1
|
Kliszczak M, Moralli D, Jankowska JD, Bryjka P, Subha Meem L, Goncalves T, Hester SS, Fischer R, Clynes D, Green CM. Loss of FAM111B protease mutated in hereditary fibrosing poikiloderma negatively regulates telomere length. Front Cell Dev Biol 2023; 11:1175069. [PMID: 37342232 PMCID: PMC10277729 DOI: 10.3389/fcell.2023.1175069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023] Open
Abstract
Hereditary fibrosing poikiloderma (HFP) is a rare human dominant negative disorder caused by mutations in the FAM111B gene that encodes a nuclear trypsin-like serine protease. HFP patients present with symptoms including skin abnormalities, tendon contractures, myopathy and lung fibrosis. We characterized the cellular roles of human FAM111B using U2OS and MCF7 cell lines and report here that the protease interacts with components of the nuclear pore complex. Loss of FAM111B expression resulted in abnormal nuclear shape and reduced telomeric DNA content suggesting that FAM111B protease is required for normal telomere length; we show that this function is independent of telomerase or recombination driven telomere extension. Even though FAM111B-deficient cells were proficient in DNA repair, they showed hallmarks of genomic instability such as increased levels of micronuclei and ultra-fine DNA bridges. When mutated as in HFP, FAM111B was more frequently localized to the nuclear envelope, suggesting that accumulation of the mutated protease at the nuclear periphery may drive the disease pathology.
Collapse
Affiliation(s)
- Maciej Kliszczak
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julia D. Jankowska
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paulina Bryjka
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lamia Subha Meem
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomas Goncalves
- Oncology Department, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Svenja S. Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Oxford, United Kingdom
| | - David Clynes
- Oncology Department, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Catherine M. Green
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Azimian L, Weerasuriya NM, Munasinghe R, Song S, Lin CY, You L. Investigating the effects of Ceylon cinnamon water extract on HepG2 cells for Type 2 diabetes therapy. Cell Biochem Funct 2023; 41:254-267. [PMID: 36779418 DOI: 10.1002/cbf.3778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023]
Abstract
Cinnamon and its extracts have been used as herbal remedies for many ailments, including for reducing insulin resistance and diabetes complications. Type 2 diabetes mellitus (T2DM) is a rapidly growing health concern around the world. Although many drugs are available for T2DM treatment, side effects and costs can be considerable, and there is increasing interest in natural products for managing chronic health conditions. Cinnamon may decrease the expression of genes associated with T2DM risk. The purpose of this study was to evaluate the effects of cinnamon water extract (CWE) compared with metformin on T2DM-related gene expression. HepG2 human hepatoma cells, widely used in drug metabolism and hepatotoxicity studies, were treated with different concentrations of metformin or CWE for 24 or 48 h. Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and glucose uptake was compared in untreated and CWE- or metformin-treated cells under high-glucose conditions. Finally, total RNA was extracted and analyzed by RNA sequencing (RNA-seq), and bioinformatics analyses were performed to compare the transcriptional effects of CWE and metformin. We found cell viability was better in cells treated with CWE than in metformin-treated cells, demonstrating that CWE was not toxic at tested doses. CWE significantly increased glucose uptake in HepG2 cells, to the same degree as metformin (1.4-fold). RNA-seq data revealed CWE and metformin both induced significantly increased (1.3- to 1.4-fold) glucose uptake gene expression compared with untreated controls. Transcriptional differences between CWE and metformin were not significant. The effects of 0.125 mg mL-1 CWE on gene expression were comparable to 1.5 mg mL-1 (9.5 mM) metformin. In addition, gene expression at 0.125 mg mL-1 CWE was comparable to 1.5 mg mL-1 (9.5 mM) metformin. Our results reveal that CWE's effects on cell viability, glucose uptake, and gene expression in HepG2 cells are comparable to those of metformin, suggesting CWE may be an effective dietary supplement for mitigating T2DM-related metabolic dysfunction.
Collapse
Affiliation(s)
- Leila Azimian
- Department of Mechanical and Industrial Engineering, The University of Toronto, Toronto, Ontario, Canada
| | | | | | - Suzie Song
- Department of Mechanical and Industrial Engineering, The University of Toronto, Toronto, Ontario, Canada
| | - Chun-Yu Lin
- Institute of Biomedical Engineering, The University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, The University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Hoeger PH, Koehler LM, Reipschlaeger M, Mercier S. Hereditary fibrosing poikiloderma (POIKTMP syndrome) report of a new mutation and review of the literature. Pediatr Dermatol 2023; 40:182-187. [PMID: 36102338 DOI: 10.1111/pde.15133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023]
Abstract
Hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP) is a genodermatosis with autosomal dominant inheritance caused by mutations in FAM111B. We report another case with a new pathogenic variant and analyze all previously published 34 cases with a focus on sequence of clinical presentation and genotype-phenotype correlation. POIKTMP is characterized by marked age-dependent clinical expressivity. FAM111B encodes a catalytic nuclear protein, expressed in many tissues, which contributes to impaired DNA repair affecting multiple systems. Specific inhibition of catalytic activity might be a future strategy to halt progression of this otherwise untreatable disease. Given the relentless progression of the disease, it would make sense to start such treatment as early as possible. In order to achieve this objective, children with suspected POIKTMP should therefore undergo early imaging of all relevant organ systems.
Collapse
Affiliation(s)
- Peter H Hoeger
- Department of Pediatrics, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany.,Department of Pediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Lisa M Koehler
- Department of Pediatrics, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany.,Department of Pediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Maria Reipschlaeger
- Department of Pediatrics, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence des Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Nantes, France.,Nantes Université, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| |
Collapse
|
4
|
Gong Q, Dong Q, Zhong B, Zhang T, Cao D, Zhang Y, Ma D, Cai X, Li Z. Clinicopathological features, prognostic significance, and associated tumor cell functions of family with sequence similarity 111 member B in pancreatic adenocarcinoma. J Clin Lab Anal 2022; 36:e24784. [DOI: 10.1002/jcla.24784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Qi Gong
- Wuhan University of Science and Technology School of Medicine Wuhan China
| | - QingTai Dong
- The First School of Clinical Medicine Southern Medical University Guangzhou China
| | - Bin Zhong
- The First School of Clinical Medicine Southern Medical University Guangzhou China
| | - Tao Zhang
- Wuhan University of Science and Technology School of Medicine Wuhan China
| | - Ding Cao
- Department of General Surgery General Hospital of Central Theatre Command Wuhan China
| | - Yi Zhang
- Department of General Surgery General Hospital of Central Theatre Command Wuhan China
| | - Dandan Ma
- Department of General Surgery General Hospital of Central Theatre Command Wuhan China
| | - Xun Cai
- Department of General Surgery General Hospital of Central Theatre Command Wuhan China
| | - ZhongHu Li
- Department of General Surgery General Hospital of Central Theatre Command Wuhan China
| |
Collapse
|
5
|
Ajumeera R, Thipparapu G, Padya BS, Tirumala L, Challa S. Anti-cancer activity of pyridoxal phosphate and metformin combination in human pancreatic cancer cells. Nutr Health 2022:2601060221137624. [PMID: 36349362 DOI: 10.1177/02601060221137624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: Pancreatic cancer is the foremost cause of cancer-related deaths in many developed countries with a poor prognosis. With advanced disease conditions chemotherapy, surgery followed by radiation is the regimen to prolong the survival. But a complete cure is questionable. Metformin is the first-line drug used for the treatment of type 2 diabetes in the world. Aim: The study aims to assess the anti-cancer activity of metformin with the combination of micronutrient pyridoxal phosphate (PLP) in the human pancreatic cancer cell line (PANC-1). Methods: Panc1 cells were maintained in vitro cell culture conditions. The IC50 concentrations of metformin and PLP were estimated and selected by using MTT assay. Morphological changes upon treatments were observed under microscope. Distribution of cells pattern was observed with propidium iodide dye in cell cycle assay. Different phases of cell distribution were studied with apoptosis assay. Results: More morphological changes were observed with PLP followed metformin. MTT assay revelled the IC50 concentrations of metformin and PLP were 20.95 ± 0.98 mM and 5.70 ± 0.07 mM. The cell cycle assay revealed that the percentage of cells was arrested in different phases with the treatments. Apoptosis assay revelled metformin increased necrosis population to 9.9%, whereas PLP has enhanced to 14.2% apoptosis. Tumour suppressor protein p53 levels had increased to 24.8% with PLP and 3.5% with metformin. Conclusion: In conclusion, PLP has significantly induced cell cycle arrest, apoptosis and enhanced p53 protein expression but a combination of PLP with metformin drug has not synergised anti-cancer activity in human PANC1 cells.
Collapse
Affiliation(s)
- Rajanna Ajumeera
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Ganapathi Thipparapu
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Barath Singh Padya
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Lalitha Tirumala
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Suresh Challa
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
6
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
7
|
Miyaki C, Lynch LM. An Update on Common Pharmaceuticals in the Prevention of Pancreatic Cancer. Cureus 2022; 14:e25496. [PMID: 35800820 PMCID: PMC9246430 DOI: 10.7759/cureus.25496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/03/2023] Open
Abstract
In this review, we aim to update readers about the most recent studies on common pharmaceuticals and their association with pancreatic cancer risk. The use of prophylactic aspirin, metformin, beta-blockers, and statins has been studied in the past but showed inconclusive results in the reduction of pancreatic cancer incidence. However, in recent studies, these medications along with combination therapy of aspirin and metformin were found to have a more significant association with decreasing risk. Given the poor prognosis of pancreatic cancer despite treatment, medication prophylaxis prevention should be considered. In this review, we hope to encourage future case-control or prospective studies on common medications that have shown great potential in delaying pancreatic cancer development.
Collapse
|
8
|
Wu J, Liu G, An K, Shi L. NPTX1 inhibits pancreatic cancer cell proliferation and migration and enhances chemotherapy sensitivity by targeting RBM10. Oncol Lett 2022; 23:154. [PMID: 35836482 PMCID: PMC9258595 DOI: 10.3892/ol.2022.13275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer (PC), one of the deadliest diseases worldwide, has exhibited an increasing incidence rate in recent years. The present study aimed to explore the biological mechanism of PC. Therefore, the expression levels of neuronal pentraxin 1 (NPTX1) and RNA-binding protein 10 (RBM10) were detected in PC cell lines using reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses prior to or following NPTX1 and RBM10 overexpression. Additionally, the proliferative ability of PANC-1 and BxPC-3 cells treated with or without gemcitabine (GEM) and cisplatin (DDP) was evaluated using Cell Counting Kit-8 assay. Cell apoptosis and the expression levels of apoptosis-related proteins were determined by TUNEL assay and western blot analysis, respectively. Furthermore, wound healing and Transwell assays were performed to measure the migration and invasion abilities of PANC-1 and BxPC-3 cells. The interaction between RBM10 and NPTX1 mRNA was detected by RNA binding protein immunoprecipitation (RIP) assay. Additionally, cells were treated with actinomycin D to verify the regulatory effect of RBM10 on NPTX1 expression. This effect was further confirmed by RT-qPCR analysis. The results showed that NPTX1 was downregulated in PC cell lines. In addition, NPTX1 overexpression inhibited the proliferation and promoted apoptosis in PC cells. The results from the wound healing and Transwell assays revealed that the migration and invasion abilities of PANC-1 and BxPC-3 cells were reduced following NPTX1 overexpression. However, treatment of NPTX1-overexpressing cells with GEM or DDP attenuated PC cell viability. In addition, the results of the RIP assay revealed that RBM10 could bind with NPTX1. Furthermore, RBM10 overexpression could regulate NPTX1 expression, as evidenced by actinomycin D experiments. Overall, the results of the present study suggested that NPTX1 could inhibit PC and enhance the sensitivity of PC cells to chemotherapy. Additionally, NPTX1 was found to interact with RBM10, indicating that NPTX1 could inhibit PC via targeting RBM10.
Collapse
Affiliation(s)
- Jing Wu
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gaifang Liu
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Kang An
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Linping Shi
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
9
|
Stolzenburg LR, Ainsworth B, Riley-Gillis B, Pakozdi T, Ammar A, Ellis PA, Wilsbacher JL, Ramathal CY. Transcriptomics reveals in vivo efficacy of PARP inhibitor combinatorial synergy with platinum-based chemotherapy in human non-small cell lung carcinoma models. Oncotarget 2022; 13:1-12. [PMID: 35018214 PMCID: PMC8729805 DOI: 10.18632/oncotarget.28162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Inhibitors of poly(ADP)-ribose polymerase (PARP) exploit defective DNA repair pathways existing in several forms of cancer, such as those with BRCA mutations, and have proven clinical efficacy as chemosensitizers. However, platinum-based chemopotentiation by PARP inhibitors (PARPi), particularly for non-small cell lung cancer (NSCLC), has only been confirmed in a few preclinical models and the molecular mechanisms that drive PARPi combinatorial synergy with chemotherapeutics remains poorly defined. To better understand these mechanisms, we characterized cisplatin and veliparib efficacy in A549 and Calu6 NSCLC in vivo tumor xenograft models and observed combinatorial synergy in the Calu6 model. Transcriptome-wide analysis of xenografts revealed several differentially expressed genes (DEGs) between untreated and cisplatin + veliparib-treated groups, which were unique from genes identified in either of the single-agent treatment arms. Particularly at 10- and 21-days post-treatment, these DEGs were enriched within pathways involved in DNA damage repair, cell cycle regulation, and senescence. Furthermore, TGF-β- and integrin-related pathways were enriched in the combination treatment arm, while pathways involved in cholesterol metabolism were identified at earlier time points in both the combination and cisplatin-only groups. These data advance the biological underpinnings of PARPi combined with platinum-based chemotherapy and provides additional insight into the diverse sensitivity of NSCLC models.
Collapse
Affiliation(s)
- Lindsay R Stolzenburg
- AbbVie Inc., North Chicago, IL 60064, USA.,These authors contributed equally to this work
| | - Barrett Ainsworth
- AbbVie Inc., North Chicago, IL 60064, USA.,These authors contributed equally to this work
| | | | | | | | | | | | | |
Collapse
|
10
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
11
|
Zhang C, Qian J, Wu Y, Zhu Z, Yu W, Gong Y, Li X, He Z, Zhou L. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer. Pathol Oncol Res 2021; 27:1609968. [PMID: 34646089 PMCID: PMC8503838 DOI: 10.3389/pore.2021.1609968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Background: Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-characterized molecular biomarkers. The clinical diagnosis of this disease is dependent on biopsy and histological assessment: methods that are experience-based and easily misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for NEPC may assist clinicians in making medical decisions on the choice of continuing anti-androgen receptor therapy or switching to platinum-based chemotherapy. Methods: Gene expression profiles and clinical characteristics data of 208 samples of metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno) and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression network to study the interrelationship between the potential modules and clinical features of metastatic prostate adenocarcinoma and to identify hub genes in the modules. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The findings were then verified in the nepc_wcm_2016 dataset. Results: A total of 51 co-expression modules were successfully constructed using WGCNA, of which three co-expression modules were found to be significantly associated with the neuroendocrine features and the NEPC score. In total, four novel genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in NEPC compared with the adenocarcinoma samples, and these genes were all associated with the neuroactive ligand receptor interaction pathway. Next, the expression levels of these four genes were used to construct an NEPC diagnosis model, which was successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the training and the validation cohorts. Moreover, the values of the area under the receiver operating characteristic (AUC) were 0.995 and 0.833 for the training and validation cohorts, respectively. Conclusion: The present study identified four specific novel biomarkers for therapy-related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of NEPC, thereby meriting further study.
Collapse
Affiliation(s)
- Cuijian Zhang
- Department of Urology, Peking University First Hospital Institute of Urology, National Urological Cancer Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pedrero-Prieto CM, Frontiñán-Rubio J, Alcaín FJ, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. Biological Significance of the Protein Changes Occurring in the Cerebrospinal Fluid of Alzheimer's Disease Patients: Getting Clues from Proteomic Studies. Diagnostics (Basel) 2021; 11:1655. [PMID: 34573996 PMCID: PMC8467255 DOI: 10.3390/diagnostics11091655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The fact that cerebrospinal fluid (CSF) deeply irrigates the brain together with the relative simplicity of sample extraction from patients make this biological fluid the best target for biomarker discovery in neurodegenerative diseases. During the last decade, biomarker discovery has been especially fruitful for the identification new proteins that appear in the CSF of Alzheimer's disease (AD) patients together with amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau). Thus, several proteins have been already stablished as important biomarkers, due to an increase (i.e., CHI3L1) or a decrease (i.e., VGF) in AD patients' CSF. Notwithstanding this, only a deep analysis of a database generated with all the changes observed in CSF across multiple proteomic studies, and especially those using state-of-the-art methodologies, may expose those components or metabolic pathways disrupted at different levels in AD. Deep comparative analysis of all the up- and down-regulated proteins across these studies revealed that 66% of the most consistent protein changes in CSF correspond to intracellular proteins. Interestingly, processes such as those associated to glucose metabolism or RXR signaling appeared inversely represented in CSF from AD patients in a significant manner. Herein, we discuss whether certain cellular processes constitute accurate indicators of AD progression by examining CSF. Furthermore, we uncover new CSF AD markers, such as ITAM, PTPRZ or CXL16, identified by this study.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| |
Collapse
|
13
|
Du X, Yu L, Yang L, Cao D, Zhang Y. [Expression and Diagnostic Value of NPTX1 in Thymoma Patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:1-6. [PMID: 33478183 PMCID: PMC7849031 DOI: 10.3779/j.issn.1009-3419.2021.102.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Thymomas are the most common primary malignant tumors of anterior mediastinal. However, there are no specific laboratory indicator for the diagnosis the diagnosis of thymoma. The aim of this study was to screen out a tumor marker for diagnosis of thymoma by mRNA microarray analysis and confirmed it. METHODS By mRNA microarray analysis of 31 thymomas and peritumoral thymic tissues, we found that the transcription level of neuronal pentraxin 1 (NPTX1) gene was up-regulated more than 4 times in thymomas. To further verify the above results, we detected the transcription and expression level of NPTX1 in 60 thymoma and 30 thymic cyst patients by quantitative Real-Time polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Furthermore, the diagnostic value of NPTX1 in thymoma by receiver operating characteristic curve (ROC) was analyzed. RESULTS The transcription level of NPTX1 mRNA in thymoma tissues was significantly higher than that in the thymic tissues of control group [(2.88±1.02) vs (1.35±0.47), P<0.001); The expression level of NPTX1 in thymoma tissues was significantly higher than that in the thymic tissues of control group (2 vs 1, P<0.001); The preoperative serum level of NPTX1 protein in thymoma patients were significantly higher than that in the thymic cyst patients of control group [(1,018.29±209.38) pg/mL vs (759.95±66.02) pg/mL, P<0.001]; At the threshold of 842.22 pg/mL, sensitivity and specificity of NPTX1 as a serologic marker were 85.00% and 93.33%, respectively for thymoma. ROC showed that the area the under curve (AUC) of NPTX1 was 0.902. CONCLUSIONS NPTX1 was highly expressed in thymoma patients, and had diagnostic value for thymoma.
Collapse
Affiliation(s)
- Xin Du
- Department of Thoracic Surgery, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Lei Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Ling Yang
- Central Laboratory, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Dingfang Cao
- Department of Pathology, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| | - Ying Zhang
- Department of Pathology, Beijing Tongren Hospital,
Capital Medical University, Beijing 100730, China
| |
Collapse
|
14
|
Roversi G, Colombo EA, Magnani I, Gervasini C, Maggiore G, Paradisi M, Larizza L. Spontaneous chromosomal instability in peripheral blood lymphocytes from two molecularly confirmed Italian patients with Hereditary Fibrosis Poikiloderma: insights into cancer predisposition. Genet Mol Biol 2021; 44:e20200332. [PMID: 34358284 PMCID: PMC8345126 DOI: 10.1590/1678-4685-gmb-2020-0332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Two Italian patients with the initial clinical diagnosis of Rothmund-Thomson
syndrome were negative for RECQL4 mutations but showed in
peripheral blood cells a spontaneous chromosomal instability significantly
higher than controls. Revisiting after time their clinical phenotype, the
suggestive matching with the autosomal dominant syndrome Poikiloderma,
Hereditary Fibrosing with Tendon Contracture, Myopathy and Pulmonary fibrosis
(POIKTMP) was confirmed by identification of the c.1879A>G (p.Arg627Gly)
alteration in FAM111B. We compare the overall clinical signs of
our patients with those of reported carriers of the same mutation and present
the up-to-date mutational repertoire of FAM111B and the related
phenotypic spectrum. Our snapshot highlights the age-dependent clinical
expressivity of POIKTMP and the need to follow-up patients to monitor the
multi-tissue impairment caused by FAM111B alterations. We link
our chromosomal instability data to the role of FAM111B in
cancer predisposition, pointed out by its implication in DNA-repair pathways and
the outcome of pancreatic cancer in 2 out of 17 adult POIKTMP patients. The
chromosomal instability herein highlighted well connects POIKTMP to
cancer-predisposing syndromes, such as Rothmund-Thomson which represents the
first hereditary poikiloderma entering in differential diagnosis with
POIKTMP.
Collapse
Affiliation(s)
- Gaia Roversi
- University of Milano-Bicocca, School of Medicine and Surgery, Department of Medicine and Surgery, Monza, Italy.,Università degli Studi di Milano, Genetica Medica, Dipartimento di Scienze della Salute, Milan, Italy
| | - Elisa Adele Colombo
- Università degli Studi di Milano, Genetica Medica, Dipartimento di Scienze della Salute, Milan, Italy
| | - Ivana Magnani
- Università degli Studi di Milano, Genetica Medica, Dipartimento di Scienze della Salute, Milan, Italy
| | - Cristina Gervasini
- Università degli Studi di Milano, Genetica Medica, Dipartimento di Scienze della Salute, Milan, Italy
| | - Giuseppe Maggiore
- Bambino Gesù Children's Hospital IRCCS, Division of Hepatology and Gastroenterology, Rome, Italy
| | - Mauro Paradisi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratory of Molecular and Cell Biology, Rome, Italy
| | - Lidia Larizza
- IRCCS Istituto Auxologico Italiano, Laboratorio di Citogenetica e Genetica Molecolare Umana, Milan, Italy
| |
Collapse
|
15
|
Tan M, Brusgaard K, Gerdes AM, Mortensen MB, Detlefsen S, Schaffalitzky de Muckadell OB, Joergensen MT. Whole genome sequencing identifies rare germline variants enriched in cancer related genes in first degree relatives of familial pancreatic cancer patients. Clin Genet 2021; 100:551-562. [PMID: 34313325 PMCID: PMC9291090 DOI: 10.1111/cge.14038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
First-degree relatives (FDRs) of familial pancreatic cancer (FPC) patients have increased risk of developing pancreatic ductal adenocarcinoma (PDAC). Investigating and understanding the genetic basis for PDAC susceptibility in FPC predisposed families may contribute toward future risk-assessment and management of high-risk individuals. Using a Danish cohort of 27 FPC families, we performed whole-genome sequencing of 61 FDRs of FPC patients focusing on rare genetic variants that may contribute to familial aggregation of PDAC. Statistical analysis was performed using the gnomAD database as external controls. Through analysis of heterozygous premature truncating variants (PTV), we identified cancer-related genes and cancer-driver genes harboring multiple germline mutations. Association analysis detected 20 significant genes with false discovery rate, q < 0.05 including: PALD1, LRP1B, COL4A2, CYLC2, ZFYVE9, BRD3, AHDC1, etc. Functional annotation showed that the significant genes were enriched by gene clusters encoding for extracellular matrix and associated proteins. PTV genes were over-represented by functions related to transport of small molecules, innate immune system, ion channel transport, and stimuli-sensing channels. In conclusion, FDRs of FPC patients carry rare germline variants related to cancer pathogenesis that may contribute to increased susceptibility to PDAC. The identified variants may potentially be useful for risk prediction of high-risk individuals in predisposed families.
Collapse
Affiliation(s)
- Ming Tan
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ove B Schaffalitzky de Muckadell
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Joergensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Singh-Makkar S, Pandav K, Hathaway D, Paul T, Youssef P. Multidimensional mechanisms of metformin in cancer treatment. TUMORI JOURNAL 2021; 108:111-118. [PMID: 34139918 DOI: 10.1177/03008916211023548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metformin has been in clinical use for more than half a century, yet its molecular mechanism of action is not entirely understood. Metformin has been shown to have antiproliferative and synergistic effects on various types of cancers. The anticancer effects of metformin are potentially applicable to both diabetic and nondiabetic patients. Areas of ongoing investigation focus on metformin's ability to activate adenosine monophosphate kinase (AMPK), in addition to its effect on Myc mRNA, monocarboxylate transporter 1 (MCT1), hypoxia-inducible factor 1 (HIF1), mammalian target of rapamycin (mTOR), and human epidermal growth factor receptor 2 (HER2). Additional anticancer effects are exhibited by acting on liver kinase B1 (LKB1), CREB-regulated transcription coactivator 2 (CRTC2), nitric oxide, and reactive oxygen species. Further investigation will be focused on elucidating metformin's metal-binding properties and how they may be harnessed for their anticancer effect. The acquired knowledge about metformin properties has expanded the number of targets for drug discovery such as microRNA, hexokinase, adenylate cyclase, transcription factors, various cyclins, and copper. In order to design anticancer drugs that mimic metformin's mechanism of action, binding assay studies must be conducted to fully understand and utilize the AMPK-dependent and independent mechanisms. Metformin's complex mechanisms that can potentially make this drug a multifaceted therapy targeting tumorigenesis in addition to information from ongoing clinical trials implicate that metformin can be a potential chemotherapeutic drug or adjuvant that could prove to be vital to future strategies against several types of cancer.
Collapse
Affiliation(s)
- Sarabjot Singh-Makkar
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Krunal Pandav
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Donald Hathaway
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Trissa Paul
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Pamela Youssef
- Neuroscience Department, Larkin University, Miami, FL, USA
| |
Collapse
|
17
|
Lan MY, Hsu YB, Lan MC, Chen JP, Lu YJ. Polyethylene Glycol-Coated Graphene Oxide Loaded with Erlotinib as an Effective Therapeutic Agent for Treating Nasopharyngeal Cancer Cells. Int J Nanomedicine 2020; 15:7569-7582. [PMID: 33116488 PMCID: PMC7548234 DOI: 10.2147/ijn.s265437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and Taiwan, and radiation therapy combined with or without chemotherapy is its mainstay treatment. Although it is highly sensitive to radiotherapy, local recurrence and distant metastasis remain difficult unsolved problems. In recent years, graphene oxide (GO) has been found to be a promising novel anticancer drug carrier. Here, we present our designed functionalized GO, polyethylene glycol-coated GO (GO-PEG), as a drug carrier, which was loaded with erlotinib and showed promising anticancer effects on NPC cells. METHODS The effects of GO-PEG-erlotinib on the proliferation, migration, and invasion of NPC cells were investigated by WST-8 assay, wound healing assay, and invasion assay, respectively. RNA sequencing was conducted and analyzed to determine the molecular mechanisms by which GO-PEG-erlotinib affects NPC cells. RESULTS Our results showed that GO-PEG-erlotinib reduced NPC cell viability in a dose-dependent manner and also inhibited the migration and invasion of NPC cells. The RNA sequencing revealed several related molecular mechanisms. CONCLUSION GO-PEG-erlotinib effectively suppressed NPC cell proliferation, migration, and invasion, likely by several mechanisms. GO-PEG-erlotinib may be a potential therapeutic agent for treating NPC in the future.
Collapse
Affiliation(s)
- Ming-Ying Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Bin Hsu
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chin Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkuo Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Wang Z, Wang X, Zou H, Dai Z, Feng S, Zhang M, Xiao G, Liu Z, Cheng Q. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front Immunol 2020; 11:1757. [PMID: 33013829 PMCID: PMC7461825 DOI: 10.3389/fimmu.2020.01757] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 02/05/2023] Open
Abstract
The pentraxin is a superfamily of proteins with the same domain known as the pentraxin domain at C-terminal. This family has two subgroups, namely; short pentraxins (C-reactive protein and serum amyloid P component) and long pentraxins (neuronal pentraxin 1, neuronal pentraxin 2, neuronal pentraxin receptor, pentraxin 3 and pentraxin 4). Each group shares a similar structure with the pentameric complexes arranged in a discoid shape. Previous studies revealed the functions of different pentraxin family members. Most of them are associated with human innate immunity. Inflammation has commonly been associated with tumor progression, implying that the pentraxin family might also participate in tumor progression. Therefore, we reviewed the basic characteristics and functions of the pentraxin family and their role in tumor progression.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci Rep 2019; 9:16913. [PMID: 31729456 PMCID: PMC6858356 DOI: 10.1038/s41598-019-53134-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional chemotherapeutic regimens are unable to prevent metastasis of non-small cell lung carcinoma (NSCLC) thereby leaving cancer incurable. Cancer stem cells (CSCs) are considered to be the origin of this therapeutic limitation. In the present study we report that the migration potential of NSCLCs is linked to its CSC content. While cisplatin alone fails to inhibit the migration of CSC-enriched NSCLC spheroids, in a combination with non-steroidal anti inflammatory drug (NSAID) aspirin retards the same. A search for the underlying mechanism revealed that aspirin pre-treatment abrogates p300 binding both at TATA-box and initiator (INR) regions of mTOR promoter of CSCs, thereby impeding RNA polymerase II binding at those sites and repressing mTOR gene transcription. As a consequence of mTOR down-regulation, Akt is deactivated via dephosphorylation at Ser473 residue thereby activating Gsk3β that in turn causes destabilization of Snail and β-catenin, thus reverting epithelial to mesenchymal transition (EMT). However, alone aspirin fails to hinder migration since it does not inhibit the Integrin/Fak pathway, which is highly activated in NSCLC stem cells. On the other hand, in aspirin pre-treated CSCs, cisplatin stalls migration by hindering the integrin pathway. These results signify the efficacy of aspirin in sensitizing NSCLC stem cells towards the anti-migration effect of cisplatin. Cumulatively, our findings raise the possibility that aspirin might emerge as a promising drug in combinatorial therapy with the existing chemotherapeutic agents that fail to impede migration of NSCLC stem cells otherwise. This may consequently lead to the advancement of remedial outcome for the metastatic NSCLCs.
Collapse
|
20
|
Martisova A, Sommerova L, Kuricova K, Podhorec J, Vojtesek B, Kankova K, Hrstka R. AGR2 silencing contributes to metformin-dependent sensitization of colorectal cancer cells to chemotherapy. Oncol Lett 2019; 18:4964-4973. [PMID: 31612008 DOI: 10.3892/ol.2019.10800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
There is growing epidemiological evidence indicating an association between diabetes mellitus and the increased incidence of colorectal cancer (CRC). The preferred initial and most widely used pharmacological agent for the treatment of type 2 diabetes is metformin, which in parallel reduces the risk of CRC and improves patient prognosis. AMP-activated protein kinase (AMPK) appears to be tightly associated with the beneficial metabolic effects of metformin, serving as a cellular energy sensor activated in response to a variety of conditions that deplete cellular energy levels. Such conditions include nutrient starvation (particularly glucose), hypoxia and exposure to toxins that inhibit the mitochondrial respiratory chain complex. The aim of the present study was to determine the effect of metformin on CRC cell lines, with different levels of anterior gradient 2 (AGR2) expression, exposed to 5-fluorouracil (5-FU) and oxaliplatin, alone or in combination with metformin. AGR2 has recently emerged as a factor involved in colon carcinogenesis. In AGR2-knockout cells, markedly higher levels of phosphorylated-AMPK were observed in comparison with control cells transfected with GFP-scrambled guide RNA, which indicated that the presence of AGR2 may interfere with the metformin-dependent activation of AMPK. In addition, metformin in combination with 5-FU and oxaliplatin induced ROS production and attenuated autophagy. This effect was enhanced in AGR2-knockout cells.
Collapse
Affiliation(s)
- Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lucia Sommerova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Katarina Kuricova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Katerina Kankova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
21
|
Zhao Y, Yu Y, Zhao W, You S, Feng M, Xie C, Chi X, Zhang Y, Wang X. As a downstream target of the AKT pathway, NPTX1 inhibits proliferation and promotes apoptosis in hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20181662. [PMID: 31113871 PMCID: PMC6549097 DOI: 10.1042/bsr20181662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is correlated with a poor prognosis and high mortality worldwide. Neuronal pentraxin 1 (NPTX1) has been reported to play an oncogenic role in several types of tumors. However, its expression and function in HCC is not yet fully understood. In the present study, we aimed to investigate the clinicopathological significance of NPTX1 in HCC and the underlying mechanisms. We observed that the expression of NPTX1 was decreased significantly in HCC and was associated with tumor size and metastasis in patients. Gain-of-function approaches revealed that NPTX1 suppressed the growth ability of HCC cells and contributed to mitochondria- related apoptosis. Furthermore, mechanistic investigations showed that the AKT (AKT serine/threonine kinase) pathway can regulate the effects of NPTX1 in HCC cells. After blocking the AKT pathway, the action of NPTX1 was greatly increased. In summary, we demonstrated that NPTX1 inhibited growth and promoted apoptosis in HCC via an AKT-mediated signaling mechanism. These findings indicate that NPTX1 is a potential clinical therapeutic target.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Yaqi Yu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Wenxiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Song You
- Faculty of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Min Feng
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Xiaoqin Chi
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Yi Zhang
- Faculty of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Xiaomin Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| |
Collapse
|
22
|
|
23
|
Huo L, Wang B, Zheng M, Zhang Y, Xu J, Yang G, Guan Q. miR-128-3p inhibits glioma cell proliferation and differentiation by targeting NPTX1 through IRS-1/PI3K/AKT signaling pathway. Exp Ther Med 2019; 17:2921-2930. [PMID: 30906475 PMCID: PMC6425241 DOI: 10.3892/etm.2019.7284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022] Open
Abstract
It has been reported that glioma has a higher morbidity and mortality than other types of malignant brain tumor. While glioma has been extensively researched, the exact molecular mechanisms of its genesis and progression have remained to be fully elucidated. In order to explore a novel glioma-associated pathway which may represent a therapeutic target, 61 pairs of tumor tissues and adjacent normal tissues of glioma patients were collected and subjected to reverse-transcription quantitative polymerase chain reaction analysis, indicating that the relative expression of microRNA (miR)-128-3p was significantly decreased in the tumor tissues. However, the expression of neuronal pentraxin 1 (NPTX1) was obviously elevated. Through a bioinformatics analysis using Targetscan and transfection experiments, it was confirmed that NPTX1 was targeted by miR-128-3p. In the U251 human glioma cell line, transfection with miR-128-3p mimics increased the levels of phosphorylated insulin receptor substrate 1 (p-IRS-1), phosphoinositide-3 kinase (PI3K) and p-AKT, as demonstrated by western blot analysis. In addition, the proliferation rate of the cells was notably decreased following transfection with miR-128-3p mimics. Conversely, transfection with miR-128-3p inhibitor significantly increased the levels of p-IRS-1, PI3K and p-AKT, accompanied by an elevated proliferation rate of the cells. Therefore, it was indicated that miR-128-3p could reversely regulate NPTX1 expression. After the expression of NPTX1 was inhibited with specific small interfering RNA, the levels of p-IRS-1, PI3K and p-AKT were obviously decreased, while the expression of miR-128-3p was not significantly changed. Overall, it was concluded that miR-128-3p suppresses glioma through the NPTX1/IRS-1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Leiming Huo
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The First People's Hospital of Longxi County, Dingxi, Gansu 730050, P.R. China
| | - Maohua Zheng
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yonghong Zhang
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jiguang Xu
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Gang Yang
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
24
|
Barnard ME, Hecht JL, Rice MS, Gupta M, Harris HR, Eliassen AH, Rosner BA, Terry KL, Tworoger SS. Anti-Inflammatory Drug Use and Ovarian Cancer Risk by COX1/COX2 Expression and Infiltration of Tumor-Associated Macrophages. Cancer Epidemiol Biomarkers Prev 2018; 27:1509-1517. [PMID: 30377203 DOI: 10.1158/1055-9965.epi-18-0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/16/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drug (NSAID) use may affect ovarian cancer risk via prostaglandin synthesis and tumor-associated macrophage (TAM) infiltration. We evaluated if associations between aspirin or non-aspirin NSAID use and ovarian cancer risk differed by tumor expression of prostaglandin-related (COX1, COX2) and TAM-related (CD68, CD163) markers. METHODS We evaluated cases and matched controls from the Nurses' Health Study (NHS), NHSII, and New England Case-Control Study (NECC). Cases with IHC data on COX1 and COX2 (n = 532) or CD68 and CD163 (n = 530) were included. We used polytomous logistic regression, adjusted for ovarian cancer risk factors, to estimate OR for NSAID use and ovarian cancer risk by marker level. RESULTS Recent aspirin use had a nonsignificant inverse association and recent non-aspirin NSAID use had no association with ovarian cancer risk. NSAID use was not differentially associated with ovarian cancer by COX1 or COX2 expression. However, recent aspirin use was associated with lower ovarian cancer risk for high [OR 0.54; 95% confidence interval (CI), 0.37-0.78], but not low (OR 1.50; 95% CI, 0.97-2.31), CD163 density (P heterogeneity < 0.001). Similar results were observed for aspirin duration and tablets and for recent non-aspirin NSAID use. Results were not clearly different by macrophage density defined by the less specific macrophage marker, CD68. CONCLUSIONS NSAID use was inversely associated with risk of ovarian cancer with high density CD163, a marker for M2-type, immunosuppressive macrophages. However, the relationship did not differ by prostaglandin synthesis markers. IMPACT Future research should explore prostaglandin-independent mechanisms for the association between NSAID use and ovarian cancer risk, including immune mechanisms.
Collapse
Affiliation(s)
- Mollie E Barnard
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Megan S Rice
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mamta Gupta
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
25
|
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
26
|
Hua H, Zhang H, Kong Q, Wang J, Jiang Y. Complex roles of the old drug aspirin in cancer chemoprevention and therapy. Med Res Rev 2018; 39:114-145. [PMID: 29855050 DOI: 10.1002/med.21514] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 02/05/2023]
Abstract
The nonsteroidal anti-inflammatory agent aspirin is widely used for preventing and treating cardiovascular and cerebrovascular diseases. In addition, epidemiologic evidences reveal that aspirin may prevent a variety of human cancers, while data on the association between aspirin and some kinds of cancer are conflicting. Preclinical studies and clinical trials also reveal the therapeutic effect of aspirin on cancer. Although cyclooxygenase is a well-known target of aspirin, recent studies uncover other targets of aspirin and its metabolites, such as AMP-activated protein kinase, cyclin-dependent kinase, heparanase, and histone. Accumulating evidence demonstrate that aspirin may act in different cell types, such as epithelial cell, tumor cell, endothelial cell, platelet, and immune cell. Therefore, aspirin acts on diverse hallmarks of cancer, such as sustained tumor growth, metastasis, angiogenesis, inflammation, and immune evasion. In this review, we focus on recent progress in the use of aspirin for cancer chemoprevention and therapy, and integratively analyze the mechanisms underlying the anticancer effects of aspirin and its metabolites. We also discuss mechanisms of aspirin resistance and describe some derivatives of aspirin, which aim to overcome the adverse effects of aspirin.
Collapse
Affiliation(s)
- Hui Hua
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hongying Zhang
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Peng X, Pan K, Zhao W, Zhang J, Yuan S, Wen X, Zhou W, Yu Z. NPTX1 inhibits colon cancer cell proliferation through down-regulating cyclin A2 and CDK2 expression. Cell Biol Int 2018; 42:589-597. [PMID: 29345391 DOI: 10.1002/cbin.10935] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/13/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaofeng Peng
- Department of Pathology; Huizhou First Hospital; Huizhou People's Republic of China
| | - Kangming Pan
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
| | - Wenli Zhao
- Department of Pathology; Huizhou First Hospital; Huizhou People's Republic of China
| | - Jianzhu Zhang
- Department of Pathology; Huizhou First Hospital; Huizhou People's Republic of China
| | - Shicheng Yuan
- Department of Pathology; Huizhou First Hospital; Huizhou People's Republic of China
| | - Xiang Wen
- Department of Pathology; Huizhou First Hospital; Huizhou People's Republic of China
| | - Wenquan Zhou
- Department of Pathology; Huizhou First Hospital; Huizhou People's Republic of China
| | - Zhijin Yu
- Department of Gastroenterology; Huizhou Municipal Central Hospital; Huizhou People's Republic of China
| |
Collapse
|
28
|
Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev 2018; 39:46-61. [PMID: 29373197 DOI: 10.1016/j.cytogfr.2018.01.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/24/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is considered as one of the most lethal types of cancer due to its poor prognosis and lack of effective therapeutic approaches. Although many studies have been done on pancreatic cancer, the current treatment methods did not exhibit successful results. Hence, novel strategies are needed for treatment of pancreatic cancer. The microenvironment of pancreatic cancer contains many factors such as inflammatory cytokines and tumor associated macrophages (TAMs), which influence the tumor's status. These factors can be upregulated and consequently lead to exacerbation of tumor progression. Understanding the role of pro- and anti-inflammatory cytokines and the function of TAMs in the pancreatic cancer microenvironment might lead to development and improvement of novel strategies in the diagnosis and treatment of pancreatic cancer and may result in promising treatments for this type of cancer.
Collapse
Affiliation(s)
- Saeed Farajzadeh Valilou
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nicola Silvestris
- Medical Oncology Unit and Scientific Directorate, National Cancer Institute IRCCS "Giovanni Paolo II", Bari, Italy; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Bari, Italy
| | - Antonella Argentiero
- Medical Oncology Unit, National Cancer Institute IRCCS "Giovanni Paolo II", Bari, Italy; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Bari, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
29
|
Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan XL. Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 2018; 7:50735-50754. [PMID: 27191744 PMCID: PMC5226617 DOI: 10.18632/oncotarget.9383] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment is replete with cells that evolve with and provide support to tumor cells during the transition to malignancy. The hijacking of the immune system in the pancreatic tumor microenvironment is suggested to contribute to the failure to date to produce significant improvements in pancreatic cancer survival by various chemotherapeutics. Regulatory T cells, myeloid derived suppressor cells, and fibroblasts, all of which constitute a complex ecology microenvironment, can suppress CD8+ T cells and NK cells, thus inhibiting effector immune responses. Tumor-associated macrophages (TAM) are versatile immune cells that can express different functional programs in response to stimuli in tumor microenvironment at different stages of pancreatic cancer development. TAM have been implicated in suppression of anti-tumorigenic immune responses, promotion of cancer cell proliferation, stimulation of tumor angiogenesis and extracellular matrix breakdown, and subsequent enhancement of tumor invasion and metastasis. Many emerging agents that have demonstrated efficacy in combating other types of tumors via modulation of macrophages in tumor microenvironments are, however, only marginally studied for pancreatic cancer prevention and treatment. A better understanding of the paradoxical roles of TAM in pancreatic cancer may pave the way to novel preventive and therapeutic approaches. Here we give an overview of the recruitment and differentiation of macrophages, TAM and pancreatic cancer progression and prognosis, as well as the potential preventive and therapeutic targets that interact with TAM for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Edmund C Lattime
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mark N Stein
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Das Gupta S, Patel M, Wahler J, Bak MJ, Wall B, Lee MJ, Lin Y, Shih WJ, Cai L, Yang CS, Suh N. Differential Gene Regulation and Tumor-Inhibitory Activities of Alpha-, Delta-, and Gamma-Tocopherols in Estrogen-Mediated Mammary Carcinogenesis. Cancer Prev Res (Phila) 2017; 10:694-703. [PMID: 28972008 PMCID: PMC5826717 DOI: 10.1158/1940-6207.capr-17-0190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/17/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
Despite experimental evidence elucidating the antitumor activities of tocopherols, clinical trials with α-tocopherol (α-T) have failed to demonstrate its beneficial effects in cancer prevention. This study compared the chemopreventive efficacy of individual tocopherols (α-, δ-, and γ-T) and a γ-T-rich tocopherol mixture (γ-TmT) in the August-Copenhagen Irish (ACI) rat model of estrogen-mediated mammary cancer. Female ACI rats receiving 17β-estradiol (E2) implants were administered with 0.2% α-T, δ-T, γ-T, or γ-TmT for 30 weeks. Although α-T had no significant effects on mammary tumor growth in ACI rats, δ-T, γ-T, and γ-TmT reduced mammary tumor volume by 51% (P < 0.05), 60% (P < 0.01), and 59% (P < 0.01), respectively. Immunohistochemical analysis revealed that δ-T, γ-T, and γ-TmT reduced levels of the cell proliferation marker, proliferating cell nuclear antigen, in the rat mammary tumors. To gain further insight into the biological functions of different forms of tocopherols, RNA-seq analysis of the tumors was performed. Treatment with γ-T induced robust gene expression changes in the mammary tumors of ACI rats. Ingenuity Pathway Analysis identified "Cancer" as a top disease pathway and "Tumor growth" and "Metastasis" as the top signaling pathways modulated by γ-T. Although the results need further functional validation, this study presents an unbiased attempt to understand the differences between biological activities of individual forms of tocopherols at the whole transcriptome level. In conclusion, δ-T and γ-T have superior cancer preventive properties compared to α-T in the prevention of estrogen-mediated mammary carcinogenesis. Cancer Prev Res; 10(12); 694-703. ©2017 AACR.
Collapse
Affiliation(s)
- Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Misaal Patel
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Brian Wall
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yong Lin
- Department of Biostatistics, Rutgers School of Public Health, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Weichung Joe Shih
- Department of Biostatistics, Rutgers School of Public Health, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Li Cai
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
31
|
Sporadic PCDH18 somatic mutations in EpCAM-positive hepatocellular carcinoma. Cancer Cell Int 2017; 17:94. [PMID: 29075151 PMCID: PMC5654054 DOI: 10.1186/s12935-017-0467-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Background The relationship between specific genome alterations and hepatocellular carcinoma (HCC) cancer stem cells (CSCs) remains unclear. In this study, we evaluated the relationship between somatic mutations and epithelial cell adhesion molecule positive (EpCAM+) CSCs. Methods Two patient-derived HCC samples (HCC1 and HCC2) were sorted by EpCAM expression and analyzed by whole exome sequence. We measured PCDH18 expression level in eight HCC cell lines as well as HCC1 and HCC2 by real-time quantitative RT-PCR. We validated the identified gene mutations in 57 paired of HCC and matched non-cancerous liver tissues by Sanger sequence. Results Whole exome sequencing on the sorted EpCAM+ and EpCAM− HCC1 and HCC2 cells revealed 19,263 nonsynonymous mutations in the cording region. We selected mutations that potentially impair the function of the encoded protein. Ultimately, 60 mutations including 13 novel nonsense and frameshift mutations were identified. Among them, PCDH18 mutation was more frequently detected in sorted EpCAM+ cells than in EpCAM− cells in HCC1 by whole exome sequences. However, we could not confirm the difference of PCDH18 mutation frequency between sorted EpCAM+ and EpCAM− cells by Sanger sequencing, indicating that PCDH18 mutation could not explain intracellular heterogeneity. In contrast, we found novel PCDH18 mutations, including c.2556_2557delTG, c.1474C>G, c.2337A>G, and c.2976G>T, were detected in HCC1 and 3/57 (5.3%) additional HCC surgical specimens. All four HCCs with PCDH18 mutations were EpCAM-positive, suggesting that PCDH18 somatic mutations might explain the intertumor heterogeneity of HCCs in terms of the expression status of EpCAM. Furthermore, EpCAM-positive cell lines (Huh1, Huh7, HepG2, and Hep3B) had lower PCDH18 expression than EpCAM-negative cell lines (PLC/PRL/5, HLE, HLF, and SK-Hep-1), and PCDH18 knockdown in HCC2 cells slightly enhanced cell proliferation. Conclusions Our data suggest that PCDH18 is functionally suppressed in a subset of EpCAM-positive HCCs through somatic mutations, and may play a role in the development of EpCAM-positive HCCs. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0467-x) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Udhane SS, Legeza B, Marti N, Hertig D, Diserens G, Nuoffer JM, Vermathen P, Flück CE. Combined transcriptome and metabolome analyses of metformin effects reveal novel links between metabolic networks in steroidogenic systems. Sci Rep 2017; 7:8652. [PMID: 28819133 PMCID: PMC5561186 DOI: 10.1038/s41598-017-09189-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Metformin is an antidiabetic drug, which inhibits mitochondrial respiratory-chain-complex I and thereby seems to affect the cellular metabolism in many ways. It is also used for the treatment of the polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. In addition, metformin possesses antineoplastic properties. Although metformin promotes insulin-sensitivity and ameliorates reproductive abnormalities in PCOS, its exact mechanisms of action remain elusive. Therefore, we studied the transcriptome and the metabolome of metformin in human adrenal H295R cells. Microarray analysis revealed changes in 693 genes after metformin treatment. Using high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS-NMR), we determined 38 intracellular metabolites. With bioinformatic tools we created an integrated pathway analysis to understand different intracellular processes targeted by metformin. Combined metabolomics and transcriptomics data analysis showed that metformin affects a broad range of cellular processes centered on the mitochondrium. Data confirmed several known effects of metformin on glucose and androgen metabolism, which had been identified in clinical and basic studies previously. But more importantly, novel links between the energy metabolism, sex steroid biosynthesis, the cell cycle and the immune system were identified. These omics studies shed light on a complex interplay between metabolic pathways in steroidogenic systems.
Collapse
Affiliation(s)
- Sameer S Udhane
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and the Department of Clinical Research, University of Bern, 3010, Bern, Switzerland
| | - Balazs Legeza
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and the Department of Clinical Research, University of Bern, 3010, Bern, Switzerland
| | - Nesa Marti
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and the Department of Clinical Research, University of Bern, 3010, Bern, Switzerland
| | - Damian Hertig
- Departments of Clinical Research and Radiology, University of Bern, Bern, Switzerland.,University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Gaëlle Diserens
- Departments of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Peter Vermathen
- Departments of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology and Diabetology of the Department of Pediatrics and the Department of Clinical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
33
|
Goussot R, Prasad M, Stoetzel C, Lenormand C, Dollfus H, Lipsker D. Expanding phenotype of hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis caused by FAM111B mutations: Report of an additional family raising the question of cancer predisposition and a short review of early-onset poikiloderma. JAAD Case Rep 2017; 3:143-150. [PMID: 28349113 PMCID: PMC5358901 DOI: 10.1016/j.jdcr.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Raphaëlle Goussot
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires, Strasbourg, France
| | - Megana Prasad
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Institut de génétique médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Institut de génétique médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Cédric Lenormand
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Institut de génétique médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Dan Lipsker
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires, Strasbourg, France
| |
Collapse
|
34
|
Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L. Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim Biophys Acta Rev Cancer 2016; 1866:163-176. [PMID: 27567928 DOI: 10.1016/j.bbcan.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with dismal prognosis. Recently, aspirin has been found to be an effective chemopreventive agent for many solid tumors. However, the function of aspirin use in pancreatic cancer largely remains unknown. We herein argued that aspirin could also lower the risk of pancreatic cancer. Importantly, aspirin assumes pleiotropic effects by targeting multiple molecules. It could further target the unique tumor biology of pancreatic cancer and modify the cancer microenvironment, thus showing remarkable therapeutic potentials. Besides, aspirin could reverse the chemoradiation resistance by repressing tumor repopulation and exert synergistic potentials with metformin on pancreatic cancer chemoprevention. Moreover, aspirin secondarily benefits pancreatic cancer patients through modestly reducing cancer pain and the risk of venous thromboembolism. Furthermore, new aspirin derivatives and delivery systems might help to improve risk-to-benefit ratio. In brief, aspirin is a promising chemopreventive agent and exerts significant therapeutic potentials in pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Juan-Juan Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
35
|
Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, Shamir AM, Dai J, Puscheck EE, Rappolee DA. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet 2016; 33:1027-39. [PMID: 27230877 PMCID: PMC4974229 DOI: 10.1007/s10815-016-0735-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. METHODS The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. RESULT(S) Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. CONCLUSION These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Brian Kilburn
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Mindie Howard
- EmbryoTech Laboratories, 140 Hale Street, Haverhill, MA, 01830, USA
| | - Paul Andresen
- Ob/Gyn, IVF Clinic, University Physician Group, Wayne State University School of Medicine, 26400 W 12 Mile Road, Suite 140, Southfield, MI, 48034, USA
| | - Alexandra M Shamir
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| | - Jing Dai
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|