1
|
Shah P, Bao Z, Zaidel-Bar R. Visualizing and quantifying molecular and cellular processes in C. elegans using light microscopy. Genetics 2022; 221:6619563. [PMID: 35766819 DOI: 10.1093/genetics/iyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
Collapse
Affiliation(s)
- Pavak Shah
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles 90095, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
3
|
Yu CCJ, Orozco Cosio DM, Boyden ES. ExCel: Super-Resolution Imaging of C. elegans with Expansion Microscopy. Methods Mol Biol 2022; 2468:141-203. [PMID: 35320565 PMCID: PMC10194579 DOI: 10.1007/978-1-0716-2181-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies of C. elegans will benefit from a powerful method for super-resolution imaging of proteins and mRNAs at any 3-D locations throughout the entire animal. Conventional methods of super-resolution imaging in C. elegans, such as STORM, PALM, SR-SIM and STED, are limited by imaging depths that are insufficient to map the entire depth of adult worms, and involve hardware that may not be accessible to all labs. We recently developed expansion of C. elegans (ExCel), a method for physically magnifying fixed whole animals of C. elegans with high isotropy, which provides effective resolutions finer than the diffraction limit, across the entire animal, on conventional confocal microscopes. In this chapter, we present a family of three detailed ExCel protocols. The standard ExCel protocol features simultaneous readout of diverse molecules (fluorescent proteins, RNA, DNA, and general anatomy), all at ~70 nm resolution (~3.5× linear expansion). The epitope-preserving ExCel protocol enables imaging of endogenous proteins with off-the-shelf antibodies, at a ~ 100 nm resolution (~2.8× linear expansion). The iterative ExCel protocol allows readout of fluorescent proteins at ~25 nm resolution (~20× linear expansion). The protocols described here comprise a versatile toolbox for super-resolution imaging of C. elegans.
Collapse
Affiliation(s)
- Chih-Chieh Jay Yu
- McGovern Institute for Brain Research and Koch Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Danielle M Orozco Cosio
- McGovern Institute for Brain Research and Koch Institute, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research and Koch Institute, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA.
- K Lisa Yang Center for Bionics, and Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Yu CC(J, Barry NC, Wassie AT, Sinha A, Bhattacharya A, Asano S, Zhang C, Chen F, Hobert O, Goodman MB, Haspel G, Boyden ES. Expansion microscopy of C. elegans. eLife 2020; 9:e46249. [PMID: 32356725 PMCID: PMC7195193 DOI: 10.7554/elife.46249] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
We recently developed expansion microscopy (ExM), which achieves nanoscale-precise imaging of specimens at ~70 nm resolution (with ~4.5x linear expansion) by isotropic swelling of chemically processed, hydrogel-embedded tissue. ExM of C. elegans is challenged by its cuticle, which is stiff and impermeable to antibodies. Here we present a strategy, expansion of C. elegans (ExCel), to expand fixed, intact C. elegans. ExCel enables simultaneous readout of fluorescent proteins, RNA, DNA location, and anatomical structures at resolutions of ~65-75 nm (3.3-3.8x linear expansion). We also developed epitope-preserving ExCel, which enables imaging of endogenous proteins stained by antibodies, and iterative ExCel, which enables imaging of fluorescent proteins after 20x linear expansion. We demonstrate the utility of the ExCel toolbox for mapping synaptic proteins, for identifying previously unreported proteins at cell junctions, and for gene expression analysis in multiple individual neurons of the same animal.
Collapse
Affiliation(s)
- Chih-Chieh (Jay) Yu
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nicholas C Barry
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Asmamaw T Wassie
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Anubhav Sinha
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Shoh Asano
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Chi Zhang
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Fei Chen
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-NewarkNewarkUnited States
- The Brain Research Institute, New Jersey Institute of TechnologyNewarkUnited States
| | - Edward S Boyden
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
5
|
Leonelli S, Nkambeu B, Beaudry F. Impaired EAT-4 Vesicular Glutamate Transporter Leads to Defective Nocifensive Response of Caenorhabditis elegans to Noxious Heat. Neurochem Res 2020; 45:882-890. [PMID: 31950452 DOI: 10.1007/s11064-020-02963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
In mammals, glutamate is an important excitatory neurotransmitter. Glutamate and glutamate receptors are found in areas specifically involved in pain sensation, transmission and transduction such as peripheral nervous system, spinal cord and brain. In C. elegans, several studies have suggested glutamate pathways are associated with withdrawal responses to mechanical stimuli and to chemical repellents. However, few evidences demonstrate that glutamate pathways are important to mediate nocifensive response to noxious heat. The thermal avoidance behavior of C. elegans was studied and results illustrated that mutants of glutamate receptors (glr-1, glr-2, nmr-1, nmr-2) behaviors was not affected. However, results revealed that all strains of eat-4 mutants, C. elegans vesicular glutamate transporters, displayed defective thermal avoidance behaviors. Due to the interplay between the glutamate and the FLP-18/FLP-21/NPR-1 pathways, we analyzed the effectors FLP-18 and FLP-21 at the protein level, we did not observe biologically significant differences compared to N2 (WT) strain (fold-change < 2) except for the IK602 strain. The data presented in this manuscript reveals that glutamate signaling pathways are essential to elicit a nocifensive response to noxious heat in C. elegans.
Collapse
Affiliation(s)
- Sophie Leonelli
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Bruno Nkambeu
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
6
|
Sivaguru M, Khaw YM, Inoue M. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons. J Microsc 2019; 275:115-130. [PMID: 31237354 DOI: 10.1111/jmi.12821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 11/26/2022]
Abstract
Metal-based Golgi-Cox (GC) staining is an established method used to visualise neurons with great morphological detail. Although GC stained samples are imaged routinely under transmitted light microscopy, this method is unable to yield information on the three-dimensional structure of dendrites and neurons and thus help reveal the connective properties of the central nervous system. Although a few studies have attempted simultaneous visualisation of GC staining and antigen-specific fluorescent labelling under a confocal reflection technique, the resolution of both confocal reflection and fluorescence modalities used to acquire GC reflection and fluorescently stained antibody signals are still limited by the diffraction limit of light at about 220 nm. Here, we report a confocal reflection super-resolution technique (CRSR) to break this diffraction barrier, which is achieved by minimising the pinhole size from 1 airy unit (AU) to 0.1 AU. This is achieved by minimising or closing the confocal pinhole size and is possible in this reflection modality, unlike fluorescence, because it is not a photon limited technique. Utilising the lowest wavelength of light available in the system (405 nm), the CRSR technique results in ∼30% lateral and axial resolution improvement. We also show that the CRSR technique can be used in conjunction to visualise both GC and immunofluorescence targets to create precise and improved three-dimensional visualisation and analysis. In addition, using these superresolution confocal reflection data sets from GC in CRSR mode significantly reduced the data overestimation, improving the accuracy of statistical analysis of dendritic spine density and average spine dimensions. Combining the 0.1 AU setting with deconvolution routines, the signal-to-noise ratio and resolution could further be improved an additional ∼20-25%, yielding CRSR images with resolutions up to 2-fold over the diffraction limit both laterally and axially. The improved precision of both visualisation and quantification of subdiffraction limited dendritic spines using the CRSR technique may prove to be critical in investigations that concern changes in detailed neuron morphology under central nervous system disease conditions such as multiple sclerosis and Alzheimer's disease. LAY DESCRIPTION: For over a century, Golgi-Cox (GC) has been a leading staining technique in the field of neuroscience, used to visualise neurons with great morphological detail. GC stained brain or spinal cord samples are conventionally visualised under transmitted light techniques. This limits the view of Golgi-staining to a two-dimensional image. A recent report showed that Golgi staining can be visualised in three-dimensions using the reflection modality of the confocal microscope. This visualisation also allows for the simultaneous acquisition of immunofluorescence signals. However, the reported resolution of Golgi staining confocal reflection is limited by the diffraction limit of light, which is around 220 nm. Here, we report a superresolution confocal reflection technique (CRSR) that achieves superresolution by minimising the pinhole size used in confocal microscopy. The CRSR technique results in ∼30% lateral and axial resolution improvement. Adding a deconvolution step in the final processing could improve the SNR and resolution even further up to 2-fold improvement in resolution over the diffraction limit both laterally and axially. We hope that this improved visualisation will help in investigations that concern changes in detailed neuron morphology under central nervous system disease conditions such as multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Microscopy and Imaging Core Facility, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A.,Carl Zeiss Labs at Location Partner, Microscopy and Imaging Core Facility, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A
| | - Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A
| |
Collapse
|
7
|
Patel DS, Xu N, Lu H. Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans. Lab Anim (NY) 2019; 48:207-216. [PMID: 31217565 DOI: 10.1038/s41684-019-0326-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
Deep phenotyping is an emerging conceptual paradigm and experimental approach aimed at measuring and linking many aspects of a phenotype to understand its underlying biology. To date, deep phenotyping has been applied mostly in cultured cells and used less in multicellular organisms. However, in the past decade, it has increasingly been recognized that deep phenotyping could lead to a better understanding of how genetics, environment and stochasticity affect the development, physiology and behavior of an organism. The nematode Caenorhabditis elegans is an invaluable model system for studying how genes affect a phenotypic trait, and new technologies have taken advantage of the worm's physical attributes to increase the throughput and informational content of experiments. Coupling of these technical advancements with computational and analytical tools has enabled a boom in deep-phenotyping studies of C. elegans. In this Review, we highlight how these new technologies and tools are digging into the biological origins of complex, multidimensional phenotypes.
Collapse
Affiliation(s)
- Dhaval S Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nan Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Breimann L, Preusser F, Preibisch S. Light-microscopy methods in C. elegans research. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Jiang R, Zhang J, Zou S, Jia S, Leng X, Qi Y, Zou X, Shen B, Li W, Lu W, Zhong H. Electron Acceptive Mass Tag for Mass Spectrometric Imaging-Guided Synergistic Targeting to Mice Brain Glutamate Receptors. ACS Chem Neurosci 2019; 10:757-767. [PMID: 30576595 DOI: 10.1021/acschemneuro.8b00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dysfunctional glutamate receptors (GluRs) have been implicated in neurological disorders and injuries. Hetero-tetrameric assemblies of different GluR subunits or splicing variants have distinct spatiotemporal expression patterns and pharmacological properties. Mass spectrometric imaging of GluRs-targeted small molecules is important for determining the regional preferences of these compounds. We report herein the development of a mass tag covalently bonded with glutamate or N-methyl-d-aspartate that functions as both an electron acceptor to generate mass spectrometric signals on irradiated (Bi2O3)0.07(CoO)0.03(ZnO)0.9 nanoparticles with the third harmonic (355 nm) of Nd3+:YAG laser and as the core component to target bilobed clamshell-like structures of GluRs. In this approach, different molecules produce the same tag ion. It provides a new avenue for quantitative assessment of spatial densities of different compounds, which cannot be achieved with well-established stable isotope labeling technique due to different ionization efficiency of different compounds. Various coexisting endogenous molecules are also simultaneously detected for investigation of overall physiological changes induced by these compounds. Because semiconductors do not generate background peaks, this method eliminates interferences from organic matrix materials that are used in regular MALDI (matrix assisted laser desorption ionization). The localized ionization provides high spatial resolution that can be down to sub-micrometers.
Collapse
Affiliation(s)
- Ruowei Jiang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Juan Zhang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Si Zou
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiebin Leng
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yinghua Qi
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xuekun Zou
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Baojie Shen
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Weidan Li
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Wenting Lu
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
10
|
De Keersmaecker H, Camacho R, Rantasa DM, Fron E, Uji-I H, Mizuno H, Rocha S. Mapping Transient Protein Interactions at the Nanoscale in Living Mammalian Cells. ACS NANO 2018; 12:9842-9854. [PMID: 30192513 DOI: 10.1021/acsnano.8b01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein-protein interactions (PPIs) form the basis of cellular processes, regulating cell behavior and fate. PPIs can be extremely transient in nature, which hinders their detection. In addition, traditional biochemical methods provided limited information on the spatial distribution and temporal dynamics of PPIs that is crucial for their regulation in the crowded cellular environment. Given the pivotal role of membrane micro- and nanodomains in the regulation of PPIs at the plasma membrane, the development of methods to visualize PPIs with a high spatial resolution is imperative. Here, we present a super-resolution fluorescence microscopy technique that can detect and map short-lived transient protein-protein interactions on a nanometer scale in the cellular environment. This imaging method is based on single-molecule fluorescence microscopy and exploits the effect of the difference in the mobility between cytosolic and membrane-bound proteins in the recorded fluorescence signals. After the development of the proof of concept using a model system based on membrane-bound modular protein domains and fluorescently labeled peptides, we applied this imaging approach to investigate the interactions of cytosolic proteins involved in the epidermal growth factor signaling pathway (namely, Grb2, c-Raf, and PLCγ1). The detected clusters of Grb2 and c-Raf were correlated with the distribution of the receptor at the plasma membrane. Additionally, the interactions of wild type PLCγ1 were compared with those detected with truncated mutants, which provided important information regarding the role played by specific domains in the interaction with the membrane. The results presented here demonstrate the potential of this technique to unravel the role of membrane heterogeneity in the spatiotemporal regulation of cell signaling.
Collapse
Affiliation(s)
| | | | | | | | - Hiroshi Uji-I
- Research Institute for Electronic Science , Hokkaido University , N20W10 Kita Ward, Sapporo 001-0020 , Japan
| | | | | |
Collapse
|
11
|
Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluoresc 2018; 6:022003. [DOI: 10.1088/2050-6120/aaae0c] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. Chem Rev 2017; 117:7428-7456. [PMID: 28045508 DOI: 10.1021/acs.chemrev.6b00604] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.
Collapse
Affiliation(s)
- Meghan Hauser
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Michal Wojcik
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Doory Kim
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Wan Li
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
13
|
Wang B, Durantini J, Decan MR, Nie J, Lanterna AE, Scaiano JC. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chem Commun (Camb) 2017; 53:328-331. [DOI: 10.1039/c6cc08905d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Chazeau A, Giannone G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 2016; 73:3053-73. [PMID: 27105623 PMCID: PMC11108290 DOI: 10.1007/s00018-016-2214-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
Abstract
In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.
Collapse
Affiliation(s)
- Anaël Chazeau
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France.
| |
Collapse
|
15
|
Su IC, Hsu KJ, Shen PT, Lin YY, Chu SW. 3D resolution enhancement of deep-tissue imaging based on virtual spatial overlap modulation microscopy. OPTICS EXPRESS 2016; 24:16238-46. [PMID: 27464077 DOI: 10.1364/oe.24.016238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
During the last decades, several resolution enhancement methods for optical microscopy beyond diffraction limit have been developed. Nevertheless, those hardware-based techniques typically require strong illumination, and fail to improve resolution in deep tissue. Here we develop a high-speed computational approach, three-dimensional virtual spatial overlap modulation microscopy (3D-vSPOM), which immediately solves the strong-illumination issue. By amplifying only the spatial frequency component corresponding to the un-scattered point-spread-function at focus, plus 3D nonlinear value selection, 3D-vSPOM shows significant resolution enhancement in deep tissue. Since no iteration is required, 3D-vSPOM is much faster than iterative deconvolution. Compared to non-iterative deconvolution, 3D-vSPOM does not need a priori information of point-spread-function at deep tissue, and provides much better resolution enhancement plus greatly improved noise-immune response. This method is ready to be amalgamated with two-photon microscopy or other laser scanning microscopy to enhance deep-tissue resolution.
Collapse
|
16
|
Follain G, Mercier L, Osmani N, Harlepp S, Goetz JG. Seeing is believing: multi-scale spatio-temporal imaging towards in vivo cell biology. J Cell Sci 2016; 130:23-38. [DOI: 10.1242/jcs.189001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Life is driven by a set of biological events that are naturally dynamic and tightly orchestrated from the single molecule to entire organisms. Although biochemistry and molecular biology have been essential in deciphering signaling at a cellular and organismal level, biological imaging has been instrumental for unraveling life processes across multiple scales. Imaging methods have considerably improved over the past decades and now allow to grasp the inner workings of proteins, organelles, cells, organs and whole organisms. Not only do they allow us to visualize these events in their most-relevant context but also to accurately quantify underlying biomechanical features and, so, provide essential information for their understanding. In this Commentary, we review a palette of imaging (and biophysical) methods that are available to the scientific community for elucidating a wide array of biological events. We cover the most-recent developments in intravital imaging, light-sheet microscopy, super-resolution imaging, and correlative light and electron microscopy. In addition, we illustrate how these technologies have led to important insights in cell biology, from the molecular to the whole-organism resolution. Altogether, this review offers a snapshot of the current and state-of-the-art imaging methods that will contribute to the understanding of life and disease.
Collapse
Affiliation(s)
- Gautier Follain
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Luc Mercier
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Naël Osmani
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Sébastien Harlepp
- Université de Strasbourg, Strasbourg F-67000, France
- DON: Optique ultrarapide et nanophotonique, IPCMS UMR7504, Strasbourg 67000, France
- LabEx NIE, Université de Strasbourg, Strasbourg F-67000, France
| | - Jacky G. Goetz
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| |
Collapse
|