1
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Robertus CM, Snyder SM, Curley SM, Murundi SD, Whitman MA, Fischbach C, Putnam D. Selective Accumulation of Near Infrared-Labeled Multivalent Quinidine Copolymers in Tumors Overexpressing P-Glycoprotein: Potential for Noninvasive Diagnostic Imaging. ACS APPLIED BIO MATERIALS 2023; 6:3117-3130. [PMID: 37498226 DOI: 10.1021/acsabm.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
P-glycoprotein (P-gp) is a promiscuous small molecule transporter whose overexpression in cancer is associated with multidrug resistance (MDR). In these instances, anticancer drugs can select for P-gp-overexpressing cells, leading to cancer recurrence with an MDR phenotype. To avoid selection for MDR cancers and inform individual patient treatment plans, it is critical to noninvasively identify P-gp-overexpressing tumors prior to administration of chemotherapy. We report the facile free radical copolymerization of quinidine, a competitive inhibitor of P-gp, and acrylic acid to generate multiplexed polymeric P-gp-targeted imaging agents with tunable quinidine content. Copolymer targeting was demonstrated in a nude mouse xenograft model. In xenografts overexpressing P-gp, copolymer distribution was enhanced over two-fold compared to the negative control of poly(acrylic acid) regardless of quinidine content. In contrast, accumulation of the copolymers in xenografts lacking P-gp was equivalent to poly(acrylic acid). This work forms the foundation for a unique approach toward the phenotype-specific noninvasive imaging of MDR tumors and is the first in vivo demonstration of copolymer accumulation through the active targeting of P-gp.
Collapse
Affiliation(s)
- Cara M Robertus
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Sarah M Snyder
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Stephanie M Curley
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Shamanth D Murundi
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, New York 14853-0001, United States
| | - Matthew A Whitman
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, 245 Feeney Way, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Yuan W, Xu EG, Li L, Zhou A, Peijnenburg WJGM, Grossart HP, Liu W, Yang Y. Tracing and trapping micro- and nanoplastics: Untapped mitigation potential of aquatic plants? WATER RESEARCH 2023; 242:120249. [PMID: 37356163 DOI: 10.1016/j.watres.2023.120249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Micro- and nanoplastics are emerging concerns due to their environmental ubiquity and currently largely unknown ecological impacts. Leveraging on a recently developed method using europium-doped polystyrene particles (PS-Eu), our present work aimed to accurately trace the uptake and transport of micro- and nanoplastics in aquatic plants and shed insights into the potential of different aquatic plants for trapping and removal of plastics from water environment. Seedlings of Vallisneria denseserrulata Makino (submerged plant), Iris tectorum Maxim (emergent plant), and Eichhornia crassipes Solms (floating plant) were exposed to 100 nm and 2 μm PS-Eu in freshwater (5 μg/mL) or sediments (5 μg/g) for 8 weeks. Fluorescence imaging clearly evidenced that PS-Eu mainly accumulated in the intercellular space and were transported from roots to leaves via the apoplastic path and vascular bundle. Mass spectrum analysis demonstrated that up to 6250 μg/g nanoplastics were trapped in aquatic plants (mainly in roots) with a bioconcentration factor of 306.5, depending on exposure routes and plant species. Owing to their excellent capture capability and high tolerance to plastic exposures, floating plants like E. crassipes are promising for immobilizing and removing fine plastics from the water environment.
Collapse
Affiliation(s)
- Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Amei Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, 3720, Netherlands; Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, Leiden 2300, Netherlands
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, Neuglobsow, 16775, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, Potsdam 14469, Germany
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| |
Collapse
|
4
|
The review of nanoplastics in plants: Detection, analysis, uptake, migration and risk. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Luo Y, Li L, Feng Y, Li R, Yang J, Peijnenburg WJGM, Tu C. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. NATURE NANOTECHNOLOGY 2022; 17:424-431. [PMID: 35058654 DOI: 10.1038/s41565-021-01063-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/26/2021] [Indexed: 05/06/2023]
Abstract
The uptake pathways of nanoplastics by edible plants have recently been qualitatively investigated. There is an urgent need to accurately quantify nanoplastics accumulation in plants. Polystyrene (PS) particles with a diameter of 200 nm were doped with the europium chelate Eu-β-diketonate (PS-Eu), which was used to quantify PS-Eu particles uptake by wheat (Triticum aestivum) and lettuce (Lactuca sativa), grown hydroponically and in sandy soil using inductively coupled plasma mass spectrometry. PS-Eu particles accumulated mainly in the roots, while transport to the shoots was limited (for example, <3% for 5,000 μg PS particles per litre exposure). Visualization of PS-Eu particles in the roots and shoots was performed with time-gated luminescence through the time-resolved fluorescence of the Eu chelate. The presence of PS-Eu particles in the plant was further confirmed by scanning electron microscopy. Doping with lanthanide chelates provides a versatile strategy for elucidating the interactions between nanoplastics and plants.
Collapse
Affiliation(s)
- Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Lianzhen Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yudong Feng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jie Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Crawford LA, Watkins HC, Wayne E, Putnam D. Altered Biodistribution and Tissue Retention of Nanoparticles Targeted with P-Glycoprotein Substrates. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhu YH, Wang JL, Zhang HB, Khan MI, Du XJ, Wang J. Incorporation of a rhodamine B conjugated polymer for nanoparticle trafficking both in vitro and in vivo. Biomater Sci 2019; 7:1933-1939. [DOI: 10.1039/c9bm00032a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A method to stably label and quantitatively detect self-assembled nanoparticles by the incorporation of rhodamine B-conjugated poly(ε-caprolactone) (PCL–RhoB).
Collapse
Affiliation(s)
- Yan-Hua Zhu
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ji-Long Wang
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Hou-Bing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
- PR China
| | | | - Xiao-Jiao Du
- Institutes for Life Sciences and School of Medicine
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province
| | - Jun Wang
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- Institutes for Life Sciences and School of Medicine
| |
Collapse
|
8
|
Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B Biointerfaces 2018. [PMID: 29533842 PMCID: PMC6581030 DOI: 10.1016/j.colsurfb.2018.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.
Collapse
Affiliation(s)
- Kyle T Householder
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Danielle M DiPerna
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Eugene P Chung
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Anne Rosa Luning
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Duong T Nguyen
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Shwetal Mehta
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|