1
|
Guo X, Kang L. Phenotypic Plasticity in Locusts: Trade-Off Between Migration and Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:23-44. [PMID: 39227131 DOI: 10.1146/annurev-ento-013124-124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Locusts exhibit phenotypic plasticity in response to population density changes, with distinct phenotypes in the solitary and gregarious phases. In the past decade, many studies have revealed the molecular mechanisms underlying phase changes, which include the change of body coloration, pheromones, behavior, flight, fecundity, immunity, and aging. Our understanding of the molecular mechanisms related to these phenotypic differences has expanded in breadth and depth with the decoding of the locust genome, involving transcriptional, post-transcriptional, translational, and epigenetic regulation. Large-scale regulation networks composed of genes and noncoding RNAs reflect the systematic modifications of the locust phase transition in response to environmental changes. Gene manipulation techniques have verified the functions of specific genes and related pathways in phase changes. This review highlights the latest advances in studies of locust phase changes and suggests that the divergence of energy and metabolism allocation in gregarious and solitary locusts is an adaptive strategy for long-distance migration and local reproduction, respectively. Finally, we propose future research directions and discuss emerging questions in the area of phenotypic plasticity of locusts.
Collapse
Affiliation(s)
- Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
| | - Le Kang
- Institute of Life Science and Green Development/College of Life Science, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
| |
Collapse
|
2
|
Santos DS, Rocha MA, Mello MLS. Epigenetic studies in insects and the valproic acid perspective. BRAZ J BIOL 2024; 84:e256045. [DOI: 10.1590/1519-6984.256045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Valproic acid in association with sodium valproate (VPA) is an important anticonvulsant drug used for decades to treat neurological disorders. VPA also acts as an epigenetic modulator by inhibiting histone deacetylases, permitting histone acetylation, affecting the DNA and histone methylation status and gene expression, and inducing chromatin remodeling. Insects represent an important animal model for studies in several areas of science. Their high phenotypic plasticity makes them alternative models for epigenetic studies. This brief review emphasizes recent reports on insect epigenetics and the contribution of studies on the VPA action in insects, including effects on epigenetic markers, extending the pharmacological understanding of the potential of this drug, and demonstrating the usefulness of insects as an alternative animal model to drug studies.
Collapse
|
3
|
Van den Brande S, Gijbels M, Wynant N, Peeters P, Gansemans Y, Van Nieuwerburgh F, Santos D, Vanden Broeck J. Identification and profiling of stable microRNAs in hemolymph of young and old Locusta migratoria fifth instars. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100041. [PMID: 36003267 PMCID: PMC9387440 DOI: 10.1016/j.cris.2022.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the first microRNA (miRNA) in the nematode Caenorhabditis elegans, numerous novel miRNAs have been identified which can regulate presumably every biological process in a wide range of metazoan species. In accordance, several insect miRNAs have been identified and functionally characterized. While regulatory RNA pathways are traditionally described at an intracellular level, studies reporting on the presence and potential role of extracellular (small) sRNAs have been emerging in the last decade, mainly in mammalian systems. Interestingly, evidence in several species indicates the functional transfer of extracellular RNAs between donor and recipient cells, illustrating RNA-based intercellular communication. In insects, however, reports on extracellular small RNAs are emerging but the number of detailed studies is still very limited. Here, we demonstrate the presence of stable sRNAs in the hemolymph of the migratory locust, Locusta migratoria. Moreover, the levels of several extracellular miRNAs (ex-miRNAs) present in locust hemolymph differed significantly between young and old fifth nymphal instars. In addition, we performed a 'proof of principle' experiment which suggested that extracellularly delivered miRNA molecules are capable of affecting the locusts' development.
Collapse
Affiliation(s)
- Stijn Van den Brande
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Marijke Gijbels
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Niels Wynant
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Paulien Peeters
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dulce Santos
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| |
Collapse
|
4
|
piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Rep 2022; 39:110593. [PMID: 35476998 DOI: 10.1016/j.celrep.2022.110593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/05/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Animal density-dependent experiences have profound effects on reproductive strategies with marked fecundity differences. Migratory locust adopts distinct population density-dependent reproductive strategies to cope with their respective life cycles, but the mechanisms remain poorly understood. Here, we report that Piwi-interacting RNAs (piRNAs) in the locust germline play key roles in this process. We find that the locust Piwi protein Liwi1 and piRNAs are highly expressed in early developing egg chambers in solitarious locusts, which have higher fecundity than gregarious locusts. Approximately 40% of solitarious locust-associated piRNAs map to protein-coding genes. We find that Liwi1/piRNAs facilitate pre-mRNA splicing of oocyte development-related genes, such as oo18 RNA-binding protein (Orb), in the germline by recruiting the splicing factor U2AF35 to piRNA-targeted introns, thereby increasing fecundity. Such piRNA-guided pre-mRNA splicing is also functional in Drosophila and mouse germ cells. We uncover a piRNA-guided splicing mechanism for processing reproduction-related mRNAs and determining animal reproductive strategies.
Collapse
|
5
|
Kumar D, Alburaki M, Tahir F, Goblirsch M, Adamczyk J, Karim S. An Insight Into the microRNA Profile of the Ectoparasitic Mite Varroa destructor (Acari: Varroidae), the Primary Vector of Honey Bee Deformed Wing Virus. Front Cell Infect Microbiol 2022; 12:847000. [PMID: 35372101 PMCID: PMC8966896 DOI: 10.3389/fcimb.2022.847000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
The remarkably adaptive mite Varroa destructor is the most important honey bee ectoparasite. Varroa mites are competent vectors of deformed wing virus (DWV), and the Varroa-virus complex is a major determinant of annual honey bee colony mortality and collapse. MicroRNAs (miRNAs) are 22-24 nucleotide non-coding RNAs produced by all plants and animals and some viruses that influence biological processes through post-transcriptional regulation of gene expression. Knowledge of miRNAs and their function in mite biology remains limited. Here we constructed small RNA libraries from male and female V. destructor using Illumina's small RNA-Seq platform. A total of 101,913,208 and 91,904,732 small RNA reads (>18 nucleotides) from male and female mites were analyzed using the miRDeep2 algorithm. A conservative approach predicted 306 miRNAs, 18 of which were upregulated and 13 downregulated in female V. destructor compared with males. Quantitative real-time PCR validated the expression of selected differentially-expressed female Varroa miRNAs. This dataset provides a list of potential miRNA targets involved in regulating vital Varroa biological processes and paves the way for developing strategies to target Varroa and their viruses.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mohamed Alburaki
- Bee Research Laboratory, Beltsville, United States Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD, United States
| | - Faizan Tahir
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Michael Goblirsch
- Southern Horticultural Research Unit, USDA ARS, Poplarville, MS, United States
| | - John Adamczyk
- Southern Horticultural Research Unit, USDA ARS, Poplarville, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biology, University of Southern Mississippi, Hattiesburg, Hattiesburg, MS, United States
| |
Collapse
|
6
|
Wang H, Jiang F, Liu X, Liu Q, Fu Y, Li R, Hou L, Zhang J, He J, Kang L. Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Rep 2022; 23:e50851. [PMID: 34985794 PMCID: PMC8892266 DOI: 10.15252/embr.202050851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Animal feeding, which directly affects growth and metabolism, is an important physiological process. However, the contribution of PIWI proteins and PIWI‐interacting RNAs (piRNAs) to the regulatory mechanism of animal feeding is unknown. Here, we report a novel function of Piwi and piRNAs in regulating food intake in locusts. Our study shows that the locust can serve as a representative species for determining PIWI function in insects. Knockdown of Piwi1 expression suppresses anabolic processes and reduces food consumption and body weight. The reduction in food intake by knockdown of Piwi1 expression results from decreased expression of neuropeptide NPF1 in a piRNA‐dependent manner. Mechanistically, intronic piRNAs might enhance RNA splicing of NPF1 by preventing hairpin formation at the branch point sites. These results suggest a novel nuclear PIWI/piRNA‐mediated mechanism that controls food intake in the locust nervous system.
Collapse
Affiliation(s)
- Huimin Wang
- Beijing Institutes of Life Science Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
| | - Feng Jiang
- Beijing Institutes of Life Science Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
- Sino‐Danish College University of Chinese Academy of Sciences Beijing China
| | - Yunyun Fu
- College of Life Science Hebei University Baoding China
| | - Ran Li
- Beijing Institutes of Life Science Chinese Academy of Sciences Beijing China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Jie Zhang
- Beijing Institutes of Life Science Chinese Academy of Sciences Beijing China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Le Kang
- Beijing Institutes of Life Science Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Biotic Interactions University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science Hebei University Baoding China
| |
Collapse
|
7
|
Wang YL, Wu LX, Li HY, Wen XQ, Ma EB, Zhu KY, Zhang JZ. The microRNA miR-184 regulates the CYP303A1 transcript level to control molting of Locusta migratoria. INSECT SCIENCE 2021; 28:941-951. [PMID: 32524775 DOI: 10.1111/1744-7917.12837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) play essential physiological functions in insects. CYP303A1 is highly conserved in insect species studied to date, and shows an indispensable role for adult eclosion in both Locusta migratoria and Drosophila melanogaster. However, how CYP303A1 is regulated to control insect developmental processes remains uninvestigated. In this study, we discovered functional binding sites for miR-184 in the coding sequence of LmCYP303A1. The luciferase reporter assay showed that miR-184 could target LmCYP303A1 and regulate its expression in vitro. Furthermore, overexpression of miR-184 through microinjection of agomir to locusts reduced the transcripts of LmCYP303A1 and led to abnormal molting, which is similar to the phenotype of silencing LmCYP303A1 by direct injection of dsLmCYP303A1 to locusts. Meanwhile, down-regulation of miR-184 by injection of antagomir increased the LmCYP303A1 transcript and caused molting defects. These findings suggested that miR-184 could target LmCYP303A1 to regulate the molting process in L. migratoria, which might be considered as a novel target for pest control.
Collapse
Affiliation(s)
- Yan-Li Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Li-Xian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Hui-Yong Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Xue-Qin Wen
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Kun-Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Zhao L, Guo W, Jiang F, He J, Liu H, Song J, Yu D, Kang L. Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activinβ. PLoS Genet 2021; 17:e1009174. [PMID: 33406121 PMCID: PMC7787450 DOI: 10.1371/journal.pgen.1009174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of locust plagues result from the long-term accumulation of high-density egg production. The migratory locust, Locusta migratoria, displays dramatic differences in the egg-laid number with dependence on population density, while solitarious locusts lay more eggs compared to gregarious ones. However, the regulatory mechanism for the egg-laid number difference is unclear. Herein, we confirm that oosorption plays a crucial role in the regulation of egg number through the comparison of physiological and molecular biological profiles in gregarious and solitarious locusts. We find that gregarious oocytes display a 15% higher oosorption ratio than solitarious ones. Activinβ (Actβ) is the most highly upregulated gene in the gregarious terminal oocyte (GTO) compared to solitarious terminal oocyte (STO). Meanwhile, Actβ increases sharply from the normal oocyte (N) to resorption body 1 (RB1) stage during oosorption. The knockdown of Actβ significantly reduces the oosorption ratio by 13% in gregarious locusts, resulting in an increase in the egg-laid number. Based on bioinformatic prediction and experimental verification, microRNA-34 with three isoforms can target Actβ. The microRNAs display higher expression levels in STO than those in GTO and contrasting expression patterns of Actβ from the N to RB1 transition. Overexpression of each miR-34 isoform leads to decreased Actβ levels and significantly reduces the oosorption ratio in gregarious locusts. In contrast, inhibition of the miR-34 isoforms results in increased Actβ levels and eventually elevates the oosorption ratio of solitarious locusts. Our study reports an undescribed mechanism of oosorption through miRNA targeting of a TGFβ ligand and provides new insights into the mechanism of density-dependent reproductive adaption in insects. The continuous accumulation of high-density eggs laid by flying swarms of adults results in huge populations of flightless juveniles, which contributes to the outbreaks of locust plagues. An interesting phenomenon is that locusts have the phenotypic plasticity of reproduction. The gregarious locusts lay fewer big eggs than do solitarious phase locusts. In contrast, the solitarious phase locusts lay more small eggs compared to the gregarious locusts. We find the egg-laid number is not only regulated by the phase status of parents but also controlled by oosorption, a type of oocyte death. Further studies confirmed the phase-related ratio of oocyte death in the mother is regulated by a microRNA, which posttranscriptionally influences the expression level of a TGFβ ligand. This maternal effect on progeny size is especially critical for gregarious locusts to control the population size and maintain population fitness, and for solitarious locusts to enhance chance for gregarization and further enlargement of population size. This is the first study to reveal the molecular mechanism underlying the regulation of a microRNA-gene circuit for locust oocyte death to determine the offspring number. These findings can provide some important clues to develop potential drugs to prevent vast locust reproduction from a plague upsurge.
Collapse
Affiliation(s)
- Lianfeng Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Guo
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongran Liu
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dan Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
10
|
Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, Verdonck R, Holtof M, Song H, Behmer ST, Sword GA, Matheson T, Ott SR, Deforce D, Van Nieuwerburgh F, Van de Peer Y, Vanden Broeck J. First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Res 2020; 9:775. [PMID: 33163158 PMCID: PMC7607483 DOI: 10.12688/f1000research.25148.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 12/31/2022] Open
Abstract
Background: At the time of publication, the most devastating desert locust crisis in decades is affecting East Africa, the Arabian Peninsula and South-West Asia. The situation is extremely alarming in East Africa, where Kenya, Ethiopia and Somalia face an unprecedented threat to food security and livelihoods. Most of the time, however, locusts do not occur in swarms, but live as relatively harmless solitary insects. The phenotypically distinct solitarious and gregarious locust phases differ markedly in many aspects of behaviour, physiology and morphology, making them an excellent model to study how environmental factors shape behaviour and development. A better understanding of the extreme phenotypic plasticity in desert locusts will offer new, more environmentally sustainable ways of fighting devastating swarms. Methods: High molecular weight DNA derived from two adult males was used for Mate Pair and Paired End Illumina sequencing and PacBio sequencing. A reliable reference genome of Schistocerca gregaria was assembled using the ABySS pipeline, scaffolding was improved using LINKS. Results: In total, 1,316 Gb Illumina reads and 112 Gb PacBio reads were produced and assembled. The resulting draft genome consists of 8,817,834,205 bp organised in 955,015 scaffolds with an N50 of 157,705 bp, making the desert locust genome the largest insect genome sequenced and assembled to date. In total, 18,815 protein-encoding genes are predicted in the desert locust genome, of which 13,646 (72.53%) obtained at least one functional assignment based on similarity to known proteins. Conclusions: The desert locust genome data will contribute greatly to studies of phenotypic plasticity, physiology, neurobiology, molecular ecology, evolutionary genetics and comparative genomics, and will promote the desert locust's use as a model system. The data will also facilitate the development of novel, more sustainable strategies for preventing or combating swarms of these infamous insects.
Collapse
Affiliation(s)
- Heleen Verlinden
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium
| | - Lieven Sterck
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium
| | - Jia Li
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium
| | - Zhen Li
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium
| | - Anna Yssel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, 9000, Belgium.,NXTGNT, Ghent University, Ghent, 9000, Belgium
| | - Rik Verdonck
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium.,Station d' Ecologie Théorique et Expérimentale, UMR 5321 CNRS et Université Paul Sabatier, Moulis, 09200, France
| | - Michiel Holtof
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, TX 77843-2475, USA
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, Texas, TX 77843-2475, USA
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, Texas, TX 77843-2475, USA
| | - Tom Matheson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Swidbert R Ott
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, 9000, Belgium.,NXTGNT, Ghent University, Ghent, 9000, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, 9000, Belgium.,NXTGNT, Ghent University, Ghent, 9000, Belgium
| | - Yves Van de Peer
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Jozef Vanden Broeck
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
11
|
Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, Verdonck R, Holtof M, Song H, Behmer ST, Sword GA, Matheson T, Ott SR, Deforce D, Van Nieuwerburgh F, Van de Peer Y, Vanden Broeck J. First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Res 2020; 9:775. [PMID: 33163158 DOI: 10.12688/f1000research.25148.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background: At the time of publication, the most devastating desert locust crisis in decades is affecting East Africa, the Arabian Peninsula and South-West Asia. The situation is extremely alarming in East Africa, where Kenya, Ethiopia and Somalia face an unprecedented threat to food security and livelihoods. Most of the time, however, locusts do not occur in swarms, but live as relatively harmless solitary insects. The phenotypically distinct solitarious and gregarious locust phases differ markedly in many aspects of behaviour, physiology and morphology, making them an excellent model to study how environmental factors shape behaviour and development. A better understanding of the extreme phenotypic plasticity in desert locusts will offer new, more environmentally sustainable ways of fighting devastating swarms. Methods: High molecular weight DNA derived from two adult males was used for Mate Pair and Paired End Illumina sequencing and PacBio sequencing. A reliable reference genome of Schistocerca gregaria was assembled using the ABySS pipeline, scaffolding was improved using LINKS. Results: In total, 1,316 Gb Illumina reads and 112 Gb PacBio reads were produced and assembled. The resulting draft genome consists of 8,817,834,205 bp organised in 955,015 scaffolds with an N50 of 157,705 bp, making the desert locust genome the largest insect genome sequenced and assembled to date. In total, 18,815 protein-encoding genes are predicted in the desert locust genome, of which 13,646 (72.53%) obtained at least one functional assignment based on similarity to known proteins. Conclusions: The desert locust genome data will contribute greatly to studies of phenotypic plasticity, physiology, neurobiology, molecular ecology, evolutionary genetics and comparative genomics, and will promote the desert locust's use as a model system. The data will also facilitate the development of novel, more sustainable strategies for preventing or combating swarms of these infamous insects.
Collapse
Affiliation(s)
- Heleen Verlinden
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium
| | - Lieven Sterck
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium
| | - Jia Li
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium
| | - Zhen Li
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium
| | - Anna Yssel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, 9000, Belgium.,NXTGNT, Ghent University, Ghent, 9000, Belgium
| | - Rik Verdonck
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium.,Station d' Ecologie Théorique et Expérimentale, UMR 5321 CNRS et Université Paul Sabatier, Moulis, 09200, France
| | - Michiel Holtof
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, TX 77843-2475, USA
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, Texas, TX 77843-2475, USA
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, Texas, TX 77843-2475, USA
| | - Tom Matheson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Swidbert R Ott
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, 9000, Belgium.,NXTGNT, Ghent University, Ghent, 9000, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, 9000, Belgium.,NXTGNT, Ghent University, Ghent, 9000, Belgium
| | - Yves Van de Peer
- Laboratory of Bioinformatics and Evolutionary Genomics, Ghent University, Ghent, 9000, Belgium.,Center for Plant Systems Biology, Ghent University - VIB, Ghent, 9052, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Jozef Vanden Broeck
- Laboratory of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
12
|
Zhu B, Sun X, Nie X, Liang P, Gao X. MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103283. [PMID: 31759051 DOI: 10.1016/j.ibmb.2019.103283] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Cry protein toxins produced by Bacillus thuringiensis (Bt) are now widely used in sprays and transgenic crops to control insect pests. Most recently, ATP-binding cassette transporter proteins (ABC transporter), including ABCC2, ABCC3, ABCG1, ABCA2 and ABCB1, were reported as putative receptors for different Cry toxins. However, little is known about the regulatory mechanism involved in the expression of these ABC transporter genes. In the present study, a conserved target site of miR-998-3p was identified from the coding sequence (CDS) of ABCC2 in diverse lepidopteran insects. Luciferase reporter assays demonstrated that miR-998-3p could bind to the CDS of ABCC2 and down-regulate its expression through a conserved site and several non-conserved sites in three representative lepidopteran pests, including Helicoverpa armigera, Spodoptera exigua and Plutella xylostella. Injection of miR-998-3p agomir significantly reduced the abundance of ABCC2, accompanied by increased tolerance to Cry1Ac toxin in H. armigera, S. exigua and P. xylostella (Cry-S) larvae, while injection of miR-998-3p antagomir increased the abundance of ABCC2 dramatically, and thereby reduced the Cry1Ac resistance in a Cry1Ac resistant population of P. xylostella (GX-R). These results give a better understanding of the mechanisms of post-transcriptional regulation of ABCC2, and will be helpful for further studies on the role of miRNAs in the regulation of Cry1Ac resistance in lepidopteran pests.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Ximan Nie
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
13
|
Chen J, Li TC, Pang R, Yue XZ, Hu J, Zhang WQ. Genome-Wide Screening and Functional Analysis Reveal That the Specific microRNA nlu-miR-173 Regulates Molting by Targeting Ftz-F1 in Nilaparvata lugens. Front Physiol 2018; 9:1854. [PMID: 30618850 PMCID: PMC6306441 DOI: 10.3389/fphys.2018.01854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Molting is a crucial physiological behavior during arthropod growth. In the past few years, molting as well as chitin biosynthesis triggered by molting, is subject to regulation by miRNAs. However, how many miRNAs are involved in insect molting at the genome-wide level remains unknown. Results: We deeply sequenced four samples obtained from nymphs at the 2nd-3rd and 4th-5th instars, and then identified 61 miRNAs conserved in the Arthropoda and 326 putative novel miRNAs in the brown planthopper Nilaparvata lugens, a fearful pest of rice. A total of 36 mature miRNAs with significant different expression levels at the genome scale during molting, including 19 conserved and 17 putative novel miRNAs were identified. After comparing the expression profiles, we found that most of the targets of 36 miRNAs showing significantly differential expression were involved in energy and hormone pathways. One of the 17 putative novel miRNAs, nlu-miR-173 was chosen for functional study. nlu-miR-173 acts in 20-hydroxyecdysone signaling through its direct target, N. lugens Ftz-F1(NlFtz-F1), a transcription factor. Furthermore, we found that the transcription of nlu-miR-173 was promoted by Broad-Complex (BR-C), suggesting that its involvement in the 20-hydroxyecdysone pathway contributes to proper molting function. Conclusion: We provided a comprehensive resource of miRNAs associated with insect molting and identified a novel miRNA as a potential target for pest control.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Teng Chao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Krüppel-homolog 1. Development 2018; 145:dev.170670. [PMID: 30470705 DOI: 10.1242/dev.170670] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023]
Abstract
Krüppel-homolog 1 (Kr-h1), a zinc-finger transcription factor, inhibits larval metamorphosis and promotes adult reproduction by transducing juvenile hormone (JH). Although the transcriptional regulation of Kr-h1 has been extensively studied, little is known about its regulation at the post-transcriptional level. Using the migratory locust Locusta migratoria as a model system, we report here that the microRNAs let-7 and miR-278 bound to the Kr-h1 coding sequence and downregulated its expression. Application of let-7 and miR-278 mimics (agomiRs) significantly reduced the level of Kr-h1 transcripts, resulting in partially precocious metamorphosis in nymphs as well as markedly decreased yolk protein precursors, arrested ovarian development and blocked oocyte maturation in adults. Moreover, the expression of let-7 and miR-278 was repressed by JH, constituting a regulatory loop of JH signaling. This study thus reveals a previously unknown regulatory mechanism whereby JH suppresses the expression of let-7 and miR-278, which, together with JH induction of Kr-h1 transcription, prevents the precocious metamorphosis of nymphs and stimulates the reproduction of adult females. These results advance our understanding of the coordination of JH and miRNA regulation in insect development.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wanwan Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haihong Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lulu Gao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuning Fan
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Wang H, Dewell RB, Ehrengruber MU, Segev E, Reimer J, Roukes ML, Gabbiani F. Optogenetic manipulation of medullary neurons in the locust optic lobe. J Neurophysiol 2018; 120:2049-2058. [PMID: 30110231 PMCID: PMC6230808 DOI: 10.1152/jn.00356.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts ( Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects. NEW & NOTEWORTHY Using Semliki Forest virus, we efficiently delivered channelrhodopsin into neurons of the locust optic lobe. We demonstrate that laser illumination increases the firing of the medullary neurons expressing channelrhodopsin and elicits excitatory postsynaptic potentials and spiking in an identified postsynaptic target neuron, the lobula giant movement detector neuron. This technique allows the manipulation of neuronal activity in locust neural circuits using optogenetics.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | | | - Eran Segev
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Michael L Roukes
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
- Electrical and Computer Engineering Department, Rice University , Houston, Texas
| |
Collapse
|
16
|
Lo N, Simpson SJ, Sword GA. Epigenetics and developmental plasticity in orthopteroid insects. CURRENT OPINION IN INSECT SCIENCE 2018; 25:25-34. [PMID: 29602359 DOI: 10.1016/j.cois.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
Developmental plasticity is a key driver of the extraordinary ecological success of insects. Epigenetic mechanisms provide an important link between the external stimuli that initiate polyphenisms, and the stable changes in gene expression that govern alternative insect morphs. We review the epigenetics of orthopteroid insects, focussing on recent research on locusts and termites, two groups which display high levels of phenotypic plasticity, and for which genome sequences have become available in recent years. We examine research on the potential role of DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression in these insects. DNA methylation patterns in orthopteroids share a number of characteristics with those of hymenopteran insects, although methylation levels are much higher, and extend to introns and repeat elements. Future examinations of epigenetic mechanisms in these insects will benefit from comparison of tissues from aged-matched individuals from alternative morphs, and adequate biological replication.
Collapse
Affiliation(s)
- Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Stephen J Simpson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory A Sword
- Department of Entomology, Interdisciplinary Faculty of Ecology and Evolutionary Biology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA
| |
Collapse
|
17
|
Abstract
MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Pompeu Fabra University (UPF), 08002 Barcelona, Spain;
| |
Collapse
|
18
|
Abstract
Is there a correlation between miRNA diversity and levels of organismic complexity? Exhibiting extraordinary levels of morphological and developmental complexity, insects are the most diverse animal class on earth. Their evolutionary success was in particular shaped by the innovation of holometabolan metamorphosis in endopterygotes. Previously, miRNA evolution had been linked to morphological complexity, but astonishing variation in the currently available miRNA complements of insects made this link unclear. To address this issue, we sequenced the miRNA complement of the hemimetabolan Blattella germanica and reannotated that of two other hemimetabolan species, Locusta migratoria and Acyrthosiphon pisum, and of four holometabolan species, Apis mellifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster. Our analyses show that the variation of insect miRNAs is an artefact mainly resulting from poor sampling and inaccurate miRNA annotation, and that insects share a conserved microRNA toolkit of 65 families exhibiting very low variation. For example, the evolutionary shift toward a complete metamorphosis was accompanied only by the acquisition of three and the loss of one miRNA families.
Collapse
|
19
|
Pacholewska A, Mach N, Mata X, Vaiman A, Schibler L, Barrey E, Gerber V. Novel equine tissue miRNAs and breed-related miRNA expressed in serum. BMC Genomics 2016; 17:831. [PMID: 27782799 PMCID: PMC5080802 DOI: 10.1186/s12864-016-3168-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MiRNAs regulate multiple genes at the post-transcriptional level and therefore play an important role in many biological processes. It has been suggested that miRNA exported outside the cells contribute to inter-cellular communication. Consequently, circulating miRNAs are of particular interest and are promising biomarkers for many diseases. The number of miRNAs annotated in the horse genome is much lower compared to model organisms like human and mouse. We therefore aimed to identify novel equine miRNAs for tissue types and breed in serum. RESULTS We analysed 71 small RNA-seq libraries derived from nine tissues (gluteus medius, platysma, masseter muscle, heart, liver, cartilage, bone, total blood and serum) using miRDeep2 and miRdentify tools. Known miRNAs represented between 2.3 and 62.9 % of the reads in 71 libraries. A total of 683 novel miRNAs were identified. Breed and tissue type affected the number of miRNAs detected and interestingly, affected its average intensity. A total of 50 miRNAs in serum proved to be potential biomarkers to differentiate specific breed types, of which miR-122, miR-200, miR-483 were over-expressed and miR-328 was under-expressed in ponies compared to Warmbloods. The different miRNAs profiles, as well as the differences in their expression levels provide a foundation for more hypotheses based on the novel miRNAs discovered. CONCLUSIONS We identified 683 novel equine miRNAs expressed in seven solid tissues, blood and serum. Additionally, our approach evidenced that such data supported identification of specific miRNAs as markers of functions related to breeds or disease tissues.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland. .,Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.
| | - Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Xavier Mata
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Laurent Schibler
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
20
|
miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genet 2016; 12:e1006257. [PMID: 27532544 PMCID: PMC4988631 DOI: 10.1371/journal.pgen.1006257] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Abstract
Chitin synthase and chitinase play crucial roles in chitin biosynthesis and degradation during insect molting. Silencing of Dicer-1 results in reduced levels of mature miRNAs and severely blocks molting in the migratory locust. However, the regulatory mechanism of miRNAs in the molting process of locusts has remained elusive. In this study, we found that in chitin metabolism, two crucial enzymes, chitin synthase (CHS) and chitinase (CHT) were regulated by miR-71 and miR-263 during nymph molting. The coding sequence of CHS1 and the 3'-untranslated region of CHT10 contain functional binding sites for miR-71 and miR-263, respectively. miR-71/miR-263 displayed cellular co-localization with their target genes in epidermal cells and directly interacted with CHS1 and CHT10 in the locust integument, respectively. Injections of miR-71 and miR-263 agomirs suppressed the expression of CHS1 and CHT10, which consequently altered chitin production of new and old cuticles and resulted in a molting-defective phenotype in locusts. Unexpectedly, reduced expression of miR-71 and miR-263 increased CHS1 and CHT10 mRNA expression and led to molting defects similar to those induced by miRNA delivery. This study reveals a novel function and balancing modulation pattern of two miRNAs in chitin biosynthesis and degradation, and it provides insight into the underlying molecular mechanisms of the molting process in locusts.
Collapse
|