controlling cancer progression. Different studies have demonstrated interaction of RAGE with a diverse range of acidic (negatively charged) ligands such as advanced glycation end products (AGEs), high-mobility group box1 (HMGB1), and S100s, and their importance to cancer progression. Some RAGE-ligands displayed effects on anti- and pro-apoptotic proteins through upregulation of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and nuclear factor kappa B (NF-κB) pathways, while downregulating p53 in cancer progression. In addition, RAGE may undergo ligand-driven multimodal dimerization or oligomerization mediated through self-association of some of its subunits. We conclude our review by proposing possible future lines of study that could result in control of cancer progression through RAGE inhibition.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Damanhour 22511, Egypt;
| | - Grazyna Sroga
- Rensselaer Polytechnic Institute, NY (RPI), Troy, NY 12180, USA;
| | - Soad K. Al Jaouni
- Department of Hematology/Pediatric Oncology, King Abdulaziz University, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
- Correspondence:
| |
Collapse
|
16
|
Walter CEJ, Durairajan S, Periyandavan K, C GPD, G DJD, A HRV, Johnson T, Zayed H. Bladder neoplasms and NF-κB: an unfathomed association. Expert Rev Mol Diagn 2020; 20:497-508. [PMID: 32228251 DOI: 10.1080/14737159.2020.1743688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Bladder cancer is the second most common genitourinary tract cancer and is often recurrent and/or chemoresistant after tumor resection. Cigarette smoking, exposure to aromatic amines, and chronic infection/inflammation are bladder cancer risk factors. NF-κB is a transcription factor that plays a critical role in normal physiology and bladder cancer. Bladder cancer patients have constitutively active NF-κB triggered by pro-inflammatory cytokines, chemokines, and hypoxia, augmenting carcinogenesis and progression.Areas covered: NF-κB orchestrates protein interactions (PTEN, survivin, VEGF), regulation (CYLD, USP13) and gene expression (Trp 53) resulting in bladder cancer progression, recurrence and resistance to therapy. This review focuses on NF-κB in bladder inflammation, cancer and resistance to therapy.Expert opinion: NF-κB and bladder cancer necessitate further research to develop better diagnostic and treatment regimens that address progression, recurrence and resistance to therapy. NF-κB is a master regulator that can act with or on minimally one cancer hallmark gene or protein, leading to bladder cancer progression (Tp53, PTEN, VEGF, HMGB1, CYLD, USP13), recurrence (PCNA, BcL-2, JUN) and resistance to therapy (P-gp, twist, SETD6). Thus, an understanding of bladder cancer in relation to NF-κB will offer improved strategies and efficacious targeted therapies resulting in minimal progression, recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Sankari Durairajan
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Kalaiselvi Periyandavan
- Department of Medical Biochemistry, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Chennai, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Dicky John Davis G
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hannah Rachel Vasanthi A
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Thanka Johnson
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Cai Y, Jiang C, Zhu J, Xu K, Ren X, Xu L, Hu P, Wang B, Yuan Q, Guo Y, Sun J, Xu P, Qiu Y. miR-449a inhibits cell proliferation, migration, and inflammation by regulating high-mobility group box protein 1 and forms a mutual inhibition loop with Yin Yang 1 in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res Ther 2019; 21:134. [PMID: 31159863 PMCID: PMC6547523 DOI: 10.1186/s13075-019-1920-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
Background We previously found that high-mobility group box protein 1 (HMGB1) promoted cell proliferation, migration, invasion, and autophagy in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), but little is known about its regulatory mechanism. The aim of this study was to investigate the regulatory mechanism of HMGB1 at the posttranscription level. Methods Real-time qPCR, CCK-8 cell proliferation assay, transwell cell migration assay, enzyme-linked immunosorbent assay (ELISA), and western blotting were used in this study. The targeting relationship between miRNA and mRNA was presented by the luciferase reporter assay. Results MiR-449a was downregulated in RA synovial tissue and inhibited RA-FLS proliferation, migration, and IL-6 production. MiR-449a directly targeted HMGB1 and inhibited its expression. Yin Yang 1(YY1) negatively regulated miR-449a expression and formed a mutual inhibition loop in RA-FLS. MiR-449a inhibited TNFα-mediated HMGB1 and YY1 overexpression and IL-6 production. Conclusions Our results reveal the regulatory mechanism of HMGB1 in RA and demonstrate that miR-449a is a crucial molecule in RA pathogenesis and a suitable candidate for miRNA replacement therapies in RA. Electronic supplementary material The online version of this article (10.1186/s13075-019-1920-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jialin Zhu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Xiaoyu Ren
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Lin Xu
- Department of Orthopaedics of the 3201 Hospital, Hanzhong, 723000, China
| | - Peijing Hu
- Department of Cardiovascular Medicine of the Second Affiliated Hospital, Xi'an Medical School, Xi'an, 710038, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qiling Yuan
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China.
| | - Yusheng Qiu
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
18
|
The evaluation of monocyte lymphocyte ratio as a preoperative predictor in urothelial malignancies: a pooled analysis based on comparative studies. Sci Rep 2019; 9:6280. [PMID: 31000754 PMCID: PMC6472363 DOI: 10.1038/s41598-019-42781-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, several studies have reported monocyte lymphocyte ratio (MLR) to predict prognosis in various tumors. Our study was performed to evaluate the association between preoperative MLR between prognostic variables in urothelial carcinoma patients. Systematic literature search was conducted in PubMed, Embase, Web of science. The correlation between preoperative MLR and overall survival (OS), cancer specific survival (CSS), disease free survival (DFS)/relapse free survival (RFS), progression free survival(PFS) was evaluated in urothelial carcinoma patients. Meanwhile, the association between MLR and clinicopathological characteristics was assessed. Finally, 12 comparative studies comprising a total of 6209 patients were included for pooled analysis. The hazard ratios (HRs), odds ratios (ORs)and 95% confidence intervals (CIs) were further analyzed as effect measures. The pooled results demonstrated that elevated preoperative MLR indicated unfavorable OS (HR = 1.29, 95%CI = 1.18-1.39, I2 = 33.6%), DFS/RFS (HR = 1.42, 95%CI = 1.30–1.55, I2 = 0.0%) and CSS (HR = 1.41, 95%CI = 1.29–1.52, I2 = 0.0%). Moreover, the pooled results also suggested that elevated preoperative MLR was correlated with high tumor stage (OR = 1.22, 95%CI = 1.07–1.37, I2 = 0.0%) in urothelial carcinoma patients. No significant association was found between preoperative MLR and PFS in upper urinary tract urothelial carcinoma (UUTUC) patients. Collectively, elevated preoperative MLR predicted poor prognosis in urothelial carcinoma and have the potential to be a feasible and cost-effective prognostic predictor for management of urothelial carcinoma.
Collapse
|
19
|
Tao H, Tang T, Wang S, Wang Z, Ma Y, Cai T, Cheng X, Qi S, Zhang Y, Qi Z. The molecular mechanisms of Aloin induce gastric cancer cells apoptosis by targeting High Mobility Group Box 1. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1221-1231. [PMID: 31114162 PMCID: PMC6489572 DOI: 10.2147/dddt.s201818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Purpose: Aloin (ALO), a bioactive ingredient extracted from aloe vera, has anti-tumor effects. High Mobility Group Box 1 (HMGB1), a highly conserved nuclear DNA-binding protein, has been implicated in various cancer types. Highly expressed HMGB1 is closely associated with tumor cells apoptosis, proliferation and migration. We investigated the specific molecular mechanisms by which ALO-induced apoptosis by targeting HMGB1 in gastric cancer cells. Materials and methods: Human gastric cancer HGC-27 cells were treated with different doses of ALO (100, 200 and 400 µg/ml) for 24 h, after which DAPI staining was used to observe the nuclear morphology, Annexin V/PI double staining assay was used to determine the rate of apoptosis; Western blotting was used to detect the levels of PARP, pro-caspase3, HMGB1 and RAGE; nuclear translocation of HMGB1 was determined by conducting a nucleoplasm separation experiment. The Enzyme linked immunosorbent assay (ELISA) assay was used to detect release of HMGB1. The HGC-27 cells, transfected with HMGB1 shRNA plasmids, were stimulated with ALO for 24 h, after which a flow cytometry assay was used to detect the rate of apoptosis. HGC-27 cells were pre-treated with or without ALO and then stimulated with rhHMGB1, the phosphorylation of Akt, mTOR, P70S6K, S6, 4EBP1, ERK, P90RSK, cAMP regulatory element binding (CREB) were detected by Western blotting. Results: After different doses of ALO treatment, the nuclei showed morphological changes characteristic of apoptosis. Apoptotic rates were enhanced in a dose dependent manner. The level of cleaved PARP was enhanced and pro-caspase3, HMGB1 and RAGE levels were reduced, HMGB1 nuclear translocation and release were inhibited. The activation of rhHMGB1-induced Akt-mTOR-P70S6K and ERK-CREB signalling pathways was inhibited by ALO. Blocking these signalling pathways by special inhibitors and HMGB1 knockdown could enhance ALO-induced HGC-27 cell apoptosis. Conclusion: ALO- induced HGC-27 cell apoptosis by down-regulating expressions of HMGB1 and RAGE, inhibiting HMGB1 release and then suppressing rhHMGB1-induced activation of Akt-mTOR-P70S6K and ERK-P90RSK-CREB signalling pathways.
Collapse
Affiliation(s)
- Hong Tao
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Tuo Tang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Ziqian Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Yunfei Ma
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Tianyu Cai
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Xiuliang Cheng
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
20
|
Yin H, He W, Li Y, Xu N, Zhu X, Lin Y, Gou X. Loss of DUSP2 predicts a poor prognosis in patients with bladder cancer. Hum Pathol 2019; 85:152-161. [DOI: 10.1016/j.humpath.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
|
21
|
Alduais S, Alduais Y, Wu X, Li H, Mao J. HMGB1 knock-down promoting tumor cells viability and arrest pro-apoptotic proteins via Stat3/NFκB in HepG2 cells. Biofactors 2018; 44:570-576. [PMID: 30375073 DOI: 10.1002/biof.1456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM High mobility group box 1 protein (HMGB1) is functionally dynamic and pleiotropic molecule, it has the potential to promote both cell survival and death by regulating multiple signaling pathways, including inflammation and apoptosis. This study aimed at investigating the role of silencing HMGB1 on tumor cells apoptosis and pro-inflammatory proteins expression in hepatocellular HepG2 cancer cells. METHODS HepG2 cells was transfected with si-RNA HMGB1, and the effect on pro-apoptotic proteins expressions like Bax, Bcl2, and pro-inflammatory cytokines like, p65-NFκB, and Cyclooxygenase-2 (Cox2) was assessed using western blot, and also cells apoptosis and proliferation was assessed using annexin V FITC and Calcien AM expression in flow cytometry and fluorescence. RESULTS HMGB1 silencing was found significantly increase tumor cells viability with significant decrease of pro-apoptotic proteins, also antiapoptotic protein Bcl2 was significantly up-regulated, which suggests a possible role in restricting apoptosis. Furthermore, HMGB1 knocked down found to inhibit Stat3 phosphorylation and significantly affect NFkB p65/Cox2 expression which suggests a link between HMGB1 and Stat3 activation. Our results revealed that HMGB1 knocked down may suppress cells apoptosis and enhance HepG2 cells viability via NFkB/Cox2 and Stat3. © 2018 BioFactors, 44(6):570-576, 2018.
Collapse
Affiliation(s)
- Salah Alduais
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaser Alduais
- Gastroenterology Department, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Wu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haosen Li
- Department of Maxillofacial Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|
23
|
RIPK4 promotes bladder urothelial carcinoma cell aggressiveness by upregulating VEGF-A through the NF-κB pathway. Br J Cancer 2018; 118:1617-1627. [PMID: 29867225 PMCID: PMC6008479 DOI: 10.1038/s41416-018-0116-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Constitutively activated nuclear factor kappa B (NF-κB) signalling plays vital roles in bladder urothelial carcinoma (BC) progression. We investigate the effect of receptor-interacting protein kinase 4 (RIPK4) on NF-κB activation and BC progression. METHODS The expression of RIPK4 was examined in 25 cryopreserved paired bladder samples and 112 paraffin BC specimens. In vivo and in vitro assays were performed to validate effect of RIPK4 on NF-κB pathway-mediated BC progression. RESULTS High expression of RIPK4 was observed in BC tissues and was an independent predictor for poor overall survival. Up or downregulating the expression of RIPK4 enhanced or inhibited, respectively, the migration and invasion of BC cells in vitro and in vivo. Mechanistically, RIPK4 promoted K63-linked polyubiquitination of tumour necrosis factor receptor-associated factor 2 (TRAF2), receptor-interacting protein (RIP) and NF-κB essential modulator (NEMO). RIPK4 also promoted nuclear localisation of NF-κB-p65, and maintained activation of NF-κB substantially, leading to upregulation of VEGF-A, ultimately promoting BC cell aggressiveness. CONCLUSIONS Our data highlighted the molecular aetiology and clinical significance of RIPK4 in BC: upregulation of RIPK4 contributes to NF-κB activation, and upregulates VEGF-A, and BC progression. Targeting RIPK4 might represent a new therapeutic strategy to improve survival for patients with BC.
Collapse
|
24
|
Yang X, Yin H, Zhang Y, Li X, Tong H, Zeng Y, Wang Q, He W. Hypoxia-induced autophagy promotes gemcitabine resistance in human bladder cancer cells through hypoxia-inducible factor 1α activation. Int J Oncol 2018; 53:215-224. [PMID: 29693166 DOI: 10.3892/ijo.2018.4376] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Overcoming the chemoresistance of bladder cancer is a pivotal obstacle in clinical treatments. Hypoxia widely exists in solid tumors and has been demonstrated to contribute to chemoresistance through hypoxia-inducible factor 1α (HIF‑1α)-mediated autophagy in several types of cancer. However, it is unclear whether HIF‑1α-mediated autophagy and chemoresistance occur in bladder cancer. The present study demonstrated that HIF‑1α was overexpressed in 20 bladder cancer tissues compared with matched paracarcinoma tissues. Gemcitabine-induced apoptosis during hypoxia was significantly reduced compared with that observed under normoxic conditions. In addition, hypoxia activated autophagy and enhanced gemcitabine-induced autophagy. Combined treatment using gemcitabine and an autophagy inhibitor (3-methyladenine) under hypoxia significantly increased gemcitabine cytotoxicity. Furthermore, it was demonstrated that hypoxia-activated autophagy depended on the HIF‑1α/BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)/Beclin1 signaling pathway. Suppressing HIF‑1α inhibited autophagy, BNIP3 and Beclin1, as well as enhanced gemcitabine-induced apoptosis in bladder cancer cells under hypoxic conditions. Consequently, the results of the present study demonstrated that hypoxia-induced cytoprotective autophagy counteracted gemcitabine-induced apoptosis through increasing HIF‑1α expression. Therefore, targeting HIF‑1α-associated pathways or autophagy in bladder cancer may be a successful strategy to enhance the sensitivity of bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yunzhi Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yizhou Zeng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Quan Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
25
|
Shi Y, Zhang L, Teng J, Miao W. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol Med Rep 2018; 17:5125-5131. [PMID: 29393419 PMCID: PMC5865977 DOI: 10.3892/mmr.2018.8485] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a chronic and recurrent disease of the central nervous system, with a complex pathology. Recent studies have demonstrated that the activation of glial cells serve an important role in the development of epilepsy. The objective of the present study was to investigate the role of high‑mobility group box‑1 (HMGB1) in mediating the activation of glial cells through the toll‑like receptor 4 (TLR4)/nuclear factor (NF)‑κB signaling pathway in seizure, and the underlying mechanism. The brain tissue of post‑surgery patients with intractable epilepsy after resection and the normal control brain tissue of patients with craniocerebral trauma induced intracranial hypertension were collected. The expression level and distribution pattern of HMGB1, OX42 and NF‑κB p65 were detected by immunohistochemistry. HMGB1, TLR4, receptor for advanced glycation end products (RAGE), NF‑κB p65 and inducible nitric oxide synthase (iNOS) expression levels were detected by western blotting, and serum cytokine levels of interleukin (IL)‑1, IL‑6, tumor necrosis factor (TNF)‑α, transforming growth factor (TGF)‑β and IL‑10 in patients with epilepsy and craniocerebral trauma were detected by ELISA. And cell model of epilepsy was established by coriaria lactone (CL)‑stimulated HM cell, and the same factors were measured. The potential toxic effect of HMGB1 on HM cells was evaluated by MTT and 5‑ethynyl‑2‑deoxyuridine assays. The results demonstrated that compared with the control group, levels of HMGB1, TLR4, RAGE, NF‑κB p65 and iNOS in the brain of the epilepsy group were significantly increased, and increased cytokine levels of IL‑1, IL‑6, TNF‑α, TGF‑β and IL‑10 in patients with epilepsy were also observed. At the same time, the above results were also observed in HM cells stimulated with CL. Overexpression of HMGB1 enhanced the results, while HMGB1 small interfering RNA blocked the function of CL. There was no significant toxic effect of HMGB1 on HM cells. In conclusion, overexpression of HMGB1 potentially promoted epileptogenesis. CL‑induced activation of glial cells may act via up‑regulation of HMGB1 and TLR4/RAGE receptors, and the downstream transcription factor NF‑κB.
Collapse
Affiliation(s)
- Yunbo Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lingli Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wang Miao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
26
|
Methylation-mediated repression of microRNA-129-2 suppresses cell aggressiveness by inhibiting high mobility group box 1 in human hepatocellular carcinoma. Oncotarget 2018; 7:36909-36923. [PMID: 27191994 PMCID: PMC5095048 DOI: 10.18632/oncotarget.9377] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) and its dysfunction have been revealed as crucial modulators of cancer initiation and progression. MiR-129-2 has been reported to play a tumor suppressive role in different human malignancies. Here, we demonstrated that miR-129-2 was significantly decreased in hepatocellular carcinoma (HCC) tissues and cell lines. Furthermore, miR-129-2 was expressed at significant lower levels in aggressive and recurrent tumor tissues. Clinical analysis indicated that miR-129-2 expression was inversely correlated with venous infiltration, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) stage in HCC. Notably, miR-129-2 was an independent prognostic factor for indicating overall survival (OS) and disease-free survival (DFS) of HCC patients. Ectopic expression of miR-129-2 inhibited cell migration and invasion in vitro and in vivo. Furthermore, we confirmed that high mobility group box 1 (HMGB1) was a direct target of miR-129-2, and it abrogated the function of miR-129-2 in HCC. Mechanistic investigations showed that miR-129-2 overexpression inhibited AKT phosphorylation at Ser473 and decreased the expression of matrix metalloproteinase2/9 (MMP2/9). Upregulation of p-AKT abolished the decreased cell migration and invasion induced by miR-129-2 in HCC. Whereas inhibition of Akt phosphorylation significantly decreased HMGB1-enhanced HCC cell migration and invasion. Moreover, we found that miR-129-2 was downregulated by DNA methylation, and demethylation of miR-129-2 increased miR-129-2 expression in HCC cells and resulted in significant inhibitory effects on cell migration and invasion. In conclusion, miR-129-2 may serve as a prognostic indicator for HCC patients and exerts tumor suppressive role, at least in part, by inhibiting HMGB1.
Collapse
|
27
|
A. Richard S. High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.4.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Chu Y, Wang Y, Zheng Z, Lin Y, He R, Liu J, Yang X. Proinflammatory Effect of High Glucose Concentrations on HMrSV5 Cells via the Autocrine Effect of HMGB1. Front Physiol 2017; 8:762. [PMID: 29033853 PMCID: PMC5627536 DOI: 10.3389/fphys.2017.00762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Peritoneal fibrosis, in which inflammation and apoptosis play crucial pathogenic roles, is a severe complication associated with the treatment of kidney failure with peritoneal dialysis (PD) using a glucose-based dialysate. Mesothelial cells (MCs) take part in the inflammatory processes by producing various cytokines and chemokines, such as monocyte chemoattractant protein 1 (MCP-1) and interleukin 8 (IL-8). The apoptosis of MCs induced by high glucose levels also contributes to complications of PD. High mobility group protein B1 (HMGB1) is an inflammatory factor that has repeatedly been proven to be related to the occurrence of peritoneal dysfunction. Aim: In this study, we aimed to explore the effect and underlying mechanism of endogenous HMGB1 in high-glucose-induced MC injury. Methods: The human peritoneal MC line, HMrSV5 was cultured in high-glucose medium and incubated with recombinant HMGB1. Cellular expression of HMGB1 was blocked using HMGB1 small interfering RNA (siRNA). Apoptosis and production of inflammatory factors as well as the potential intermediary signaling pathways were examined. Results: The major findings of these analyses were: (1) MCs secreted HMGB1 from the nucleus during exposure to high glucose levels; HMGB1 acted in an autocrine fashion on the MCs to promote the production of MCP-1 and IL-8; (2) HMGB1 had little effect on high-glucose-induced apoptosis of the MCs; and (3) HMGB1-mediated MCP-1 and IL-8 production depended on the activation of MAPK signaling pathways. In conclusion, endogenous HMGB1 plays an important role in the inflammatory reaction induced by high glucose on MCs via mitogen-activated protein kinase (MAPK) signaling pathways, but it seems to have little effect on high-glucose-induced apoptosis.
Collapse
Affiliation(s)
- Yuening Chu
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihuang Zheng
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuguang Yang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Luo J, Chen J, Li H, Yang Y, Yun H, Yang S, Mao X. LncRNA UCA1 promotes the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway. Oncol Lett 2017; 14:5556-5562. [PMID: 29113184 DOI: 10.3892/ol.2017.6886] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
The long non-coding RNA (lncRNA) urothelial carcinoma associated 1 (UCA1) is an oncogenic lncRNA in bladder cancer, and its upregulation is associated with enhanced cell invasion. However, the underlying mechanism remains to be elucidated. The present study demonstrated that UCA1 was positively associated with cell invasion ability and promoted epithelial-mesenchymal transition (EMT) of bladder cancer cells by inducing high mobility group box 1 (HMGB1). Furthermore, bioinformatics and luciferase reporter assays demonstrated binding sites of the tumor suppressive miR-143 within UCA1 and the 3'untranslated region of HMGB1. UCA1 negatively regulated miR-143 expression in a dose-dependent manner in bladder cancer cells. In addition, UCA1 and HMGB1 were upregulated and miR-143 was downregulated in bladder cancer specimens. Overall, the data suggested that UCA1 may promote the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway, which exhibits an important regulatory role in the pathology of bladder cancer.
Collapse
Affiliation(s)
- Junhua Luo
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jing Chen
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Haichao Yun
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
30
|
Wang S, Liu B, Zhang J, Sun W, Dai C, Sun W, Li Q. Centromere protein U is a potential target for gene therapy of human bladder cancer. Oncol Rep 2017; 38:735-744. [PMID: 28677729 PMCID: PMC5562008 DOI: 10.3892/or.2017.5769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/19/2017] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of centromere protein U (CENPU) in human bladder cancer (BCa), CENPU gene expression was evaluated in human BCa tissues. We used real-time quantitative PCR (qPCR) and found that CENPU gene expression in human BCa tissues was higher compared to that observed in cancer-adjacent normal tissues. High CENPU expression was found to be strongly correlated with tumor size and TNM stage. Kaplan-Meier survival analysis indicated that high CENPU levels were associated with reduced survival. We used a lentivirus to silence endogenous CENPU gene expression in the BCa T24 cell line. CENPU knockdown was confirmed by qPCR. Cellomic imaging and BrdU assays showed that cell proliferation was significantly reduced in the CENPU-silenced cells compared to that noted in the control cells. Flow cytometry revealed that in the CENPU-silenced cells the cell cycle was arrested at the G1 phase relative to that in the control cells. In addition, apoptosis was significantly increased in the CENPU-silenced cells. Giemsa staining showed that CENPU-silenced cells, compared to control cells, displayed a significantly lower number of cell colonies. The genome-wide effect of CENPU knockdown showed that a total of 1,274 differentially expressed genes was found, including 809 downregulated genes and 465 upregulated genes. Network analysis by Ingenuity Pathway Analysis (IPA) resulted in 25 distinct signaling pathways, including the top-ranked network: ‘Cellular compromise, organismal injury and abnormalities, skeletal and muscular disorders’. In-depth IPA analysis revealed that CENPU was associated with the HMGB1 signaling pathway. qPCR and western blot analysis demonstrated that in the HMGB1 signaling pathway, CENPU knockdown downregulated expression levels of ILB, CXCL8, RAC1 and IL1A. In conclusion, our data may provide a potential pathway signature for therapeutic targets with which to treat BCa.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Beibei Liu
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Jiajun Zhang
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Wei Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Changyuan Dai
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Wenyan Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Qingwen Li
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
31
|
Yin H, Yang X, Gu W, Liu Y, Li X, Huang X, Zhu X, Tao Y, Gou X, He W. HMGB1-mediated autophagy attenuates gemcitabine-induced apoptosis in bladder cancer cells involving JNK and ERK activation. Oncotarget 2017; 8:71642-71656. [PMID: 29069735 PMCID: PMC5641078 DOI: 10.18632/oncotarget.17796] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) has been found to mediate autophagy during chemotherapy in several cancers. However, whether HMGB1plays a role in autophagy and chemoresistance in bladder cancer is elusive. In this report, HMGB1 expression was found to be increased in 30 primary bladder cancer tissue specimens compared to their matched adjacent non-tumor tissues. While gemcitabine induced apoptotic cell death, it also induced HMGB1 expression and autophagy in bladder cancer T24 and BIU-87 cells. Suppressing HMGB1 expression with siRNA strongly potentiated gemcitabine-induced apoptosis. HMGB1 siRNA or autophagy inhibitors suppressed gemcitabine-induced autophagy. Further, gemcitabine activated c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinase (ERK) and Bcl-2 phosphorylation, and blocking ERK and JNK inhibited autophagy and increased apoptosis in gemcitabine-treated cells. Interestingly, suppressing HMGB1 expression attenuated gemcitabine-induced ERK and JNK activation and Bcl-2 phosphorylation. Thus, our results suggest that while gemcitabine kills bladder cancer cells through apoptosis, a cytoprotective autophagy is also induced involving HMGB1-mediated JNK and ERK to counteract the cytotoxicity of gemcitabine, and intervention targeting this pathway may improve the anticancer efficacy of gemcitabine against bladder cancer.
Collapse
Affiliation(s)
- Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyu Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen Gu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolong Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Tao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
32
|
Cai Y, Xu P, Yang L, Xu K, Zhu J, Wu X, Jiang C, Yuan Q, Wang B, Li Y, Qiu Y. HMGB1-mediated autophagy decreases sensitivity to oxymatrine in SW982 human synovial sarcoma cells. Sci Rep 2016; 6:37845. [PMID: 27897164 PMCID: PMC5126735 DOI: 10.1038/srep37845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Oxymatrine (OMT) is a type of alkaloid extracted from a traditional Chinese medicinal herb, Sophora flavescens. Although the antitumor activities of OMT have been observed in various cancers, there are no reports regarding the effects of OMT on human synovial sarcoma. In the present study, we analyzed the antitumor activities of OMT in SW982 human synovial sarcoma cells and determine whether high mobility group box protein 1 (HMGB1)-mediated autophagy was associated with its therapeutic effects. We found that OMT exhibited antitumor activity in SW982 cells and facilitated increases in autophagy. Inhibition of autophagy by 3-MA or ATG7 siRNA increased the level of apoptosis, which indicated that OMT-induced autophagy protected cells from the cytotoxicity of OMT. Administration of OMT to SW982 cells increased the expression of HMGB1. When HMGB1 was inhibited via HMGB1-siRNA, OMT-induced autophagy was decreased, and apoptosis was increased. Furthermore, we found that HMGB1-siRNA significantly increased the expression of p-Akt and p-mTOR. OMT-induced autophagy may be mediated by the Akt/mTOR pathway, and HMGB1 plays a vital role in the regulation of autophagy. Therefore, we believe that combining OMT with an inhibitor of autophagy or HMGB1 may make OMT more effective in the treatment of human synovial sarcoma.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Le Yang
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Jialin Zhu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Xiaoqing Wu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Qiling Yuan
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Yuanbo Li
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Yusheng Qiu
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| |
Collapse
|
33
|
Yin L, Liu S, Li C, Ding S, Bi D, Niu Z, Han L, Li W, Gao D, Liu Z, Lu J. CYLD downregulates Livin and synergistically improves gemcitabine chemosensitivity and decreases migratory/invasive potential in bladder cancer: the effect is autophagy-associated. Tumour Biol 2016; 37:12731-12742. [PMID: 27448305 DOI: 10.1007/s13277-016-5157-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Although GC (gemcitabine and cisplatin) chemotherapy remains an effective method for treating bladder cancer (BCa), chemoresistance is a major obstacle in chemotherapy. In this study, we determined whether gemcitabine resistance correlates with migratory/invasive potential in BCa and whether this relationship is regulated by the cylindromatosis (CYLD)-Livin module. First, we independently investigated the correlation of CYLD/Livin and gemcitabine resistance with the potential for tumor migration and invasiveness. Second, we found that co-transfected CYLD and Livin dramatically improved sensitivity to gemcitabine chemotherapy and decreased migration/invasion potential. Next, we determined that CYLD may regulate Livin by the NF-κB-dependent pathway. We also found that CYLD overexpression and Livin knockdown might improve gemcitabine chemosensitivity by decreasing autophagy and increasing apoptosis in BCa cells. Finally, the effects of CYLD-Livin on tumor growth in vivo were evaluated. Our study demonstrates that CYLD-Livin might represent a potential therapeutic for chemoresistant BCa.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Chensheng Li
- Department of Digestive Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Dongbin Bi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Liping Han
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Wenjia Li
- Shandong University, Jinan, 250000, China
| | - Dexuan Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Zheng Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No 324, Jinan, 250021, Shandong, China.
| |
Collapse
|
34
|
Shrivastava S, Mansure JJ, Almajed W, Cury F, Ferbeyre G, Popovic M, Seuntjens J, Kassouf W. The Role of HMGB1 in Radioresistance of Bladder Cancer. Mol Cancer Ther 2015; 15:471-9. [PMID: 26719575 DOI: 10.1158/1535-7163.mct-15-0581] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022]
Abstract
Although radical cystectomy surgery is the standard-of-care for muscle-invasive bladder cancer, it entails complete removal of the bladder and surrounding organs which leads to substantial loss in the quality-of-life of patients. Radiotherapy, which spares the bladder, would be a more appropriate treatment modality if we can utilize molecular markers to select patients with better response to radiation. In this study, we investigate a protein called high mobility group box protein 1 (HMGB1) as a predictive marker for radiotherapy response in bladder cancer. Our in vitro results indicate a positive correlation between higher levels of HMGB1 protein and resistance to radiation in various cell lines. Upon HMGB1 protein knockdown, highly significant (>1.5-fold) sensitization to radiotherapy was achieved. We saw that loss of HMGB1 was associated with at least two times higher (P < 0.001) DNA damage in cell lines postradiation. Our results also depicted that autophagy was inhibited more than 3-fold (P < 0.001) upon HMGB1 knockdown, implicating its role in autophagy as another cause of bladder cancer radioresistance. Further validation was done in vivo by conducting mouse tumor xenograft experiments, where HMGB1 knockdown tumors showed a significantly better (P < 0.001) response to radiotherapy and decreased autophagy (shown by P62 staining) as compared with controls. The cumulative findings of our in vitro and in vivo studies highlight the significance of HMGB1 as a radiation response marker as well as its utility in radiosensitization of bladder cancer.
Collapse
Affiliation(s)
- Sanhita Shrivastava
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada
| | - Jose Joao Mansure
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada
| | - Wael Almajed
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada
| | - Fabio Cury
- Department of Radiation Oncology, McGill University Health Center, Montréal, Quebec, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, University of Montreal, Montréal, Quebec, Canada
| | - Marija Popovic
- Department of Medical Physics, McGill University Health Center, Montréal, Quebec, Canada
| | - Jan Seuntjens
- Department of Medical Physics, McGill University Health Center, Montréal, Quebec, Canada
| | - Wassim Kassouf
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|