1
|
Brenman-Suttner DB, Rehan SM, Zayed A. Exploring the genetics of social behaviour in C. calcarata. Sci Rep 2025; 15:5580. [PMID: 39955334 PMCID: PMC11830030 DOI: 10.1038/s41598-025-89870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Studies investigating social evolution often focus on species that are obligately eusocial, where presumably all of the adaptive genetic changes associated with sociality have already been completed. To fully understand eusociality, we must study species with facultative social behaviour. The small carpenter bee Ceratina calcarata is an ideal model for studying the genetics and molecular biology of eusocial evolution as it can exhibit both subsocial behaviour with parental care and social behaviour facilitated by the altruistic dwarf eldest daughter. Here, we sequenced the genomes of subsocial and social C. calcarata to identify mutations and genes associated with social behaviour and used these data to test several hypotheses related to the evolution of eusociality. Many single nucleotide polymorphisms that had high levels of genetic differentiation (Fst) between social and subsocial C. calcarata were in or near genes or regions important for regulating gene expression. These results are consistent with the Genetic Toolkit Hypothesis of eusocial evolution. Our findings suggest that the low behavioural complexity observed in C. calcarata may involve modulation of existing regulatory genes and gene networks to generate phenotypes associated with social behaviour.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Dai JX, Cao LJ, Chen JC, Yang F, Shen XJ, Ma LJ, Hoffmann AA, Chen M, Wei SJ. Testing for adaptive changes linked to range expansion following a single introduction of the fall webworm. Mol Ecol 2024; 33:e17038. [PMID: 37277936 DOI: 10.1111/mec.17038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.
Collapse
Affiliation(s)
- Jin-Xu Dai
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
3
|
Guo W, Ma C, Kang L. Community change and population outbreak of grasshoppers driven by climate change. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101154. [PMID: 38104960 DOI: 10.1016/j.cois.2023.101154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/09/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
The response of insects to climate changes in various aspects has been well-documented. However, there is a dearth of comprehensive review specifically focusing on the response and adaptation of grasshoppers, which are important primary consumers and pests in grassland and agricultural ecosystems. The coexistence of grasshopper species forms diverse communities and coherent groups in spatial-temporal scales. It makes them excellent models for studying the interplay of phenology, dispersal, trophic relationship, and population dynamics, all influenced by climate changes. Certain grasshopper species have adapted to climate change through mechanisms such as diapause. Here, we delve into grasshopper community changes, their adaptive strategies, and population outbreaks in response to climate change and land use. By serving as ecological indicators, grasshoppers offer valuable insights for monitoring climatic and environmental shifts. Last, this review puts forth several future directions for comprehending the population dynamics of insects in the context of climate change.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chi Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, CAS, Beijing, China; Institute of Life Science and Green Development/College of Life Science, Hebei University, Baoding 30023, China.
| |
Collapse
|
4
|
Su T, Wang W, Wang Z, Li P, Xin X, Yu Y, Zhang D, Zhao X, Wang J, Sun L, Jin G, Zhang F, Yu S. BrMYB108 confers resistance to Verticillium wilt by activating ROS generation in Brassica rapa. Cell Rep 2023; 42:112938. [PMID: 37552600 DOI: 10.1016/j.celrep.2023.112938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Increasing plant resistance to Verticillium wilt (VW), which causes massive losses of Brassica rapa crops, is a challenge worldwide. However, few causal genes for VW resistance have been identified by forward genetic approaches, resulting in limited application in breeding. We combine a genome-wide association study in a natural population and quantitative trait locus mapping in an F2 population and identify that the MYB transcription factor BrMYB108 regulates plant resistance to VW. A 179 bp insertion in the BrMYB108 promoter alters its expression pattern during Verticillium longisporum (VL) infection. High BrMYB108 expression leads to high VL resistance, which is confirmed by disease resistance tests using BrMYB108 overexpression and loss-of-function mutants. Furthermore, we verify that BrMYB108 confers VL resistance by regulating reactive oxygen species (ROS) generation through binding to the promoters of respiratory burst oxidase genes (Rboh). A loss-of-function mutant of AtRbohF in Arabidopsis shows significant susceptibility to VL. Thus, BrMYB108 and its target ROS genes could be used as targets for genetic engineering for VL resistance of B. rapa.
Collapse
Affiliation(s)
- Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| |
Collapse
|
5
|
Santos AS, Cazetta E, Faria D, Lima TM, Lopes MTG, Carvalho CDS, Alves‐Pereira A, Morante‐Filho JC, Gaiotto FA. Tropical forest loss and geographic location drive the functional genomic diversity of an endangered palm tree. Evol Appl 2023; 16:1257-1273. [PMID: 37492151 PMCID: PMC10363835 DOI: 10.1111/eva.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 07/27/2023] Open
Abstract
Human activity has diminished forests in different terrestrial ecosystems. This is well illustrated in the Brazilian Atlantic Forest, which still hosts high levels of species richness and endemism, even with only 28% of its original extent remaining. The consequences of such forest loss in remaining populations can be investigated with several approaches, including the genomic perspective, which allows a broader understanding of how human disturbance influences the genetic variability in natural populations. In this context, our study investigated the genomic responses of Euterpe edulis Martius, an endangered palm tree, in forest remnants located in landscapes presenting different forest cover amount and composed by distinct bird assemblage that disperse its seeds. We sampled 22 areas of the Brazilian Atlantic Forest in four regions using SNP markers inserted into transcribed regions of the genome of E. edulis, distinguishing neutral loci from those putatively under natural selection (outlier). We demonstrate that populations show patterns of structure and genetic variability that differ between regions, as a possible reflection of deforestation and biogeographic histories. Deforested landscapes still maintain high neutral genetic diversity due to gene flow over short distances. Overall, we not only support previous evidence with microsatellite markers, but also show that deforestation can influence the genetic variability outlier, in the scenario of selective pressures imposed by these stressful environments. Based on our findings, we suggest that, to protect genetic diversity in the long term, it is necessary to reforest and enrich deforested areas, using seeds from populations in the same management target region.
Collapse
Affiliation(s)
- Alesandro Souza Santos
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Eliana Cazetta
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Deborah Faria
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Thâmara Moura Lima
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia – Campus SeabraSeabraBrazil
| | | | | | | | - José Carlos Morante‐Filho
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| |
Collapse
|
6
|
Li Z, Yun L, Gao Z, Wang T, Ren X, Zhao Y. EST-SSR Primer Development and Genetic Structure Analysis of Psathyrostachys juncea Nevski. FRONTIERS IN PLANT SCIENCE 2022; 13:837787. [PMID: 35295628 PMCID: PMC8919075 DOI: 10.3389/fpls.2022.837787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 05/14/2023]
Abstract
Psathyrostachys juncea is a perennial forage grass which plays an important role in soil and water conservation and ecological maintenance in cold and dry areas of temperate regions. In P. juncea, a variety of biotic and abiotic stress related genes have been used in crop improvement, indicating its agronomic, economic, forage, and breeding value. To date, there have been few studies on the genetic structure of P. juncea. Here, the genetic diversity and population structure of P. juncea were analyzed by EST-SSR molecular markers to evaluate the genetic differentiation related to tillering traits in P. juncea germplasm resources. The results showed that 400 simple sequence repeat (SSR) loci were detected in 2,020 differentially expressed tillering related genes. A total of 344 scored bands were amplified using 103 primer pairs, out of which 308 (89.53%) were polymorphic. The Nei's gene diversity of 480 individuals was between 0.092 and 0.449, and the genetic similarity coefficient was between 0.5008 and 0.9111, with an average of 0.6618. Analysis of molecular variance analysis showed that 93% of the variance was due to differences within the population, and the remaining 7% was due to differences among populations. Psathyrostachys juncea materials were clustered into five groups based on population genetic structure, principal coordinate analysis and unweighted pair-group method with arithmetic means (UPGMA) analysis. The results were similar between clustering methods, but a few individual plants were distributed differently by the three models. The clustering results, gene diversity and genetic similarity coefficients showed that the overall genetic relationship of P. juncea individuals was relatively close. A Mantel test, UPGMA and structural analysis also showed a significant correlation between genetic relationship and geographical distribution. These results provide references for future breeding programs, genetic improvement and core germplasm collection of P. juncea.
Collapse
Affiliation(s)
- Zhen Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lan Yun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources Ministry of Education, Hohhot, China
| | - Zhiqi Gao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Tian Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaomin Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Chen Y, Liu Z, Régnière J, Vasseur L, Lin J, Huang S, Ke F, Chen S, Li J, Huang J, Gurr GM, You M, You S. Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest. Nat Commun 2021; 12:7206. [PMID: 34893609 PMCID: PMC8664911 DOI: 10.1038/s41467-021-27510-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the genetic basis of climatic adaptation is essential for predicting species' responses to climate change. However, intraspecific variation of these responses arising from local adaptation remains ambiguous for most species. Here, we analyze genomic data from diamondback moth (Plutella xylostella) collected from 75 sites spanning six continents to reveal that climate-associated adaptive variation exhibits a roughly latitudinal pattern. By developing an eco-genetic index that combines genetic variation and physiological responses, we predict that most P. xylostella populations have high tolerance to projected future climates. Using genome editing, a key gene, PxCad, emerged from our analysis as functionally temperature responsive. Our results demonstrate that P. xylostella is largely capable of tolerating future climates in most of the world and will remain a global pest beyond 2050. This work improves our understanding of adaptive variation along environmental gradients, and advances pest forecasting by highlighting the genetic basis for local climate adaptation.
Collapse
Affiliation(s)
- Yanting Chen
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.418033.d0000 0001 2229 4212Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Zhaoxia Liu
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.449406.b0000 0004 1757 7252College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000 China
| | - Jacques Régnière
- grid.146611.50000 0001 0775 5922Natural Resources Canada, Canadian Forest Service, Quebec City, QC G1V 4C7 Canada
| | - Liette Vasseur
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,grid.411793.90000 0004 1936 9318Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1 Canada
| | - Jian Lin
- grid.256111.00000 0004 1760 2876College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shiguo Huang
- grid.256111.00000 0004 1760 2876College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fushi Ke
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.458495.10000 0001 1014 7864Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Shaoping Chen
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.418033.d0000 0001 2229 4212Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Jianyu Li
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.418033.d0000 0001 2229 4212Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Jieling Huang
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China
| | - Geoff M. Gurr
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,grid.1037.50000 0004 0368 0777Graham Centre, Charles Sturt University, Orange, NSW 2800 Australia
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Fuentes G, González F, Saavedra J, López-Sepúlveda P, Victoriano PF, Stuessy TF, Ruiz-Ponce E. Assessing signals of selection and historical demography to develop conservation strategies in the Chilean emblematic Araucaria araucana. Sci Rep 2021; 11:20504. [PMID: 34654850 PMCID: PMC8521589 DOI: 10.1038/s41598-021-98662-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of genetic diversity reduces the ability of species to evolve and respond to environmental change. Araucaria araucana is an emblematic conifer species from southern South America, with important ethnic value for the Mapuche people (Pehuenche); the Chilean Government has catalogued its conservation status as vulnerable. Climatic fluctuations were potentially a major impact in the genetic variation within many tree species. In this context, the restricted geographic distribution of A. araucana in Chile appears to be a consequence of the Last Glacial Maximum (LGM). During the past two centuries, strong human intervention has also affected the geographical distribution and population sizes of A. araucana. Reduction of population size may cause loss of genetic diversity, which could affect frequency of adaptive loci. The aims of this study were to know the existence of potential loci under selection and populations with genetic, demographic disequilibrium in the Chilean distribution of A. araucana. Based on 268 polymorphic AFLP loci, we have investigated potential loci under selection and genetic, demographic disequilibrium within seven Chilean populations of Araucaria araucana. Correlation of 41 outlier loci with the environmental variables of precipitation and temperature reveals signatures of selection, whereas 227 neutral loci provide estimates of demographic equilibrium and genetic population structure. Three populations are recommended as priorities for conservation.
Collapse
Affiliation(s)
- Glenda Fuentes
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Fidelina González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Javier Saavedra
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, Brasil
| | - Patricio López-Sepúlveda
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Pedro F Victoriano
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Tod F Stuessy
- Herbarium and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Eduardo Ruiz-Ponce
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
Mendiola MJR, Ravago‐Gotanco R. Genetic differentiation and signatures of local adaptation revealed by RADseq for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Ecol Evol 2021; 11:7951-7969. [PMID: 34188864 PMCID: PMC8216953 DOI: 10.1002/ece3.7625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation ( R adj 2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea ( R adj 2 = 0.692-0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.
Collapse
Affiliation(s)
| | - Rachel Ravago‐Gotanco
- The Marine Science InstituteUniversity of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
10
|
Coppi A, Baker AJM, Bettarini I, Colzi I, Echevarria G, Pazzagli L, Gonnelli C, Selvi F. Population Genetics of Odontarrhena (Brassicaceae) from Albania: The Effects of Anthropic Habitat Disturbance, Soil, and Altitude on a Ni-Hyperaccumulator Plant Group from a Major Serpentine Hotspot. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1686. [PMID: 33271845 PMCID: PMC7759883 DOI: 10.3390/plants9121686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Albanian taxa and populations of the genus Odontarrhena are most promising candidates for research on metal tolerance and Ni-agromining, but their genetic structure remains unknown. We investigated phylogenetic relationships and genetic differentiation in relation to distribution and ploidy of the taxa, anthropic site disturbance, elevation, soil type, and trace metals at each population site. After performing DNA sequencing of selected accessions, we applied DNA-fingerprinting to analyze the genetic structure of 32 populations from ultramafic and non-ultramafic outcrops across Albania. Low sequence divergence resulted in poorly resolved phylograms, but supported affinity between the two diploid serpentine endemics O. moravensis and O. rigida. Analysis of molecular variance (AMOVA) revealed significant population differentiation, but no isolation by distance. Among-population variation was higher in polyploids than in diploids, in which genetic distances were lower. Genetic admixing at population and individual level occurred especially in the polyploids O. chalcidica, O. decipiens, and O. smolikana. Admixing increased with site disturbance. Outlier loci were higher in serpentine populations but decreased along altitude with lower drought and heat stress. Genetic variability gained by gene flow and hybridization at contact zones with "resident" species of primary ultramafic habitats promoted expansion of the tetraploid O. chalcidica across anthropogenic sites.
Collapse
Affiliation(s)
- Andrea Coppi
- Department of Biology, University of Firenze, 50121 Firenze, Italy;
| | - Alan J. M. Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane QLD 4072, Australia; (A.J.M.B.); (G.E.)
- Laboratoire Sols et Environnement, Université de Lorraine/INRA, F-54000 Vandoeuvre-lès-Nancy, France
| | - Isabella Bettarini
- Department of Biomedical Experimental and Clinical Sciences, University of Firenze, 50121 Firenze, Italy; (I.B.); (L.P.)
| | - Ilaria Colzi
- Department of Biology, University of Firenze, 50121 Firenze, Italy;
| | - Guillaume Echevarria
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane QLD 4072, Australia; (A.J.M.B.); (G.E.)
- Laboratoire Sols et Environnement, Université de Lorraine/INRA, F-54000 Vandoeuvre-lès-Nancy, France
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Firenze, 50121 Firenze, Italy; (I.B.); (L.P.)
| | | | - Federico Selvi
- Department of Agriculture, Food, Environment and Forestry, Laboratories of Botany, 50121 Firenze, Italy;
| |
Collapse
|
11
|
Stuart KC, Cardilini APA, Cassey P, Richardson MF, Sherwin WB, Rollins LA, Sherman CDH. Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Mol Ecol 2020; 30:1419-1434. [PMID: 33463838 DOI: 10.1111/mec.15601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
A detailed understanding of population genetics in invasive populations helps us to identify drivers of successful alien introductions. Here, we investigate putative signals of selection in Australian populations of invasive common starlings, Sturnus vulgaris, and seek to understand how these have been influenced by introduction history. We used reduced representation sequencing to determine population structure, and identify Single Nucleotide Polymorphisms (SNPs) that are putatively under selection. We found that since their introduction into Australia, starling populations have become genetically differentiated despite the potential for high levels of dispersal, and that starlings have responded to selective pressures imposed by a wide range of environmental conditions across their geographic range. Isolation by distance appears to have played a strong role in determining genetic substructure across the starling's Australian range. Analyses of candidate SNPs that are putatively under selection indicated that aridity, precipitation and temperature may be important factors driving adaptive variation across the starling's invasive range in Australia. However, we also noted that the historic introduction regime may leave footprints on sites flagged as being under adaptive selection, and encourage critical interpretation of selection analyses in non-native populations.
Collapse
Affiliation(s)
- Katarina C Stuart
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - William B Sherwin
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Xiong Y, Xiong Y, Yu Q, Zhao J, Lei X, Dong Z, Yang J, Song S, Peng Y, Liu W, Bai S, Ma X. Genetic variability and structure of an important wild steppe grass Psathyrostachys juncea (Triticeae: Poaceae) germplasm collection from north and central Asia. PeerJ 2020; 8:e9033. [PMID: 32341905 PMCID: PMC7182019 DOI: 10.7717/peerj.9033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 11/20/2022] Open
Abstract
Russian wildrye, Psathyrostachys junceus (Fisch.) Nevski, is an important wild steppe perennial grass, which is characterized by longevity and short robust rhizomes. It also has highly resistance in grazing and abiotic stress. In this study, the genetic diversity of eleven P. juncea wild germplasms from north and central Asia was investigated using AFLP markers. The P. juncea populations were divided into three clades in both UPGMA dendrogram and PCoA clustering corresponding to the three genetic memberships in STRUCTURE analysis. The genetic specificity of Xinjiang (XJ) populations was revealed by the highest Ne (1.5411) and Hj (0.3553) and their dispersion shown in UPGMA. High inbreeding coefficient (Wright’s F statistics, f = 0.496, Fst = 0.128) was observed although a moderate degree of gene flow (Nm = 1.4736) existed, that may ascribe to habitat fragmentation or the low seedling recruitment, which ultimately resulted in decrease of population size and their genetic diversity. The key factors inducing moderate genetic differentiation detected in this study were isolation by distance (IBD), climatic variabilities and geographical barriers. All these results provide insights into the study of genetic status and germplasm collecting of Russian wildrye.
Collapse
Affiliation(s)
- Yi Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanli Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junming Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiong Lei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhixiao Dong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jian Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sijia Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibet Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xi-ning, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Xiao Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Grdiša M, Radosavljević I, Liber Z, Stefkov G, Ralli P, Chatzopoulou PS, Carović-Stanko K, Šatović Z. Divergent selection and genetic structure of Sideritis scardica populations from southern Balkan Peninsula as revealed by AFLP fingerprinting. Sci Rep 2019; 9:12767. [PMID: 31484938 PMCID: PMC6726656 DOI: 10.1038/s41598-019-49097-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023] Open
Abstract
Sideritis scardica Giseb. is a subalpine/alpine plant species endemic to the central part of the Balkan Peninsula. In this study, we combined Amplified Fragment Length Polymorphism (AFLP) and environmental data to examine the adaptive genetic variations in S. scardica natural populations sampled in contrasting environments. A total of 226 AFLP loci were genotyped in 166 individuals from nine populations. The results demonstrated low gene diversity, ranging from 0.095 to 0.133 and significant genetic differentiation ranging from 0.115 to 0.408. Seven genetic clusters were revealed by Bayesian clustering methods as well as by Discriminant Analysis of Principal Components and each population formed its respective cluster. The exception were populations P02 Mt. Shara and P07 Mt. Vermio, that were admixed between two clusters. Both landscape genetic methods Mcheza and BayeScan identified a total of seven (3.10%) markers exhibiting higher levels of genetic differentiation among populations. The spatial analysis method Samβada detected 50 individual markers (22.12%) associated with bioclimatic variables, among them seven were identified by both Mcheza and BayeScan as being under directional selection. Four bioclimatic variables associated with five out of seven outliers were related to precipitation, suggesting that this variable is the key factor affecting the adaptive variation of S. scardica.
Collapse
Affiliation(s)
- Martina Grdiša
- University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology Svetošimunska 25, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska 25, 10000, Zagreb, Croatia
| | - Ivan Radosavljević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska 25, 10000, Zagreb, Croatia.
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, 10000, Zagreb, Croatia.
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska 25, 10000, Zagreb, Croatia
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, 10000, Zagreb, Croatia
| | - Gjoshe Stefkov
- University Ss. Cyril and Methodius Skopje, Faculty of Pharmacy, Vodnjanska 17, 1000, Skopje, Republic of North Macedonia
| | - Parthenopi Ralli
- Hellenic Agricultural Organization DEMETER, Institute of Breeding and Plant Genetic Resources, Thermi - Thessalonikis, PO Box 60411, 57001, Thessaloniki, Greece
| | - Paschalina S Chatzopoulou
- Hellenic Agricultural Organization DEMETER, Institute of Breeding and Plant Genetic Resources, Thermi - Thessalonikis, PO Box 60411, 57001, Thessaloniki, Greece
| | - Klaudija Carović-Stanko
- University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology Svetošimunska 25, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska 25, 10000, Zagreb, Croatia
| | - Zlatko Šatović
- University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology Svetošimunska 25, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska 25, 10000, Zagreb, Croatia
| |
Collapse
|
14
|
Yadav S, Stow AJ, Dudaniec RY. Detection of environmental and morphological adaptation despite high landscape genetic connectivity in a pest grasshopper (Phaulacridium vittatum). Mol Ecol 2019; 28:3395-3412. [DOI: 10.1111/mec.15146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Adam J. Stow
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Rachael Y. Dudaniec
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| |
Collapse
|
15
|
González-Serna MJ, Cordero PJ, Ortego J. Using high-throughput sequencing to investigate the factors structuring genomic variation of a Mediterranean grasshopper of great conservation concern. Sci Rep 2018; 8:13436. [PMID: 30194365 PMCID: PMC6128945 DOI: 10.1038/s41598-018-31775-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 01/25/2023] Open
Abstract
Inferring the demographic history of species is fundamental for understanding their responses to past climate/landscape alterations and improving our predictions about the future impacts of the different components of ongoing global change. Estimating the time-frame at which population fragmentation took place is also critical to determine whether such process was shaped by ancient events (e.g. past climate/geological changes) or if, conversely, it was driven by recent human activities (e.g. habitat loss). We employed genomic data (ddRAD-Seq) to determine the factors shaping contemporary patterns of genetic variation in the Iberian cross-backed grasshopper Dociostaurus crassiusculus, an endangered species with limited dispersal capacity and narrow habitat requirements. Our analyses indicate the presence of two ancient lineages and three genetic clusters resulted from historical processes of population fragmentation (~18-126 ka) that predate the Anthropocene. Landscape genetic analyses indicate that the limits of major river basins are the main geographical feature explaining large-scale patterns of genomic differentiation, with no apparent effect of human-driven habitat fragmentation. Overall, our study highlights the importance of detailed phylogeographic, demographic and spatially-explicit landscape analyses to identify evolutionary significant units and determine the relative impact of historical vs. anthropogenic factors on processes of genetic fragmentation in taxa of great conservation concern.
Collapse
Affiliation(s)
- María José González-Serna
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC - (CSIC, UCLM, JCCM), Ronda de Toledo, 12, E-13071, Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC - (CSIC, UCLM, JCCM), Ronda de Toledo, 12, E-13071, Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana - EBD - (CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain
| |
Collapse
|
16
|
Klimova A, Ortega‐Rubio A, Vendrami DLJ, Hoffman JI. Genotyping by sequencing reveals contrasting patterns of population structure, ecologically mediated divergence, and long-distance dispersal in North American palms. Ecol Evol 2018; 8:5873-5890. [PMID: 29938100 PMCID: PMC6010798 DOI: 10.1002/ece3.4125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Comparative studies can provide powerful insights into processes that affect population divergence and thereby help to elucidate the mechanisms by which contemporary populations may respond to environmental change. Furthermore, approaches such as genotyping by sequencing (GBS) provide unprecedented power for resolving genetic differences among species and populations. We therefore used GBS to provide a genomewide perspective on the comparative population structure of two palm genera, Washingtonia and Brahea, on the Baja California peninsula, a region of high landscape and ecological complexity. First, we used phylogenetic analysis to address taxonomic uncertainties among five currently recognized species. We resolved three main clades, the first corresponding to W. robusta and W. filifera, the second to B. brandegeei and B. armata, and the third to B. edulis from Guadalupe Island. Focusing on the first two clades, we then delved deeper by investigating the underlying population structure. Striking differences were found, with GBS uncovering four distinct Washingtonia populations and identifying a suite of loci associated with temperature, consistent with ecologically mediated divergence. By contrast, individual mountain ranges could be resolved in Brahea and few loci were associated with environmental variables, implying a more prominent role of neutral divergence. Finally, evidence was found for long-distance dispersal events in Washingtonia but not Brahea, in line with knowledge of the dispersal mechanisms of these palms including the possibility of human-mediated dispersal. Overall, our study demonstrates the power of GBS together with a comparative approach to elucidate markedly different patterns of genomewide divergence mediated by multiple effectors.
Collapse
Affiliation(s)
- Anastasia Klimova
- Centro de Investigaciones Biologicas del Noroeste S.C.La PazBaja California SurMexico
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Alfredo Ortega‐Rubio
- Centro de Investigaciones Biologicas del Noroeste S.C.La PazBaja California SurMexico
| | | | | |
Collapse
|
17
|
Zhang C, Sun M, Zhang X, Chen S, Nie G, Peng Y, Huang L, Ma X. AFLP-based genetic diversity of wild orchardgrass germplasm collections from Central Asia and Western China, and the relation to environmental factors. PLoS One 2018; 13:e0195273. [PMID: 29641553 PMCID: PMC5894997 DOI: 10.1371/journal.pone.0195273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Dactylis glomerata L. (orchardgrass) is an important perennial forage species in temperate areas of the world. It is usually used for silage, grazing and hay because of its high nutritional value and reproducibility. Central Asia, Xinjiang and Tibetan Plateau in China possess various special micro-environments that harbor many valuable resources, while different degrees of degradation of the grassland ecosystem occurred due to climatic changing and human activities. Investigating the genetic diversity of wild D. glomerat could provide basis for collection, protection, and utilization of some excellent germplasm resources. Totally 210 individuals from 14 populations—five from Xinjiang, two from Kangding (Tibetan Plateau), and seven from Central Asia were identified using AFLP technology. The average values of Nei’s genetic diversity (Hj) and Shannon information index (Ho) were 0.383 and 0.394 respectively. UPGMA tree, STRUCTURE analysis and principal coordinate analysis (PCoA) showed populations from same region clustered together. AMOVA revealed 35.10% of the genetic differentiation (Fst) occurred among populations. Gene flow (Nm) was limited among all populations. Genetic diversity of D. glomerata was high but limited under isolation-by-distance pattern, resulting in high genetic differentiation and low gene flow among populations. Adjacent regions also exhibited similar results because of the barriers of high mountains. The environmental factors, such as precipitation, elevation, latitude and longitude also had some impacts on genetic diversity and structure pattern of populations.
Collapse
Affiliation(s)
- Chenglin Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Ming Sun
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Shiyong Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Gang Nie
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Yan Peng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Xiao Ma
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
- * E-mail:
| |
Collapse
|
18
|
Cesconeto RJ, Joost S, McManus CM, Paiva SR, Cobuci JA, Braccini J. Landscape genomic approach to detect selection signatures in locally adapted Brazilian swine genetic groups. Ecol Evol 2017; 7:9544-9556. [PMID: 29187988 PMCID: PMC5696410 DOI: 10.1002/ece3.3323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/27/2022] Open
Abstract
Samples of 191 animals from 18 different Brazilian locally adapted swine genetic groups were genotyped using Illumina Porcine SNP60 BeadChip in order to identify selection signatures related to the monthly variation of Brazilian environmental variables. Using BayeScan software, 71 SNP markers were identified as FST outliers and 60 genotypes (58 markers) were found by Samβada software in 371 logistic models correlated with 112 environmental variables. Five markers were identified in both methods, with a Kappa value of 0.073 (95% CI: 0.011-0.134). The frequency of these markers indicated a clear north-south country division that reflects Brazilian environmental differences in temperature, solar radiation, and precipitation. Global spatial territory correlation for environmental variables corroborates this finding (average Moran's I = 0.89, range from 0.55 to 0.97). The distribution of alleles over the territory was not strongly correlated with the breed/genetic groups. These results are congruent with previous mtDNA studies and should be used to direct germplasm collection for the National gene bank.
Collapse
Affiliation(s)
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental Engineering (ENAC)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | | | - Jaime Araujo Cobuci
- Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Jose Braccini
- Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
19
|
Ren J, Chen L, Jin X, Zhang M, You FM, Wang J, Frenkel V, Yin X, Nevo E, Sun D, Luo MC, Peng J. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides. FRONTIERS IN PLANT SCIENCE 2017; 8:258. [PMID: 28352272 PMCID: PMC5348526 DOI: 10.3389/fpls.2017.00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 05/06/2023]
Abstract
Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ FST ≤ 0.15) or high genetic differentiation (FST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different FST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou UniversityDezhou, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of SciencesWuhan, China
| | - Xiaoli Jin
- Department of Agronomy and the Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang UniversityHangzhou, China
| | - Miaomiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of SciencesWuhan, China
| | - Frank M. You
- Cereal Research Centre, Agriculture and Agri-Food CanadaWinnipeg, MB, Canada
| | - Jirui Wang
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Vladimir Frenkel
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Xuegui Yin
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Dongfa Sun
- Department of Agronomy, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Junhua Peng
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
- The State Key Lab of Crop Breeding Technology Innovation and Integration, China National Seed Group Co. Ltd.Wuhan, China
| |
Collapse
|
20
|
Bilska K, Szczecińska M. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations. PeerJ 2016; 4:e2504. [PMID: 27833793 PMCID: PMC5101595 DOI: 10.7717/peerj.2504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population's ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population's adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). METHODS The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. RESULTS SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and Φ PT for SSR (20%) and Φ PT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. CONCLUSIONS The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
21
|
Berthouly-Salazar C, Thuillet AC, Rhoné B, Mariac C, Ousseini IS, Couderc M, Tenaillon MI, Vigouroux Y. Genome scan reveals selection acting on genes linked to stress response in wild pearl millet. Mol Ecol 2016; 25:5500-5512. [PMID: 27664976 DOI: 10.1111/mec.13859] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
Abstract
Uncovering genomic regions involved in adaption is a major goal in evolutionary biology. High-throughput sequencing now makes it possible to tackle this challenge in nonmodel species. Yet, despite the increasing number of methods targeted to specifically detect genomic footprints of selection, the complex demography of natural populations often causes high rates of false positive in gene discoveries. The aim of this study was to identify climate adaptations in wild pearl millet populations, Cenchrus americanus ssp. monodii. We focused on two climate gradients, one in Mali and one in Niger. We used a two-step strategy to limit false-positive outliers. First, we considered gradients as biological replicates and performed RNA sequencing of four populations at the extremities. We combined four methods-three based on differentiation among populations and one based on diversity patterns within populations-to identify outlier SNPs from a set of 87 218 high-quality SNPs. Among 11 155 contigs of pearl millet reference transcriptome, 540 exhibited selection signals as evidenced by at least one of the four methods. In a second step, we genotyped 762 samples in 11 additional populations distributed along the gradients using SNPs from the detected contigs and random SNPs as control. We further assessed selection on this large data set using a differentiation-based method and a method based on correlations with environmental variables based. Four contigs displayed consistent signatures between the four extreme and 11 additional populations, two of which were linked to abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Cécile Berthouly-Salazar
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France. .,LMI LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal.
| | - Anne-Céline Thuillet
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France
| | - Bénédicte Rhoné
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France.,Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France
| | - Cédric Mariac
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France
| | - Issaka Salia Ousseini
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France
| | - Marie Couderc
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France
| | - Maud I Tenaillon
- Génétique Quantitative et Evolution - Le Moulon, INRA - Université Paris-Sud - CNRS - AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Yves Vigouroux
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), 34394, Montpellier Cedex 5, France
| |
Collapse
|
22
|
Qiu T, Jiang L, Li S, Yang Y. Small-Scale Habitat-Specific Variation and Adaptive Divergence of Photosynthetic Pigments in Different Alkali Soils in Reed Identified by Common Garden and Genetic Tests. FRONTIERS IN PLANT SCIENCE 2016; 7:2016. [PMID: 28111586 PMCID: PMC5216671 DOI: 10.3389/fpls.2016.02016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/19/2016] [Indexed: 05/14/2023]
Abstract
Flexibility of photosynthetic pigment traits is an important adaptive mechanism through which plants can increase mean fitness in a variable environment. Unlike morphological traits in plants, photosythesis has been shown to exhibit phenotypic plasticity, responding rapidly to environmental conditions. Meanwhile, local adaptation at small scales is considered to be rare. Thus, detecting the small-scale adaptive divergence of photosynthetic pigments presents a challenge. Leaf concentrations of photosynthetic pigments under stressful conditions may be reduced or maintained. Concentrations of some pigments and/or ratio of Chlorophyll a (Chla) to Chlorophyll b (Chlb) do not change markedly in some species, such as the common reed, Phragmites australis, a cosmopolitan grass and common invader. Little is known about photosynthetic responses of this plant to varying levels of alkali salt. Few studies have attempted to account for the relationship between pigment accumulation and leaf position in wild plant populations in grasslands. In this study, photosynthetic pigment concentrations and the total Chl(a+b)/Car ratio decreased as the growing season progressed and were shown to be significantly lower in the habitat with a higher soil pH value and less moisture when compared between habitats. The Chla/Chlb ratio did not differ significantly between habitats, although it increased significantly over time. Leaves in the middle position may be functionally important in the response to soil conditions because only pigment concentrations and the Chl(a+b)/Car ratio of those leaves varied between habitats significantly. The outlier loci, used to evaluate molecular signatures of selection, were detected by Arlequin, Bayescan, and Bayenv analyses. In the simulated habitats of common garden, the local genotypes had higher values of Chla, Chlb, Chl(a+b), Car in their home habitat than did genotypes originating from the other habitat. QST-FST comparisons provided evidence of divergent selection. It appears likely that soil moisture, pH and electric conductivity drove local adaptation. Combined approaches that utilize information on phenotypes from field and common garden experiments, genome-wide markers, and environmental data will be the most informative for understanding the adaptive nature of the intraspecific divergence.
Collapse
Affiliation(s)
- Tian Qiu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal UniversityChangchun, China
- School of Life Sciences, Changchun Normal UniversityChangchun, China
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal UniversityChangchun, China
| | - LiLi Jiang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal UniversityChangchun, China
| | - ShanZhi Li
- School of Life Sciences, Changchun Normal UniversityChangchun, China
| | - YunFei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal UniversityChangchun, China
- *Correspondence: YunFei Yang
| |
Collapse
|