1
|
Zhu P, Wang G, Liu Y, Wen L, Bo Q, Liu G, Wang C, Liu B. Transcriptomic analysis reveals the molecular mechanisms of heterosis in low-temperature tolerance in the hybrids of Argopecten scallops. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101526. [PMID: 40315712 DOI: 10.1016/j.cbd.2025.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The F1 hybrid of Argopecten irradians irradians (♀) × A. purpuratus (♂) exhibits significant heterosis in growth performance and mid-parent heterosis in low-temperature tolerance. This study presents a comparative transcriptomic analysis of A. irradians irradians (Ai), A. purpuratus (Ap), and the hybrid A. irradians irradians♀ × A. purpuratus♂ (Aip) to explore the mechanisms underlying low-temperature tolerance heterosis in Aip. A total of 33,376 differentially expressed genes (DEGs) were identified between F1 hybrids and purebreds under cold stress. In Aip, 80.32 % of DEGs exhibited non-additive expression patterns, with over-dominant expression observed in 30.65 % of these genes. Pairwise comparisons among the transcriptomes of Ai, Ap, and Aip revealed 14,959 alternative splicing events, affecting 8169 genes. KEGG pathway analysis indicated substantial enrichment of overlapping genes from common DEGs and non-additively expressed genes (NAGs) in apoptosis, longevity regulation, ABC transporters, and spliceosome pathways. Furthermore, analysis of DEGs, DAGs (Differentially Alternative Splicing genes), and NAGs identified 6 genes undergoing alternative splicing. These pathways and genes may be crucial in Aip's response to low-temperature stress and offer insights for advancing scallop cross-breeding strategies.
Collapse
Affiliation(s)
- Peican Zhu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guizhen Wang
- Jinshan Campus, Ganyu Secondary Vocational School, Lianyungang, Jiangsu 222199, China
| | - Yuan Liu
- Tongshan Secondary Vocational School, Xuzhou, Jiangsu 221006, China
| | - Lisen Wen
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qixiang Bo
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai 264006, China
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
2
|
Zhao J, Chen M, Luo Z, Cui P, Ren P, Wang Y. Strand-Specific RNA Sequencing Reveals Gene Expression Patterns in F1 Chick Breast Muscle and Liver after Hatching. Animals (Basel) 2024; 14:1335. [PMID: 38731340 PMCID: PMC11083249 DOI: 10.3390/ani14091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Pengxin Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (J.Z.); (M.C.); (Z.L.); (P.C.)
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| |
Collapse
|
3
|
Zhong H, Ren B, Lou C, Zhou Y, Luo Y, Xiao J. Nonadditive and allele-specific expression of ghrelin in hybrid tilapia. Front Endocrinol (Lausanne) 2023; 14:1292730. [PMID: 38152137 PMCID: PMC10751329 DOI: 10.3389/fendo.2023.1292730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Background Interspecies hybridization is an important breeding method to generate fishes with heterosis in aquaculture. Using this method, hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (Oreochromis aureus, ♂) has been produced and widely farmed due to its growth and appetite superiorities. However, the genetic mechanism of these advanced traits is still not well understood. Ghrelin is a crucial gene that regulates growth and appetite in fishes. In the present study, we focused on the expression characteristics and its regulation of ghrelin in the hybrid. Results The tissue distribution analysis showed that ghrelin was predominantly expressed in the stomach in the hybrid. Ghrelin was more highly expressed in the stomach in the hybrid and Nile tilapia, compared to blue tilapia, showing a nonadditive pattern. Two single-nucleotide polymorphism (SNP) sites were identified including T/C and C/G from the second exon in the ghrelin gene from Nile tilapia and blue tilapia. By pyrosequencing based on the SNP sites, the allele-specific expression (ASE) of ghrelin in the hybrid was assayed. The result indicated that ghrelin in the hybrid showed higher maternal allelic transcript ratios. Fasting significantly increased ghrelin overall expression at 4, 8, 12, 24, and 48 h. In addition, higher maternal allelic transcript ratios were not changed in the fasting hybrids at 48 h. The cis and trans effects were determined by evaluating the overall expression and ASE values in the hybrid. The expression of ghrelin was mediated by compensating cis and trans effects in hybrid. Conclusion In summary, the present lines of evidence showed the nonadditive expression of ghrelin in the hybrid tilapia and its regulation by subgenomes, offering new insight into gene expression characteristics in hybrids.
Collapse
Affiliation(s)
- Huan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bingxin Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenyi Lou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
4
|
Jiang G, Li Y, Cheng G, Jiang K, Zhou J, Xu C, Kong L, Yu H, Liu S, Li Q. Transcriptome Analysis of Reciprocal Hybrids Between Crassostrea gigas and C. angulata Reveals the Potential Mechanisms Underlying Thermo-Resistant Heterosis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:235-246. [PMID: 36653591 DOI: 10.1007/s10126-023-10197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 05/06/2023]
Abstract
Heterosis, also known as hybrid vigor, is widely used in aquaculture, but the molecular causes for this phenomenon remain obscure. Here, we conducted a transcriptome analysis to unveil the gene expression patterns and molecular bases underlying thermo-resistant heterosis in Crassostrea gigas ♀ × Crassostrea angulata ♂ (GA) and C. angulata ♀ × C. gigas ♂ (AG). About 505 million clean reads were obtained, and 38,210 genes were identified, of which 3779 genes were differentially expressed between the reciprocal hybrids and purebreds. The global gene expression levels were toward the C. gigas genome in the reciprocal hybrids. In GA and AG, 95.69% and 92.00% of the differentially expressed genes (DEGs) exhibited a non-additive expression pattern, respectively. We observed all gene expression modes, including additive, partial dominance, high and low dominance, and under- and over-dominance. Of these, 77.52% and 50.00% of the DEGs exhibited under- or over-dominance in GA and AG, respectively. The over-dominance DEGs common to reciprocal hybrids were significantly enriched in protein folding, protein refolding, and intrinsic apoptotic signaling pathway, while the under-dominance DEGs were significantly enriched in cell cycle. As possible candidate genes for thermo-resistant heterosis, GRP78, major egg antigen, BAG, Hsp70, and Hsp27 were over-dominantly expressed, while MCM6 and ANAPC4 were under-dominantly expressed. This study extends our understanding of the thermo-resistant heterosis in oysters.
Collapse
Affiliation(s)
- Gaowei Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Geng Cheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jianmin Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Xiao W, Chen B, Wang J, Zou Z, Wang C, Li D, Zhu J, Yu J, Yang H. Integration of mRNA and miRNA Profiling Reveals Heterosis in Oreochromis niloticus × O. aureus Hybrid Tilapia. Animals (Basel) 2022; 12:640. [PMID: 35268207 PMCID: PMC8909811 DOI: 10.3390/ani12050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
Heterosis is a widespread biological phenomenon in fishes, in which hybrids have superior traits to parents. However, the underlying molecular basis for heterosis remains uncertain. Heterosis in growth and survival rates is apparent in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂). Comparisons of growth and hematological biochemical characteristics and mRNA and miRNA transcriptional analyses were performed in hybrid and parents tilapia stocks to investigate the underlying molecular basis for heterosis. Growth characteristics and hematological glucose and cholesterol parameters were significantly improved in hybrids. Of 3097 differentially expressed genes (DEGs) and 120 differentially expressed miRNAs (DEMs) identified among three stocks (O. niloticus, O. aureus, and hybrids), 1598 DEGs and 62 DEMs were non-additively expressed in hybrids. Both expression level dominance and overdominance patterns occurred for DEGs and DEMs, indicating that dominance and overdominance models are widespread in the transcriptional and post-transcriptional regulation of genes involved in growth, metabolism, immunity, and antioxidant capacity in hybrid tilapia. Moreover, potential negative regulation networks between DEMs and predicted target DEGs revealed that most DEGs from miRNA-mRNA pairs are up-regulated. Dominance and overdominance models in levels of transcriptome and miRNAome facilitate the integration of advantageous parental alleles into hybrids, contributing to heterosis of growth and improved survival. The present study provides new insights into molecular heterosis in hybrid tilapia, advancing our understanding of the complex mechanisms involved in this phenomenon in aquatic animals.
Collapse
Affiliation(s)
- Wei Xiao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Binglin Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
| | - Zhiying Zou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
| | - Dayu Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jinglin Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jie Yu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Hong Yang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| |
Collapse
|
6
|
Integration of miRNA-mRNA co-expression network reveals potential regulation of miRNAs in hypothalamus from sterile triploid crucian carp. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
7
|
Liu X, Hérault F, Diot C, Corre E. Development of a relevant strategy using de novo transcriptome assembly method for transcriptome comparisons between Muscovy and common duck species and their reciprocal inter-specific mule and hinny hybrids fed ad libitum and overfed. BMC Genomics 2020; 21:687. [PMID: 33008290 PMCID: PMC7531116 DOI: 10.1186/s12864-020-07099-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/23/2020] [Indexed: 12/01/2022] Open
Abstract
Background Common Pekin and Muscovy ducks and their intergeneric hinny and mule hybrids have different abilities for fatty liver production. RNA-Seq analyses from the liver of these different genetic types fed ad libitum or overfed would help to identify genes with different response to overfeeding between them. However RNA-seq analyses from different species and comparison is challenging. The goal of this study was develop a relevant strategy for transcriptome analysis and comparison between different species. Results Transcriptomes were first assembled with a reference-based approach. Important mapping biases were observed when heterologous mapping were conducted on common duck reference genome, suggesting that this reference-based strategy was not suited to compare the four different genetic types. De novo transcriptome assemblies were then performed using Trinity and Oases. Assemblies of transcriptomes were not relevant when more than a single genetic type was considered. Finally, single genetic type transcriptomes were assembled with DRAP in a mega-transcriptome. No bias was observed when reads from the different genetic types were mapped on this mega-transcriptome and differences in gene expression between the four genetic types could be identified. Conclusions Analyses using both reference-based and de novo transcriptome assemblies point out a good performance of the de novo approach for the analysis of gene expression in different species. It also allowed the identification of differences in responses to overfeeding between Pekin and Muscovy ducks and hinny and mule hybrids.
Collapse
Affiliation(s)
- Xi Liu
- ABiMS Bioinformatics Facility, CNRS, Sorbonne Université, FR2424, Station Biologique, 29680, Roscoff, France
| | - Frédéric Hérault
- UMR PEGASE, INRAE, Institut Agro, 16 Le Clos, 35590, Saint-Gilles, France
| | - Christian Diot
- UMR PEGASE, INRAE, Institut Agro, 16 Le Clos, 35590, Saint-Gilles, France.
| | - Erwan Corre
- ABiMS Bioinformatics Facility, CNRS, Sorbonne Université, FR2424, Station Biologique, 29680, Roscoff, France.
| |
Collapse
|
8
|
Wan Z, Tang J, Ren L, Xiao Y, Liu S. Optimization Techniques to Deeply Mine the Transcriptomic Profile of the Sub-Genomes in Hybrid Fish Lineage. Front Genet 2019; 10:911. [PMID: 31737028 PMCID: PMC6833921 DOI: 10.3389/fgene.2019.00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
It has been shown that reciprocal cross allodiploid lineage with sub-genomes derived from the cross of Megalobrama amblycephala (BSB) × Culter alburnus (TC) generates the variations in phenotypes and genotypes, but it is still a challenge to deeply mine biological information in the transcriptomic profile of this lineage owing to its genomic complexity and lack of efficient data mining methods. In this paper, we establish an optimization model by non-negative matrix factorization approach for deeply mining the transcriptomic profile of the sub-genomes in hybrid fish lineage. A new so-called spectral conjugate gradient algorithm is developed to solve a sequence of large-scale subproblems such that the original complicated model can be efficiently solved. It is shown that the proposed method can provide a satisfactory result of taxonomy for the hybrid fish lineage such that their genetic characteristics are revealed, even for the samples with larger detection errors. Particularly, highly expressed shared genes are found for each class of the fish. The hybrid progeny of TC and BSB displays significant hybrid characteristics. The third generation of TC-BSB hybrid progeny (BTF3 and TBF3) shows larger trait separation.
Collapse
Affiliation(s)
- Zhong Wan
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Jiayi Tang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Ren L, Li W, Qin Q, Dai H, Han F, Xiao J, Gao X, Cui J, Wu C, Yan X, Wang G, Liu G, Liu J, Li J, Wan Z, Yang C, Zhang C, Tao M, Wang J, Luo K, Wang S, Hu F, Zhao R, Li X, Liu M, Zheng H, Zhou R, Shu Y, Wang Y, Liu Q, Tang C, Duan W, Liu S. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus. Genome Res 2019; 29:1805-1815. [PMID: 31649058 PMCID: PMC6836732 DOI: 10.1101/gr.249805.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022]
Abstract
Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaojing Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jia Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jiaming Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhong Wan
- School of Mathematics and Statistics, Central South University, Changsha 410083, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qinfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wei Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Zhang G, Li J, Zhang J, Liang X, Zhang X, Wang T, Yin S. Integrated Analysis of Transcriptomic, miRNA and Proteomic Changes of a Novel Hybrid Yellow Catfish Uncovers Key Roles for miRNAs in Heterosis. Mol Cell Proteomics 2019; 18:1437-1453. [PMID: 31092672 PMCID: PMC6601203 DOI: 10.1074/mcp.ra118.001297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/09/2019] [Indexed: 01/14/2023] Open
Abstract
Heterosis is a complex biological phenomenon in which hybridization produces offspring that exhibit superior phenotypic characteristics compared with the parents. Heterosis is widely utilized in agriculture, for example in fish farming; however, its underlying molecular basis remains elusive. To gain a comprehensive and unbiased molecular understanding of fish heterosis, we analyzed the mRNA, miRNA, and proteomes of the livers of three catfish species, Pelteobagrus fulvidraco, P. vachelli, and their hybrid, the hybrid yellow catfish "Huangyou-1" (P. fulvidraco ♀ × P. vachelli ♂). Using next-generation sequencing and mass spectrometry, we show that the nonadditive, homoeolog expression bias and expression level dominance pattern were readily identified at the transcriptional, post-transcriptional, or protein levels, providing the evidence for the widespread presence of dominant models during hybridization. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and PRM assays. Furthermore, several diverse key pathways were identified, including immune defense, metabolism, digestion and absorption, and cell proliferation and development, suggesting the vital mechanisms involved in the generation of the heterosis phenotype in progenies. We propose that the high parental expression of genes/proteins (growth, nutrition, feeding, and disease resistance) coupled with low parental miRNAs of the offspring, are inherited from the mother or father, thus indicating that the offspring were enriched with the advantages of the father or mother. We provide new and important information about the molecular mechanisms of heterosis, which represents a significant step toward a more complete elucidation of this phenomenon.
Collapse
Affiliation(s)
- Guosong Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Jie Li
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Jiajia Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Xia Liang
- §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Xinyu Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Tao Wang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Shaowu Yin
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China.
| |
Collapse
|
11
|
Establishment and application of distant hybridization technology in fish. SCIENCE CHINA-LIFE SCIENCES 2018; 62:22-45. [DOI: 10.1007/s11427-018-9408-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
|
12
|
Li W, Liu J, Tan H, Yang C, Ren L, Liu Q, Wang S, Hu F, Xiao J, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Genetic Effects on the Gut Microbiota Assemblages of Hybrid Fish From Parents With Different Feeding Habits. Front Microbiol 2018; 9:2972. [PMID: 30564218 PMCID: PMC6288232 DOI: 10.3389/fmicb.2018.02972] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota play critical roles in host nutrition and metabolism. However, little is known about the genetic effects on the gut microbiota assemblages because a suitable model for investigation is lacking. In the present study, we established the reciprocal hybrid fish lineages derived from the parents with different feeding habits, namely, herbivorous blunt snout bream (Megalobrama amblycephala, BSB, 2n = 48) and carnivorous topmouth culter (Culter alburnus, TC, 2n = 48). We investigated the genetic effects on gut microbiota assemblages by using 16S rRNA gene sequencing. The results showed that the gut characteristics (structure, relative gut length, relative gut mass, and Zihler’s index) differed between the two types of hybrids and the two parents. In particular, a strong correlation between genotype and gut microbial assemblages indicated that host genetic (subgenome) significantly altered the gut microbial communities. In addition, the microbial structures (composition and abundance) in the two types of hybrids were more similar to those in BSB parent (P > 0.05) than to those in TC parent (P < 0.05), and the cellulase contents in the gut (produced by gut microbes) also showed the similar results. The results suggested that the host genomic interaction (mainly subgenome domination) had a sizeable effect on shaping the gut microbiota assemblages in reciprocal hybrid fish. This study enriches our understanding of the relationship between host genetic and gut microbiota assemblages, and provides insight into gut microbiota and metabonomics.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Bandi S, Gupta S, Tchaikovskaya T, Gupta S. Differentiation in stem/progenitor cells along fetal or adult hepatic stages requires transcriptional regulators independently of oscillations in microRNA expression. Exp Cell Res 2018; 370:1-12. [PMID: 29883712 DOI: 10.1016/j.yexcr.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Understanding mechanisms in lineage differentiation is critical for organ development, pathophysiology and oncogenesis. To determine whether microRNAs (miRNA) may serve as drivers or adjuncts in hepatic differentiation, we studied human embryonic stem cell-derived hepatocytes and primary hepatocytes representing fetal or adult stages. Model systems were used for hepatic lineage advancement or regression under culture conditions with molecular assays. Profiles of miRNA in primary fetal and adult hepatocytes shared similarities and distinctions from pluripotent stem cells or stem cell-derived early fetal-like hepatocytes. During phenotypic regression in fetal or adult hepatocytes, miRNA profiles oscillated to regain stemness-associated features that had not been extinguished in stem cell-derived fetal-like hepatocytes. These oscillations in stemness-associated features were not altered in fetal-like hepatocytes by inhibitory mimics for dominantly-expressed miRNA, such as hsa-miR-99b, -100, -214 and -221/222. The stem cell-derived fetal-like hepatocytes were permissive for miRNA characterizing mature hepatocytes, including mimics for hsa-miR-122, -126, -192, -194 and -26b, although transfections of the latter did not advance hepatic differentiation. Examination of genome-wide mRNA expression profiles in stem cell-derived or primary fetal hepatocytes indicated targets of highly abundant miRNA regulated general processes, e.g., cell survival, growth and proliferation, functional maintenance, etc., without directing cell differentiation. Among upstream regulators of gene networks in stem cell-derived hepatocytes included HNF4A, SNAI1, and others, which affect transcriptional circuits directing lineage development or maintenance. Therefore, miRNA expression oscillated in response to microenvironmental conditions, whereas lineage-specific transcriptional regulators, such as HNF4A, were necessary for directing hepatic differentiation. This knowledge will be helpful for understanding the contribution of stem cells in pathophysiological states and oncogenesis, as well as for applications of stem cell-derived hepatocytes.
Collapse
Affiliation(s)
- Sriram Bandi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sanchit Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, United States; The Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States; The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
14
|
Ren L, Cui J, Wang J, Tan H, Li W, Tang C, Qin Q, Liu S. Analyzing homoeolog expression provides insights into the rediploidization event in gynogenetic hybrids of Carassius auratus red var. × Cyprinus carpio. Sci Rep 2017; 7:13679. [PMID: 29057976 PMCID: PMC5651915 DOI: 10.1038/s41598-017-14084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022] Open
Abstract
Rediploidization is considered to be a part of the evolutionary history of allotetraploids, and resulted in the emergence of novel epigenetic regulatory activities. To study the changing patterns of gene expression following the reduction of a genome by 50%, we used RNA-seq and quantitative real-time PCR (qPCR) to investigate total gene expression and homoeolog expression in three hybrids of a C. auratus red var. (2n = 100, ♀) (R) and C. carpio (2n = 100, ♂) (C) (i.e., F1, F18, and G4) and their original parents. A comparison of homoeolog expression between G4 and F18 identified 7 genes (0.22%) that exhibited novel R/C homoeolog expression patterns in G4, while 4 genes (0.12%) were affected by R/C homoeolog silencing. We determined the direction and extent of the homoeolog expression bias (HEB). The C-HEB genes (i.e., nrp1a and igf1) and R-HEB genes (i.e., fgf23 and esm1) provided insights into the effects of the dominance of one parental homoeolog expression on growth regulation. This dominance may contribute to the rapid growth of G4 fish. Our findings may be relevant for clarifying the relationship between growth heterosis and differences in homoeolog expression patterns.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
15
|
Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep 2016; 6:27040. [PMID: 27265401 PMCID: PMC4893626 DOI: 10.1038/srep27040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/12/2016] [Indexed: 11/09/2022] Open
Abstract
Hybridization and polyploidization are considered important driving forces that form new epigenetic regulations. To study the changing patterns of expression accompanying hybridization and polyploidization, we used RNA-seq and qRT-PCR to investigate global expression and homoeologue expression in diploid and tetraploid hybrids of Carassius auratus red var. (♀) (R) and Cyprinus carpio (♂) (C). By comparing the relative expression levels between the hybrids and their parents, we defined the expression level dominance (ELD) and homoeologue expression bias (HEB) in liver tissue. The results showed that polyploidization contributed to the conversion of homoeologue ELD. In addition, hybridization had more effect on the change in HEB than polyploidization, while polyploidization had more effect on the change of global gene expression than hybridization. Meanwhile, similar expression patterns were found in growth-related genes. The results suggested that hybridization and polyploidization result in differential degrees of maternal HEB in three tissues (liver, muscle and ovary) tested. The results of this study will increase our understanding of the underlying regulation mechanism of rapid growth in diploid hybrids and allotetraploids. The differential degrees of global expression and homoeologue expression contribute to growth heterosis in newly formed hybrids, ensuring the on-going success of allotetraploid speciation.
Collapse
|