1
|
Casals J, Rivera A, Campo S, Aymerich E, Isern H, Fenero D, Garriga A, Palou A, Monfort A, Howad W, Rodríguez MÁ, Riu M, Roig-Villanova I. Phenotypic diversity and distinctiveness of the Belltall garlic landrace. FRONTIERS IN PLANT SCIENCE 2023; 13:1004069. [PMID: 36684789 PMCID: PMC9846090 DOI: 10.3389/fpls.2022.1004069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Among the Mediterranean horticultural landraces, garlic is one of the crops most threatened by genetic erosion. Due to its sexual sterility and to the incidence of seed-borne diseases, historical varieties have been widely replaced by commercial cultivars. In Catalonia, despite the historical relevance of the crop, solely the Belltall garlic landrace is cultivated for commercial purposes. To assess the genotypic and phenotypic diversity within the Belltall garlic, we evaluated sixteen local accessions and five recognized traditional and modern varieties as controls. Genetic analysis with SSR and InDel markers showed low genetic diversity within the Belltall population, grouping modern and traditional varieties separately. Farmers and consumers were involved in the definition of the landrace ideotype and classified the materials by means of projective mapping. Scant phenotypic diversity was found within the Belltall landrace, which is characterized by its color profile and the small size of bulb and cloves. The Belltall landrace grown outside its area of origin lost the distinctive quality signals that differentiate the landrace from the commercial cultivars (clove appearance), indicating that the high quality of the landrace is under genotype-by-environment effects (i.e. local adaptation). Moreover, the size of the Belltall sowing clove had a strong effect on the harvested bulb size. Our research represents a case study for the description of the variability within garlic landraces and an approach to quantify the phenomenon of local adaptation that currently drives their conservation.
Collapse
Affiliation(s)
- Joan Casals
- Miquel Agustí Foundation, Castelldefels, Spain
- Department of Agri-Food Engineering and Biotechnology, Polytechnic University of Catalonia-BarcelonaTech, Castelldefels, Spain
- Serra Húnter Fellows, Polytechnic University of Catalonia-BarcelonaTech, Castelldefels, Spain
| | - Ana Rivera
- Miquel Agustí Foundation, Castelldefels, Spain
- Department of Agri-Food Engineering and Biotechnology, Polytechnic University of Catalonia-BarcelonaTech, Castelldefels, Spain
| | - Sonia Campo
- Miquel Agustí Foundation, Castelldefels, Spain
- Department of Agri-Food Engineering and Biotechnology, Polytechnic University of Catalonia-BarcelonaTech, Castelldefels, Spain
| | | | | | | | | | - Anna Palou
- Miquel Agustí Foundation, Castelldefels, Spain
| | - Amparo Monfort
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Werner Howad
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Miguel Ángel Rodríguez
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Marc Riu
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Irma Roig-Villanova
- Department of Agri-Food Engineering and Biotechnology, Polytechnic University of Catalonia-BarcelonaTech, Castelldefels, Spain
- Serra Húnter Fellows, Polytechnic University of Catalonia-BarcelonaTech, Castelldefels, Spain
| |
Collapse
|
2
|
Ortiz R. Göte Turesson's research legacy to Hereditas: from the ecotype concept in plants to the analysis of landraces' diversity in crops. Hereditas 2020; 157:44. [PMID: 33160399 PMCID: PMC7648933 DOI: 10.1186/s41065-020-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
Hereditas began with articles on plants since its first issue in May 1920 (six out of eight) and continued with more original articles (43% of the total of this journal) on plants (of which 72% of those in plants were on crops) until today. In December 1922, the 140-page article The Genotypical Response of the Plant Species to the Habitat by evolutionary botanist Göte Turesson (Institute of Genetics, Lund University, Åkarp, Sweden) became available. This publication shows that plant phenology has a genetic basis and may ensue from local adaptation. As a result of this research involving various plant species, Turesson elaborated further in this article his term ecotype "as an ecological sub-unit to cover the product arising as a result of the genotypical response of an ecospecies to a particular habitat." Although plant articles included in Hereditas involved from its beginning, trait inheritance, mutants, linkage analysis, cytology or cytogenetics, and more recently gene mapping and analysis of quantitative trait loci with the aid of DNA markers, among others, since the mid-1980s several publications refer to the population biology of plant landraces, which are locally grown cultivars that evolved over time by adapting to their natural and cultural environment (i.e., agriculture), and that may become isolated from other populations of the same crop. This article provides a briefing about research on plant science in the journal with emphasis on crops, summarizes the legacy to genetics of Göte Turesson, and highlights some landrace diversity research results and their potential for plant breeding.
Collapse
Affiliation(s)
- Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen 10 Box 101, SE 23053, Alnarp, Sweden.
| |
Collapse
|
3
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|
4
|
Scherm B, Balmas V, Infantino A, Aragona M, Valente MT, Desiderio F, Marcello A, Phanthavong S, Burgess LW, Rau D. Clonality, spatial structure, and pathogenic variation in Fusarium fujikuroi from rain-fed rice in southern Laos. PLoS One 2019; 14:e0226556. [PMID: 31869352 PMCID: PMC6927642 DOI: 10.1371/journal.pone.0226556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Bakanae disease, caused by the fungal phytopathogen Fusarium fujikuroi, can be detected in most rice (Oryza sativa L.) growing areas worldwide. In this study, we investigated the population structure of this fungus in southern Lao PDR, a country located near the geographic origin of rice domestication. Microsatellites (SSRs) and mating type (MAT) analyses, pathogenicity and fungicide sensitivity tests were integrated in the study. The first key finding is that the population genetic structure of F. fujikuroi in Lao PDR is consistent with high clonal reproduction. Indeed, (i) “true” clones were identified; (ii) within populations, MAT types were frequently skewed from 1:1 ratio, (iii) linkage disequilibrium (among SSRs as also among SSRs and MAT) was present, and (iv) gene-flow between opposite MAT types within the same population is restricted. The presence of genetic divergence among areas and populations and the occurrence of positive spatial autocorrelation of genetic variation, indicate that migration is restricted, and that genetic drift plays an important role in the evolution of this fungus. Two main well-defined groups of isolates were detected (FST = 0.213) that display a non-random spatial distribution. They differ in the ability to induce seedlings death but not seedlings elongation (the typical Bakanae symptom) suggesting that the pathogen’s ability to induce the two symptoms is under different genetic control. Finally, we compared two agroecosystems with contrasting characteristics: low-input and traditional (Lao PDR) vs high-input and modern (Italy). We found differences in the level of population structuring and of spatial autocorrelation. This suggests that the evolutionary potential of the fungus not only depends on its intrinsic characteristics, but is strongly influenced by other external factors, most likely by the dynamics of infested seed exchange. Thus, quarantine and chemical treatments are a way to reduce population connectivity and hence the evolutionary potential of this pathogen.
Collapse
Affiliation(s)
- Barbara Scherm
- Dipartimento di Agraria, Sezione di Patologia ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Virgilio Balmas
- Dipartimento di Agraria, Sezione di Patologia ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Alessandro Infantino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Maria Aragona
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Maria Teresa Valente
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda (PC), Italy
| | - Angela Marcello
- Dipartimento di Agraria, Sezione di Patologia ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Sengphet Phanthavong
- Provincial Agriculture and Forestry, Thaluang Village, Pakse, Champasak, Lao PDR
| | - Lester W. Burgess
- Sydney Insitute of Agriculture, Faculty of Science, University of Sydney, New South Wales, Australia
| | - Domenico Rau
- Dipartimento di Agraria, Sezione di Patologia ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
5
|
Characterization of the Barley Net Blotch Pathosystem at the Center of Origin of Host and Pathogen. Pathogens 2019; 8:pathogens8040275. [PMID: 31795380 PMCID: PMC6963742 DOI: 10.3390/pathogens8040275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
Net blotch (NB) is a major disease of barley caused by the fungus Pyrenophora teres f. teres (Ptt), and P. teres f. maculata (Ptm). Ptt and Ptm infect the cultivated crop (Hordeum vulgare) and its wild relatives (H. vulgare ssp. spontaneum and H. murinum ssp. glaucum). The main goal of this research was to study the NB-causing pathogen in the crop center of origin. To address this, we have constructed a Ptt (n = 15) and Ptm (n = 12) collection isolated from three barley species across Israel. Isolates were characterized genetically and phenotypically. Aggressiveness of the isolates was determined based on necrotrophic growth rate on detached leaves of barley. In addition, isolates were genetically characterized by the mating type, followed by phylogenetic analysis, clustering them into seven groups. The analysis showed no significant differentiation of isolates based on either geographic origin, host of origin or form (Ptt vs. Ptm). Nevertheless, there was a significant difference in aggressiveness among the isolates regardless of host species, geographic location or sampling site. Moreover, it was apparent that the isolates derived from wild hosts were more variable in their necrotrophic growth rate, compared to isolates sampled from cultivated hosts, thereby suggesting that NB plays a major role in epidemiology at the center of barley origin where most of the diversity lies. Ptm has significantly higher necrotrophic and saprotrophic growth rates than Ptt, and for both a significant negative correlation was found between light intensity exposure and growth rates.
Collapse
|
6
|
Tritschler M, Vollmann JJ, Yañez O, Chejanovsky N, Crailsheim K, Neumann P. Protein nutrition governs within-host race of honey bee pathogens. Sci Rep 2017; 7:14988. [PMID: 29118416 PMCID: PMC5678143 DOI: 10.1038/s41598-017-15358-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
Multiple infections are common in honey bees, Apis mellifera, but the possible role of nutrition in this regard is poorly understood. Microsporidian infections, which are promoted by protein-fed, can negatively correlate with virus infections, but the role of protein nutrition for the microsporidian-virus interface is unknown. Here, we challenged naturally deformed wing virus - B (DWV-B) infected adult honey bee workers fed with or without pollen ( = protein) in hoarding cages, with the microsporidian Nosema ceranae. Bee mortality was recorded for 14 days and N. ceranae spore loads and DWV-B titers were quantified. Amongst the groups inoculated with N. ceranae, more spores were counted in protein-fed bees. However, N. ceranae infected bees without protein-diet had reduced longevity compared to all other groups. N. ceranae infection had no effect on protein-fed bee's longevity, whereas bees supplied only with sugar-water showed reduced survival. Our data also support that protein-feeding can have a significant negative impact on virus infections in insects. The negative correlation between N. ceranae spore loads and DWV-B titers was stronger expressed in protein-fed hosts. Proteins not only enhance survival of infected hosts, but also significantly shape the microsporidian-virus interface, probably due to increased spore production and enhanced host immunity.
Collapse
Affiliation(s)
- Manuel Tritschler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Chemisches und Veterinäruntersuchungsamt Freiburg (CVUA), Bienengesundheit, 79108, Freiburg i. Br., Germany
| | | | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Plant Protection, The Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland.
| |
Collapse
|
7
|
Chen YH, Shapiro LR, Benrey B, Cibrián-Jaramillo A. Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Tritschler M, Retschnig G, Yañez O, Williams GR, Neumann P. Host sharing by the honey bee parasites Lotmaria passim and Nosema ceranae. Ecol Evol 2017; 7:1850-1857. [PMID: 28331592 PMCID: PMC5355176 DOI: 10.1002/ece3.2796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 12/28/2022] Open
Abstract
The trypanosome Lotmaria passim and the microsporidian Nosema ceranae are common parasites of the honey bee, Apis mellifera, intestine, but the nature of interactions between them is unknown. Here, we took advantage of naturally occurring infections and quantified infection loads of individual workers (N = 408) originating from three apiaries (four colonies per apiary) using PCR to test for interactions between these two parasites. For that purpose, we measured the frequency of single and double infections, estimated the parasite loads of single and double infections, and determined the type of correlation between both parasites in double infections. If interactions between both parasites are strong and antagonistic, single infections should be more frequent than double infections, double infections will have lower parasite loads than single infections, and double infections will present a negative correlation. Overall, a total of 88 workers were infected with N. ceranae, 53 with L. passim, and eight with both parasites. Although both parasites were found in all three apiaries, there were significant differences among apiaries in the proportions of infected bees. The data show no significant differences between the expected and observed frequencies of single‐ and double‐infected bees. While the infection loads of individual bees were significantly higher for L. passim compared to N. ceranae, there were no significant differences in infection loads between single‐ and double‐infected hosts for both parasites. These results suggest no strong interactions between the two parasites in honey bees, possibly due to spatial separation in the host. The significant positive correlation between L. passim and N. ceranae infection loads in double‐infected hosts therefore most likely results from differences among individual hosts rather than cooperation between parasites. Even if hosts are infected by multiple parasites, this does not necessarily imply that there are any significant interactions between them.
Collapse
Affiliation(s)
- Manuel Tritschler
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Gina Retschnig
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Orlando Yañez
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland
| | - Geoffrey R Williams
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland; Agroscope Swiss Bee Research Centre Bern Switzerland; Department of Entomology and Plant Pathology Auburn University Auburn AL USA
| | - Peter Neumann
- Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland; Agroscope Swiss Bee Research Centre Bern Switzerland
| |
Collapse
|
9
|
Liao J, Huang H, Meusnier I, Adreit H, Ducasse A, Bonnot F, Pan L, He X, Kroj T, Fournier E, Tharreau D, Gladieux P, Morel JB. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. eLife 2016; 5. [PMID: 28008850 PMCID: PMC5182064 DOI: 10.7554/elife.19377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/01/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indicated that major differences in several components of basal immunity and effector-triggered immunity of the japonica and indica rice varieties are associated with specialization of M. oryzae. These differences thus play a key role in determining M. oryzae host specificity and may limit the spread of the pathogen within the Yuanyang agro-system. Specifically, the AVR-Pia effector has been identified as a possible determinant of the specialization of M. oryzae to local japonica rice. DOI:http://dx.doi.org/10.7554/eLife.19377.001 Microbes that cause diseases in plants are a threat to food security. For example, the rice blast fungus Magnaporthe oryzae causes the loss of enough rice to feed 60 million people each year. Disease-causing microbes must overcome the plant’s first line of defense, which includes preformed barriers and antimicrobial responses that are triggered by characteristic molecules found in many different microbes. The microbes that can overcome this first line of defense typically do so with an arsenal of proteins called effectors that interfere with specific biological processes in the plant. To counteract this interference, some plants have evolved genes that encode proteins that detect these effectors and trigger stronger antimicrobial responses. For centuries, farmers and plant breeders have selected for these resistance genes when trying to breed crops that are more resistant to disease. However, over time, disease-causing microbes have lost effectors, which means that several resistance genes have rapidly become ineffective. Some researchers predicted that growing a mixture of varieties of a given crop together might be a better way of protecting crop yields. Over 16 years ago, this idea was proved successful against the rice blast fungus for rice plants grown in China. However, the exact reasons why this strategy worked and its effects on the fungus were not clear. Now Liao, Huang et al. have taken another look at rice varieties grown via the traditional method of terraces of rice paddies in Yuanyang. Some of these varieties had a strong first line of defense and few resistance genes, while others relied much more on resistance genes to protect themselves again the rice blast fungus. Liao, Huang et al. found that growing rice varieties with such different immune systems forces some of the rice blast fungi to accumulate effector proteins to combat the first line of defense, whereas other fungi had to get rid of these effectors to avoid being recognized by the major resistance genes. These two forces led to the evolution of two specialized populations of fungi that can infect specific rice varieties but not others. This means that the fungi cannot spread in the landscape, and so the fields of rice become resistant as a whole. These new findings demonstrate the importance of diversity in rice for sustainable crop protection. The next challenge will be to demonstrate if a similar approach can also protect other major crops grown in different agricultural settings. DOI:http://dx.doi.org/10.7554/eLife.19377.002
Collapse
Affiliation(s)
- Jingjing Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Isabelle Meusnier
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Henri Adreit
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Aurélie Ducasse
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - François Bonnot
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Lei Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Thomas Kroj
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Elisabeth Fournier
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Didier Tharreau
- Centre de coopération internationale en recherche agronomique pour le développement, UMR BGPI, Montpellier, France
| | - Pierre Gladieux
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| | - Jean-Benoit Morel
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|
10
|
Rau D, Rodriguez M, Rapposelli E, Murgia ML, Papa R, Brown AHD, Attene G. Spatial genetic structure in wild cardoon, the ancestor of cultivated globe artichoke: Limited gene flow, fragmentation and population history. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:194-205. [PMID: 27968988 DOI: 10.1016/j.plantsci.2016.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Nuclear and chloroplast markers and phenotypic characters were integrated to analyse the population genetic structure of wild cardoon, Cynara cardunculus var. sylvestris, the ancestor of cultivated globe artichoke, Cynara cardunculus var. scolymus on the island of Sardinia, Italy. The spatial scale ranged from a few metres to ∼200km. Wild cardoon appears to be genetically fragmented, with significant genetic divergence at various scales, indicating that gene flow is insufficient to counterbalance the effects of genetic drift or founder effects. Divergence between populations was higher for chloroplast (40%) than for nuclear markers (15%), suggesting that gene flow via seed was lower than via pollen. Two main genetic groups were detected; these correlated with differences in flowering time, capitula size, glossiness, and anthocyanin pigmentation. A complex population structure of wild cardoon emerged over small spatial scales, likely resulting from the interplay between gene dispersal, colonisation history and selective forces. Indeed, Sardinia appears to be a 'hybrid zone' of different gene pools. The island has unique diverse germplasm that has originated from hybridisation among different gene pools. The sampling of seeds from a few plants but from many sites is suggested as the best strategy to harvest the genetic diversity of wild cardoon.
Collapse
Affiliation(s)
- D Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100 Sassari, Italy.
| | - M Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100 Sassari, Italy; Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Surigheddu, 07040 Alghero, Italy
| | - E Rapposelli
- AGRIS Sardegna, Servizio per la Ricerca in Arboricoltura, Via Mameli 126/D, Cagliari, Italy
| | - M L Murgia
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100 Sassari, Italy
| | - R Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche, 60131 Ancona, Italy
| | - A H D Brown
- Bioversity International (Honorary Research Fellow), Via dei Tre Denari, 472/a, 00054 Maccarese, Fiumicino, Italy
| | - G Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100 Sassari, Italy; Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Surigheddu, 07040 Alghero, Italy
| |
Collapse
|