1
|
Arvizu-Gómez JL, Hernández-Morales A, Campos-Guillén J, González-Reyes C, Pacheco-Aguilar JR. Phaseolotoxin: Environmental Conditions and Regulatory Mechanisms Involved in Its Synthesis. Microorganisms 2024; 12:1300. [PMID: 39065068 PMCID: PMC11278893 DOI: 10.3390/microorganisms12071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Phaseolotoxin is an antimetabolite toxin produced by diverse pathovars of Pseudomonas syringae which affects various plants, causing diseases of economic importance. Phaseolotoxin contributes to the systemic dissemination of the pathogen in the plant, therefore it is recognized as a major virulence factor. Genetic traits such as the Pht cluster, appear defining to the toxigenic strains phaseolotoxin producers. Extensive research has contributed to our knowledge concerning the regulation of phaseolotoxin revealing a complex regulatory network that involves processes at the transcriptional and posttranscriptional levels, in which specific and global regulators participate. Even more, significant advances in understanding how specific signals, including host metabolites, nutrient sources, and physical parameters such as the temperature, can affect phaseolotoxin production have been made. A general overview of the phaseolotoxin regulation, focusing on the chemical and physical cues, and regulatory pathways involved in the expression of this major virulence factor will be given in the present work.
Collapse
Affiliation(s)
- Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; (J.C.-G.); (J.R.P.-A.)
| | - Christian González-Reyes
- Unidad Académica de Ciencias Químico Biológico y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico;
| | - Juan Ramiro Pacheco-Aguilar
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico; (J.C.-G.); (J.R.P.-A.)
| |
Collapse
|
2
|
Nielipinski M, Pietrzyk-Brzezinska AJ, Wlodawer A, Sekula B. Structural analysis and molecular substrate recognition properties of Arabidopsis thaliana ornithine transcarbamylase, the molecular target of phaseolotoxin produced by Pseudomonas syringae. FRONTIERS IN PLANT SCIENCE 2023; 14:1297956. [PMID: 38179474 PMCID: PMC10765591 DOI: 10.3389/fpls.2023.1297956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024]
Abstract
Halo blight is a plant disease that leads to a significant decrease in the yield of common bean crops and kiwi fruits. The infection is caused by Pseudomonas syringae pathovars that produce phaseolotoxin, an antimetabolite which targets arginine metabolism, particularly by inhibition of ornithine transcarbamylase (OTC). OTC is responsible for production of citrulline from ornithine and carbamoyl phosphate. Here we present the first crystal structures of the plant OTC from Arabidopsis thaliana (AtOTC). Structural analysis of AtOTC complexed with ornithine and carbamoyl phosphate reveals that OTC undergoes a significant structural transition when ornithine enters the active site, from the opened to the closed state. In this study we discuss the mode of OTC inhibition by phaseolotoxin, which seems to be able to act only on the fully opened active site. Once the toxin is proteolytically cleaved, it mimics the reaction transition state analogue to fit inside the fully closed active site of OTC. Additionally, we indicate the differences around the gate loop region which rationally explain the resistance of some bacterial OTCs to phaseolotoxin.
Collapse
Affiliation(s)
- Maciej Nielipinski
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Agnieszka J. Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD, United States
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
3
|
Rangel LI, Bolton MD. The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102233. [PMID: 35679804 DOI: 10.1016/j.pbi.2022.102233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plants counter disease with an array of responses to styme pathogen ingress. In contrast to this cacophony, plant pathogens orchestrate a finely tuned repertoire of virulence mechanisms in their attempt to cause disease. One such example is the production of secondary metabolite effectors (SMEs). Despite many attempts to functionally categorize SMEs, their many roles in plant disease have proven they march to the beat of their producer's drum. Some lesser studied features of SMEs in plant disease include self-resistance (SR) and manipulation of the microbiome to enhance pathogen virulence. SR can be accomplished in three general compositions, with the first being the transport of the SME to a benign location; the second being modification of the SME so it cannot harm the producer; and the third being metabolic regulation of the SME or the producer homolog of the SME target. SMEs may also play an interlude prior to disease by shaping the plant microbial community, allowing producers to better establish themselves. Taken together, SMEs are integral players in the phytopathology canon.
Collapse
Affiliation(s)
- Lorena I Rangel
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA
| | - Melvin D Bolton
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA.
| |
Collapse
|
4
|
Guardado-Valdivia L, Chacón-López A, Murillo J, Poveda J, Hernández-Flores JL, Xoca-Orozco L, Aguilera S. The Pbo Cluster from Pseudomonas syringae pv. Phaseolicola NPS3121 Is Thermoregulated and Required for Phaseolotoxin Biosynthesis. Toxins (Basel) 2021; 13:toxins13090628. [PMID: 34564632 PMCID: PMC8473136 DOI: 10.3390/toxins13090628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The bean (Phaseolus vulgaris) pathogen Pseudomonas syringae pv. phaseolicola NPS3121 synthesizes phaseolotoxin in a thermoregulated way, with optimum production at 18 °C. Gene PSPPH_4550 was previously shown to be thermoregulated and required for phaseolotoxin biosynthesis. Here, we established that PSPPH_4550 is part of a cluster of 16 genes, the Pbo cluster, included in a genomic island with a limited distribution in P. syringae and unrelated to the possession of the phaseolotoxin biosynthesis cluster. We identified typical non-ribosomal peptide synthetase, and polyketide synthetase domains in several of the pbo deduced products. RT-PCR and the analysis of polar mutants showed that the Pbo cluster is organized in four transcriptional units, including one monocistronic and three polycistronic. Operons pboA and pboO are both essential for phaseolotoxin biosynthesis, while pboK and pboJ only influence the amount of toxin produced. The three polycistronic units were transcribed at high levels at 18 °C but not at 28 °C, whereas gene pboJ was constitutively expressed. Together, our data suggest that the Pbo cluster synthesizes secondary metabolite(s), which could participate in the regulation of phaseolotoxin biosynthesis.
Collapse
Affiliation(s)
- Lizeth Guardado-Valdivia
- Laboratorio Integral de Investigación en Alimentos, Departamento de Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, 63175 Nayarit, Mexico; (L.G.-V.); (A.C.-L.)
| | - Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Departamento de Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, 63175 Nayarit, Mexico; (L.G.-V.); (A.C.-L.)
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Avda. de Pamplona 123, 31192 Mutilva Baja, Spain; (J.M.); (J.P.)
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Avda. de Pamplona 123, 31192 Mutilva Baja, Spain; (J.M.); (J.P.)
| | - José Luis Hernández-Flores
- Centro de Investigación y Estudios Avanzados del IPN, Departamento de Ingeniería Genética, Irapuato, 36821 Guanajuato, Mexico;
| | - Luis Xoca-Orozco
- Departamento de Ingeniería Bioquímica, Instituto Tecnológico Superior de Purísima del Rincón, Purísima del Rincón, 36413 Guanajuato, Mexico;
| | - Selene Aguilera
- Laboratorio Integral de Investigación en Alimentos, Departamento de Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, 63175 Nayarit, Mexico; (L.G.-V.); (A.C.-L.)
- Correspondence:
| |
Collapse
|
5
|
Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res 2020; 48:W546-W552. [PMID: 32427317 PMCID: PMC7319560 DOI: 10.1093/nar/gkaa374] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023] Open
Abstract
Multi-drug resistant pathogens have become a major threat to human health and new antibiotics are urgently needed. Most antibiotics are derived from secondary metabolites produced by bacteria. In order to avoid suicide, these bacteria usually encode resistance genes, in some cases within the biosynthetic gene cluster (BGC) of the respective antibiotic compound. Modern genome mining tools enable researchers to computationally detect and predict BGCs that encode the biosynthesis of secondary metabolites. The major challenge now is the prioritization of the most promising BGCs encoding antibiotics with novel modes of action. A recently developed target-directed genome mining approach allows researchers to predict the mode of action of the encoded compound of an uncharacterized BGC based on the presence of resistant target genes. In 2017, we introduced the ‘Antibiotic Resistant Target Seeker’ (ARTS). ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets by rapidly linking housekeeping and known resistance genes to BGC proximity, duplication and horizontal gene transfer (HGT) events. Here, we present ARTS 2.0 available at http://arts.ziemertlab.com. ARTS 2.0 now includes options for automated target directed genome mining in all bacterial taxa as well as metagenomic data. Furthermore, it enables comparison of similar BGCs from different genomes and their putative resistance genes.
Collapse
Affiliation(s)
- Mehmet Direnç Mungan
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany
| |
Collapse
|
6
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
7
|
Cai L, Zheng SW, Shen YJ, Zheng GD, Liu HT, Wu ZY. Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material. BIORESOURCE TECHNOLOGY 2018; 260:141-149. [PMID: 29625286 DOI: 10.1016/j.biortech.2018.03.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in glycoside hydrolases (33.3%) and glycosyl transferases (27.1%). The virulence factors are mainly associated with biosynthesis of capsule and polysaccharide capsule. This work indicates that among the biodrying microorganisms, B. thermoamylovorans has good potential for degrading recalcitrant and readily degradable components, thus being a potential microbial agent used to improve biodrying.
Collapse
Affiliation(s)
- Lu Cai
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China.
| | - Sheng-Wei Zheng
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China; Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Yu-Jun Shen
- Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Guo-Di Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ying Wu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
8
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
9
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Aguilera S, Alvarez-Morales A, Murillo J, Hernández-Flores JL, Bravo J, De la Torre-Zavala S. Temperature-mediated biosynthesis of the phytotoxin phaseolotoxin by Pseudomonas syringae pv. phaseolicola depends on the autoregulated expression of the phtABC genes. PLoS One 2017; 12:e0178441. [PMID: 28570637 PMCID: PMC5453526 DOI: 10.1371/journal.pone.0178441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/12/2017] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. phaseolicola produces phaseolotoxin in a temperature dependent manner, being optimally synthesized between 18°C and 20°C, while no detectable amounts are present above 28°C. The Pht cluster, involved in the biosynthesis of phaseolotoxin, contains 23 genes that are organized in five transcriptional units. The function of most of the genes from the Pht cluster is still unknown and little information about the regulatory circuitry leading to expression of these genes has been reported. The purpose of the present study was to investigate the participation of pht genes in the regulation of the operons coded into the Pht cluster. We conducted Northern blot, uidA fusions and reverse transcription-PCR assays of pht genes in several mutants unable to produce phaseolotoxin. This allowed us to determine that, in P. syringae pv. phaseolicola NPS3121, genes phtABC are essential to prevent their own expression at 28°C, a temperature at which no detectable amounts of the toxin are present. We obtained evidence that the phtABC genes also participate in the regulation of the phtD, phtM and phtL operons. According to our results, we propose that PhtABC and other Pht product activities could be involved in the synthesis of the sulfodiaminophosphinyl moiety of phaseolotoxin, which indirectly could be involved in the transcriptional regulation of the phtA operon.
Collapse
Affiliation(s)
- Selene Aguilera
- Laboratorio Integral de Investigación en Alimentos. CONACYT-Instituto Tecnológico de Tepic, Tepic, Nayarit, México
- * E-mail:
| | - Ariel Alvarez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, México
| | - Jesús Murillo
- Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | - José Luis Hernández-Flores
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, México
| | - Jaime Bravo
- Laboratorio Integral de Investigación en Alimentos. Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Susana De la Torre-Zavala
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
11
|
Deng Q, Zhou L, Luo M, Deng Z, Zhao C. Heterologous expression of Avermectins biosynthetic gene cluster by construction of a Bacterial Artificial Chromosome library of the producers. Synth Syst Biotechnol 2017; 2:59-64. [PMID: 29062962 PMCID: PMC5625734 DOI: 10.1016/j.synbio.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/13/2022] Open
Abstract
Avermectins, a group of polyketide natural products, are widely used as anthelmintics in agriculture. Metabolic engineering and combinatorial biosynthesis were extensively employed to improve Avermectins production and create novel Avermectin derivatives, including Ivermectin and Doramectin. It is labor intensive and time cost to genetically manipulate Avermectins producer Streptomyces avermitilis in vivo. Cloning and heterologous expression of Avermectins biosynthetic gene cluster will make it possible to tailor the cluster in vitro. We constructed a Bacterial Artificial Chromosome (BAC) library of S. avermitilis ATCC 31267 with inserted DNA fragments ranged from 100 to 130 Kb. Five recombinant BAC clones which carried the Avermectins biosynthetic gene cluster ave (81 Kb in size) were screened out from the library. Then, ave was hetero-expressed in S. lividans. Three Avermectin components, A2a, B1a and A1a were detected from the cell extracts of recombinant strains. It will facilitate the development of Avermectin derivatives by polyketide synthase domain swapping and provide functional element for Avermectins synthetic biology study.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430073, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Changming Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
12
|
Li M, Chen L, Deng Z, Zhao C. Characterization of AmtA, an amidinotransferase involved in the biosynthesis of phaseolotoxins. FEBS Open Bio 2016; 6:603-9. [PMID: 27419063 PMCID: PMC4887976 DOI: 10.1002/2211-5463.12071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 11/18/2022] Open
Abstract
Phaseolotoxins (PHTs), which are produced by Pseudomonas, belong to a family of phosphoramidate natural products. Two nonproteinogenic amino acid precursors, Nδ(N′‐sulfo‐diaminophosphinyl)‐ornithine (PSOrn) and homoarginine (hArg), are involved in biosynthesis of PHTs. Amidinotransferase AmtA catalyses the formation of hArg, with arginine and lysine as substrates. AmtA was overexpressed and purified in an Escherichia coli system. An in vitro enzyme assay showed that it has stricter substrate specificity than certain other amidinotransferases. Site‐directed mutagenesis experiments showed that the mutation AmtA Met243His244 is an alternative while Met246 is essential for the transamidination activity.
Collapse
Affiliation(s)
- Mi Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University China
| | - Li Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University China
| | - Changming Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University China
| |
Collapse
|