1
|
Tirumalai MR, Anane-Bediakoh D, Rajesh S, Fox GE. Net Charges of the Ribosomal Proteins of the S10 and spc Clusters of Halophiles Are Inversely Related to the Degree of Halotolerance. Microbiol Spectr 2021; 9:e0178221. [PMID: 34908470 PMCID: PMC8672879 DOI: 10.1128/spectrum.01782-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Sidharth Rajesh
- Clements High School (Class of 2023), Fort Bend Independent School District, Sugar Land, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Gabriel A, Costa S, Henriques I, Lopes I. Effects of Long-Term Exposure to Increased Salinity on the Amphibian Skin Bacterium Erwinia toletana. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:779-788. [PMID: 33877369 DOI: 10.1007/s00244-021-00845-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Amphibian's skin bacterial community may help them to cope with several types of environmental perturbations, including osmotic stress caused by increased salinity. This work assessed whether an amphibian skin bacterium could increase its tolerance to NaCl after a long-term exposure to this salt. A strain of Erwinia toletana, isolated from the skin of Pelophylax perezi, was exposed to two salinity scenarios (with 18 g/L of NaCl): (1) long-term exposure (for 46 days; Et-NaCl), and (2) long-term exposure followed by a recovery period (exposure for 30 days to NaCl and then to LB medium for 16 days; Et-R). After exposure, the sensitivity of E. toletana clonal populations to NaCl was assessed by exposing them to 6 NaCl concentrations (LB medium spiked with NaCl) plus a control (LB medium). Genotypic alterations were assessed by PCR-based molecular typing method (BOX-PCR). The results showed that tolerance of E. toletana to NaCl slightly increased after the long-term exposure, EC50 for growth were: 22.5 g/L (8.64-36.4) for Et-LB; 30.3 g/L (23.2-37.4) for Et-NaCl; and 26.1 g/L (19.332.9) for Et-R. Differences in metabolic activity were observed between Et-LB and Et-R and between Et-NaCl and Et-R, suggesting the use of different substrates by this bacterium when exposed to salinized environments. NaCl-induced genotypic alterations were not detected. This work suggests that E. toletana exposed to low levels of salinity, activate different metabolic pathways to cope with osmotic stress. These findings may be further explored to be used in bioaugmentation procedures through the supplementation with this bacterium of the skin microbiome of natural populations of amphibians exposed to salinization.
Collapse
Affiliation(s)
- Antonieta Gabriel
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal.
| | - Sara Costa
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, CESAM, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Lopes
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| |
Collapse
|
3
|
Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol. Braz J Microbiol 2019; 50:79-84. [PMID: 30645731 DOI: 10.1007/s42770-019-00040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/03/2018] [Indexed: 10/27/2022] Open
Abstract
Sclareol is an important intermediate for ambroxide synthesis industries. Hyphozyma roseonigra ATCC 20624 was the only reported strain capable of degrading sclareol to the main product of sclareol glycol, which is the precursor of ambroxide. To date, knowledge is lacking about the effects of sclareol on cells and the proteins involved in sclareol metabolism. Comparative proteomic analyses were conducted on the strain H. roseonigra ATCC 20624 by using sclareol or glucose as the sole carbon source. A total of 79 upregulated protein spots with a > 2.0-fold difference in abundance on 2-D gels under sclareol stress conditions were collected for further identification. Seventy spots were successfully identified and finally integrated into 30 proteins. The upregulated proteins under sclareol stress are involved in carbon metabolism and nitrogen metabolism, and replication, transcription, and translation processes. Eighteen upregulated spots were identified as aldehyde dehydrogenases, which indicating that aldehyde dehydrogenases might play an important role in sclareol metabolism. Overall, this study may lay the fundamentals for further cell engineering to improve sclareol glycol production.
Collapse
|
4
|
Wang X, Zhang X, Yao Q, Hua D, Qin J. WITHDRAWN: Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol. Braz J Microbiol 2018; 49 Suppl 1:160-165. [PMID: 29773508 PMCID: PMC6328719 DOI: 10.1016/j.bjm.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in BJM, 50 (2019) 79–84, http://dx.doi.org/10.1007/S42770-019-00040-2 The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
| | | | | | - Dongliang Hua
- Shandong Academy of Sciences, Energy Research Institute, Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan, China
| | | |
Collapse
|
5
|
Belfiore C, Curia MV, Farías ME. Characterization of Rhodococcus sp. A5 wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Rev Argent Microbiol 2017; 50:311-322. [PMID: 29239754 DOI: 10.1016/j.ram.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 01/07/2023] Open
Abstract
Lithium (Li) is widely distributed in nature and has several industrial applications. The largest reserves of Li (over 85%) are in the so-called "triangle of lithium" that includes the Salar de Atacama in Chile, Salar de Uyuni in Bolivia and Salar del Hombre Muerto in Argentina. Recently, the use of microorganisms in metal recovery such as copper has increased; however, there is little information about the recovery of lithium. The strain Rhodococcus sp. A5wh used in this work was previously isolated from Laguna Azul. The assays revealed that this strain was able to accumulate Li (39.52% of Li/g microbial cells in 180min) and that it was able to grow in its presence up to 1M. In order to understand the mechanisms implicated in Li tolerance, a proteomic approach was conducted. Comparative proteomic analyses of strain A5wh exposed and unexposed to Li reveal that 17 spots were differentially expressed. The identification of proteins was performed by MALDI-TOF/MS, and the obtained results showed that proteins involved in stress response, transcription, translations, and metabolism were expressed under Li stress. This knowledge constitutes the first proteomic approach to elucidate the strategy followed by Rhodococcus to adapt to Li.
Collapse
Affiliation(s)
- Carolina Belfiore
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina.
| | - María V Curia
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT-Tucumán, CONICET, Av. Belgrano y Pasaje Caseros, 4000 S. M. de Tucumán, Argentina
| |
Collapse
|
6
|
Development of the first gene expression system for Salinicoccus strains with potential application in bioremediation of hypersaline wastewaters. Appl Microbiol Biotechnol 2017; 101:7249-7258. [PMID: 28795221 DOI: 10.1007/s00253-017-8428-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/27/2023]
Abstract
Salinicoccus salsiraiae IM408 (=CGMCC13032) is a novel halophilic bacterium that we isolated from the saline soil of Da Gang Oilfield. It tolerates 60 g/l sodium chloride and up to 123 g/l (1.5 M) sodium acetate and has shown a potential application in bioremediation of wastewater with high salt and high chemical oxygen demand (COD). Two plasmids, pS408-1 and pS408-2, were identified in S. salsiraiae IM408, and the sequences and copy numbers of the plasmids were determined. Based on these plasmids, two shuttle vectors containing a replicon for Escherichia coli, ampicillin, and chloramphenicol resistance genes, as well as the replicon from pS408-1 or pS408-2, were constructed and named as pTCS101 and pTCS201, respectively. A suitable host strain, named S. salsiraiae PE01, was also developed from the wild-type by plasmid elimination. Using the plasmid pTCS101 as an expression vector, L-lactate dehydrogenase from Staphylococcus aureus was expressed successfully in S. salsiraiae PE01. This is the first gene expression system for the Salinicoccus genus. It has provided the potential for expression of desired proteins or for establishment of desired pathways in Salinicoccus strains, which would make these halophiles more advantageous in future biotechnological applications.
Collapse
|
7
|
Mevada V, Patel S, Pandya J, Joshi H, Patel R. Whole genome sequencing and annotation of halophilic Salinicoccus sp. BAB 3246 isolated from the coastal region of Gujarat. GENOMICS DATA 2017; 13:30-34. [PMID: 28702355 PMCID: PMC5485554 DOI: 10.1016/j.gdata.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 02/03/2023]
Abstract
Salinicoccus sp. BAB 3246 is a halophilic bacterium isolated from a marine water sample collected from the coastal region of Gujarat, India, from a surface water stream. Based on 16sRNA sequencing, the organism was identified as Salinicoccus sp. BAB 3246 (Genebank ID: KF889285). The present work was performed to determine the whole genome sequence of the organism using Ion Torrent PGM platform followed by assembly using the CLC genomics workbench and genome annotation using RAST, BASys and MaGe. The complete genome sequence was 713,204 bp identified by with second largest size for Salinicoccus sp. reported in the NCBI genome database. A total of 652 degradative pathways were identified by KEGG map analysis. Comparative genomic analysis revealed Salinicoccus sp. BAB 3246 as most highly related to Salinicoccus halodurans H3B36. Data mining identified stress response genes and operator pathway for degradation of various environmental pollutants. Annotation data and analysis indicate potential use in pollution control in industrial influent and saline environment.
Collapse
Affiliation(s)
- Vishal Mevada
- Shri Sarvajanik Science College, Sarvajanik Campus, Mehsana, India
| | - Shradhdha Patel
- Department of Life Sciences, Hem. North Gujarat University, Patan, India
| | - Jignesh Pandya
- Department of Life Sciences, Hem. North Gujarat University, Patan, India
| | - Himani Joshi
- Department of Life Sciences, Hem. North Gujarat University, Patan, India
| | - Rajesh Patel
- Department of Life Sciences, Hem. North Gujarat University, Patan, India
| |
Collapse
|
8
|
Goers L, Ainsworth C, Goey CH, Kontoravdi C, Freemont PS, Polizzi KM. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol Bioeng 2017; 114:1290-1300. [PMID: 28112405 PMCID: PMC5412874 DOI: 10.1002/bit.26254] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole-cell biosensors. Biotechnol. Bioeng. 2017;114: 1290-1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Goers
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
| | - Catherine Ainsworth
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Cher Hui Goey
- Department of Chemical EngineeringImperial College LondonLondonUK
| | - Cleo Kontoravdi
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
- Department of Chemical EngineeringImperial College LondonLondonUK
| | - Paul S. Freemont
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
- Department of MedicineImperial College LondonLondonUK
| | - Karen M. Polizzi
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
| |
Collapse
|
9
|
Jiang Y, Wei L, Zhang H, Yang K, Wang H. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. BIORESOURCE TECHNOLOGY 2016; 218:146-152. [PMID: 27359064 DOI: 10.1016/j.biortech.2016.06.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huining Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Mahanty A, Purohit GK, Banerjee S, Karunakaran D, Mohanty S, Mohanty BP. Proteomic changes in the liver ofChanna striatusin response to high temperature stress. Electrophoresis 2016; 37:1704-17. [DOI: 10.1002/elps.201500393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 02/20/2016] [Accepted: 03/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Arabinda Mahanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | | | - Sudeshna Banerjee
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | - Dhanasekar Karunakaran
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | - Sasmita Mohanty
- KIIT School of Biotechnology; KIIT University; Bhubaneswar Odisha India
| | - Bimal Prasanna Mohanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| |
Collapse
|