1
|
Zhang JJ, Cheng L, Qiao Q, Xiao XL, Lin SJ, He YF, Sha RL, Sha J, Ma Y, Zhang HL, Ye XR. Adenosine triphosphate-induced cell death in heart failure: Is there a link? World J Cardiol 2025; 17:105021. [PMID: 40308621 PMCID: PMC12038699 DOI: 10.4330/wjc.v17.i4.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025] Open
Abstract
Heart failure (HF) has emerged as one of the foremost global health threats due to its intricate pathophysiological mechanisms and multifactorial etiology. Adenosine triphosphate (ATP)-induced cell death represents a novel form of regulated cell deaths, marked by cellular energy depletion and metabolic dysregulation stemming from excessive ATP accumulation, identifying its uniqueness compared to other cell death processes modalities such as programmed cell death and necrosis. Growing evidence suggests that ATP-induced cell death (AICD) is predominantly governed by various biological pathways, including energy metabolism, redox homeostasis and intracellular calcium equilibrium. Recent research has shown that AICD is crucial in HF induced by pathological conditions like myocardial infarction, ischemia-reperfusion injury, and chemotherapy. Thus, it is essential to investigate the function of AICD in the pathogenesis of HF, as this may provide a foundation for the development of targeted therapies and novel treatment strategies. This review synthesizes current advancements in understanding the link between AICD and HF, while further elucidating its involvement in cardiac remodeling and HF progression.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| | - Lu Cheng
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| | - Qian Qiao
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| | - Xue-Liang Xiao
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Shao-Jun Lin
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Yue-Fang He
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Ren-Luo Sha
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Jun Sha
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Yin Ma
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia.
| | - Xue-Rui Ye
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| |
Collapse
|
2
|
Jiang W, Pang X, Ha P, Li C, Chang GX, Zhang Y, Bossong LA, Ting K, Soo C, Zheng Z. Fibromodulin selectively accelerates myofibroblast apoptosis in cutaneous wounds by enhancing interleukin 1β signaling. Nat Commun 2025; 16:3499. [PMID: 40221432 PMCID: PMC11993684 DOI: 10.1038/s41467-025-58906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Activated myofibroblasts deposit extracellular matrix material to facilitate rapid wound closure that can heal scarlessly during fetal development. However, adult myofibroblasts exhibit a relatively long life and persistent function, resulting in scarring. Thus, understanding how fetal and adult tissue regeneration differs may serve to identify factors that promote more optimal wound healing in adults with little or less scarring. We previously found that matricellular proteoglycan fibromodulin is one such factor promoting more optimal repair, but the underlying molecular and cellular mechanisms for these effects have not been fully elucidated. Here, we find that fibromodulin induces myofibroblast apoptosis after wound closure to reduce scarring in small and large animal models. Mechanistically, fibromodulin accelerates and prolongs the formation of the interleukin 1β-interleukin 1 receptor type 1-interleukin 1 receptor accessory protein ternary complex to increase the apoptosis of myofibroblasts and keloid- and hypertrophic scar-derived cells. As the persistence of myofibroblasts during tissue regeneration is a key cause of fibrosis in most organs, fibromodulin represents a promising, broad-spectrum anti-fibrotic therapeutic.
Collapse
Affiliation(s)
- Wenlu Jiang
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral, Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Pin Ha
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Grace Xinlian Chang
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral, Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Lawrence A Bossong
- Department of Neuroscience, Princeton University, Princeton, NJ, 08540, USA
| | - Kang Ting
- American Dental Association Forsyth Institute, Cambridge, MA, 02142, USA.
- School of Dentistry, National Yang-Ming Chiao Tung University, Taipei, 30010, Taiwan.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhong Zheng
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
4
|
Du Y, Cao Y, Song W, Wang X, Yu Q, Peng X, Zhao R. Role of the P2X7 receptor in breast cancer progression. Purinergic Signal 2024:10.1007/s11302-024-10039-6. [PMID: 39039304 DOI: 10.1007/s11302-024-10039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanan Du
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Yahui Cao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Wei Song
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xin Wang
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Qingqing Yu
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| |
Collapse
|
5
|
Hu QY, Hu J, Li H, Fang X, Sun ZJ, Xu Z, Zhang L. Anti-inflammatory and antioxidant effects of rhein loaded nanomicelles in periodontitis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
7
|
Sadiq U, Gill H, Chandrapala J. Temperature and pH Stability of Anthraquinones from Native Aloe vera Gel, Spray-Dried and Freeze-Dried Aloe vera Powders during Storage. Foods 2022; 11:foods11111613. [PMID: 35681363 PMCID: PMC9180388 DOI: 10.3390/foods11111613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
The present study explored the stability of extracted anthraquinones (aloin, aloe-emodin and rhein) from whole-leaf Aloe vera gel (WLAG), its freeze-dried powder (FDP) and spray-dried powder (SDP) under varying pH and temperature conditions during storage. Each anthraquinone behaved differently under different processing parameters. The amount of anthraquinones present in the gel was higher than in FDP and SDP. The aloin contents decreased by more than 50% at 50 °C and 70 °C, while at 25 °C and 4 °C, the decrease was moderate. A substantial reduction in aloin concentration was noticed at pH 6.7, whereas it remained unaffected at pH 3.5. The temperature and pH had no significant effect on the stability of aloe-emodin. Interestingly, a small quantity of rhein was detected during storage due to the oxidative degradation of aloin into aloe-emodin and rhein. These findings can provide significant insight into retaining anthraquinones during processing while developing functional foods and nutraceuticals to obtain maximum health benefits.
Collapse
|
8
|
Eugenia sulcata (Myrtaceae) Nanoemulsion Enhances the Inhibitory Activity of the Essential Oil on P2X7R and Inflammatory Response In Vivo. Pharmaceutics 2022; 14:pharmaceutics14050911. [PMID: 35631497 PMCID: PMC9148016 DOI: 10.3390/pharmaceutics14050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
P2X7R is a purinergic receptor with broad expression throughout the body, especially in immune system cells. P2X7R activation causes inflammatory mediators to release, including interleukin-1β (IL-1β), the processing and release of which are critically dependent on this ion channel activation. P2X7R’s therapeutic potential augments the discovery of new antagonistic compounds. Thus, we investigated whether the Eugenia sulcata essential oil could block P2X7R activity. The essential oil (ESO) dose-dependently inhibited ATP-promoted PI uptake and IL-1β release with an IC50 of 113.3 ± 3.7 ng/mL and 274 ± 91 ng/mL, respectively, and the essential oil nanoemulsion (ESON) improved the ESO inhibitory effect with an IC50 of 81.4 ± 7.2 ng/mL and 62 ± 2 ng/mL, respectively. ESO and ESON reversed the carrageenan-activated peritonitis in mice, and ESON exhibited an efficacy higher than ESO. The majority substance from essential oil, β-caryophyllene, impaired the ATP-evoked PI uptake and IL-1β release with an IC50 value of 26 ± 0.007 ng/mL and 97 ± 0.012 ng/mL, respectively. Additionally, β-caryophyllene reduced carrageenan-induced peritonitis, and the molecular modeling and computational simulation predicted the intermolecular interactions in the P2X7R situs. In silico, results indicated β-caryophyllene as a potent allosteric P2X7R antagonist, although this substance may present toxic effects for humans. These data confirm the nanoemulsion of essential oil from E. sulcata as a promisor biotechnology strategy for impaired P2X7R functions and the inflammatory response.
Collapse
|
9
|
Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo. Biomed Pharmacother 2021; 142:112006. [PMID: 34392085 DOI: 10.1016/j.biopha.2021.112006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-β (IL-1β) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.
Collapse
|
10
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Wang H, Yang D, Li L, Yang S, Du G, Lu Y. Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:445-452. [PMID: 33128198 PMCID: PMC7648819 DOI: 10.1007/s13659-020-00272-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/12/2020] [Indexed: 05/11/2023]
Abstract
Inflammation is a defensive response of living tissues to damaging agents, which exists in two forms, acute inflammation and chronic inflammation, and chronic inflammation is closely related to arthritis. Currently, the commonly prescribed anti-inflammatory medications are greatly limited by high incidence of gastrointestinal erosions in the clinical applications. Rhein, a bioactive constituent of anthraquinone, exhibits excellent anti-inflammatory activities and therapeutic effects on arthritis with less gastrointestinal damages. Although there are numbers of studies on anti-inflammatory effects and mechanisms of rhein in the last few decades, to the best of our knowledge, only a few review articles pay attention to the interactive relationships of rhein on multiple inflammatory signaling pathways and cellular processes from a comprehensive perspective. Herein, we summarized anti-inflammatory effects and mechanisms of rhein and its practical applications in the treatment of arthritis, thereby providing a reference for its basic researches and clinical applications.
Collapse
Affiliation(s)
- Hongjuan Wang
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dezhi Yang
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shiying Yang
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb. Biomed Pharmacother 2020; 129:110433. [PMID: 32768936 DOI: 10.1016/j.biopha.2020.110433] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease associated with high morbidity and mortality, is characterized by the accumulation of foam cells in the arterial wall. It has long been acknowledged that the formation of foam cells is caused by excess lipid uptake and abnormal cholesterol metabolism function. And increasing evidence shows that inhibiting foam cell formation is a promising way to suppress the development of atherosclerotic lesions. In addition to excess foam cells accumulation, inflammation is another major contributor of atherosclerotic lesions. Recently, macrophage polarization has been demonstrated to play a vital role in the regulation of inflammatory response. Generally, macrophages mainly polarized into two phenotypes: either classically activated pro-inflammatory M1 or alternatively activated anti-inflammatory M2. And targeting macrophage polarization has been considered as a feasible approach to prevent the development of atherosclerosis. At present, the anti-atherosclerosis drugs mainly classified into two types: lipid-lowering drugs and anti-inflammatory drugs. A large part of those drugs belong to western medicine, and various side effects are unavoidable. Interestingly, in recent years, Traditional Chinese medicine has attracted growing attention because of its good efficacy and low negative effects. Rhubarb (called Da Huang in Chinese) is a famous folk medicine with a wide spectrum of pharmacological effects, such as lipid-lowering and anti-inflammatory effects. In this review, we summarized current findings about the regulatory effects of Rhubarb on foam cell formation and macrophage polarization, with emphasis on the molecular mechanisms of action that have been revealed during the past two decades, to better understand its pivotal role in the treatment and prevention of atherosclerosis.
Collapse
|
14
|
Linden J, Koch-Nolte F, Dahl G. Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu Rev Immunol 2019; 37:325-347. [PMID: 30676821 DOI: 10.1146/annurev-immunol-051116-052406] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.
Collapse
Affiliation(s)
- Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California 92037, USA; .,Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany;
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA;
| |
Collapse
|
15
|
Leeson HC, Kasherman MA, Chan-Ling T, Lovelace MD, Brownlie JC, Toppinen KM, Gu BJ, Weible MW. P2X7 Receptors Regulate Phagocytosis and Proliferation in Adult Hippocampal and SVZ Neural Progenitor Cells: Implications for Inflammation in Neurogenesis. Stem Cells 2018; 36:1764-1777. [PMID: 30068016 PMCID: PMC6635745 DOI: 10.1002/stem.2894] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022]
Abstract
Identifying the signaling mechanisms that regulate adult neurogenesis is essential to understanding how the brain may respond to neuro‐inflammatory events. P2X7 receptors can regulate pro‐inflammatory responses, and in addition to their role as cation channels they can trigger cell death and mediate phagocytosis. How P2X7 receptors may regulate adult neurogenesis is currently unclear. Here, neural progenitor cells (NPCs) derived from adult murine hippocampal subgranular (SGZ) and cerebral subventricular (SVZ) zones were utilized to characterize the roles of P2X7 in adult neurogenesis, and assess the effects of high extracellular ATP, characteristic of inflammation, on NPCs. Immunocytochemistry found NPCs in vivo and in vitro expressed P2X7, and the activity of P2X7 in culture was demonstrated using calcium influx and pore formation assays. Live cell and confocal microscopy, in conjunction with flow cytometry, revealed P2X7+ NPCs were able to phagocytose fluorescent beads, and this was inhibited by ATP, indicative of P2X7 involvement. Furthermore, P2X7 receptors were activated with ATP or BzATP, and 5‐ethynyl‐2′‐deoxyuridine (EdU) used to observe a dose‐dependent decrease in NPC proliferation. A role for P2X7 in decreased NPC proliferation was confirmed using chemical inhibition and NPCs from P2X7−/− mice. Together, these data present three distinct roles for P2X7 during adult neurogenesis, depending on extracellular ATP concentrations: (a) P2X7 receptors can form transmembrane pores leading to cell death, (b) P2X7 receptors can regulate rates of proliferation, likely via calcium signaling, and (c) P2X7 can function as scavenger receptors in the absence of ATP, allowing NPCs to phagocytose apoptotic NPCs during neurogenesis. stem cells2018;36:1764–1777
Collapse
Affiliation(s)
- Hannah C Leeson
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Maria A Kasherman
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tailoi Chan-Ling
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael D Lovelace
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales Medicine, UNSW, Sydney, Sydney, New South Wales, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Kelly M Toppinen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Weible
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.,School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Amici SA, Young NA, Narvaez-Miranda J, Jablonski KA, Arcos J, Rosas L, Papenfuss TL, Torrelles JB, Jarjour WN, Guerau-de-Arellano M. CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions. Front Immunol 2018; 9:1593. [PMID: 30042766 PMCID: PMC6048227 DOI: 10.3389/fimmu.2018.01593] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.
Collapse
Affiliation(s)
- Stephanie A Amici
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Nicholas A Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Janiret Narvaez-Miranda
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Kyle A Jablonski
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Lucia Rosas
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Tracey L Papenfuss
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Wu YP, Deng J, Ouyang SH, Mao ZF, Wang GE, Kurihara H, He RR, Li YF. Immune regulation effect of lienal polypeptides extract in Lewis lung carcinoma-bearing mice treated with cyclophosphamide. Exp Biol Med (Maywood) 2017; 243:66-77. [PMID: 29078731 DOI: 10.1177/1535370217737982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polypeptides extracted from animal immune organs have been proved to exert immunomodulatory activities in previous reports. However, relative experimental data regarding the influence of a polypeptide mixture extracted from healthy calf spleen (lienal polypeptide [LP]) on the immune function in tumor therapy are limited, and the components in LP remain unclear. In the present study, the immune regulatory effect of LP was investigated in normal mice and Lewis lung carcinoma (LLC)-bearing mice treated with cyclophosphamide (CTX). The components of LP were identified by liquid chromatography-electrospray ionization-coupled with tandem mass spectrometry (LC-MS/MS) analysis and bioinformatic analysis. In LLC-bearing mice, LP showed a synergic antitumor effect with CTX, whereas LP alone did not present direct antitumor activity. Further, LP was found to enhance immune organ indexes, splenocyte number, and T lymphocyte subsets in normal mice and LLC-bearing mice treated with CTX. The decline of white blood cell and platelet counts, splenocyte proliferation activity, and peritoneal macrophage phagocytic function caused by CTX were also significantly suppressed by LP treatment in LLC-bearing mice. Notably, LP treatment significantly decreased the expression of phagocytosis-related proteins including CD47/signal regulatory protein α/Src homology phosphatase-1 in the tumor tissue of LLC-bearing mice treated with CTX. LC-MS/MS-based peptidomics unraveled the main polypeptides in LP with a length from 8 to 25 amino acids. Bioinformatics analysis further confirmed the possibility of LP to regulate immunity, especially in phagocytosis-related pathway. Our above findings indicated that LP can relieve the immunosuppression induced by chemotherapy and is a beneficial supplement in cancer therapy. Impact statement The immunomodulatory activities of polypeptides extracted from animal immune organs have incurred people's interests since a long time ago. In this study, we investigated the immune regulation effects of a polypeptide mixture extracted from health calf spleen (lienal polypeptide [LP]) in Lewis lung carcinoma-bearing mice treated with cyclophosphamide (CTX). Liquid chromatography-electrospray ionization-coupled with tandem mass spectrometry-based peptidomics and bioinformatics analysis unraveled the main polypeptides in LP and further confirmed that LP is mainly associated with immune regulating pathway, especially in tumor cell phagocytosis-related pathway. Our study for the first time revealed that polypeptides from spleen can relieve the immunosuppression induced by CTX and is a beneficial supplement in cancer therapy.
Collapse
Affiliation(s)
- Yan-Ping Wu
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Deng
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shu-Hua Ouyang
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhong-Fu Mao
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guo-En Wang
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- 1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China.,2 Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
In-vitro assessment of antimicrobial properties and lymphocytotoxicity assay of benzoisochromanequinones polyketide from Streptomyces sp JRG-04. Microb Pathog 2017; 110:117-127. [DOI: 10.1016/j.micpath.2017.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/11/2017] [Accepted: 06/22/2017] [Indexed: 11/21/2022]
|
19
|
Jia Z, Yang C, Jiao J, Li X, Zhu D, Yang Y, Yang J, Che Y, Lu Y, Feng X. Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications. ACTA ACUST UNITED AC 2017; 12:045004. [PMID: 28425918 DOI: 10.1088/1748-605x/aa6e27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A major issue in bone tissue engineering is the selection of biocompatible materials for implants, to reduce unwanted inflammatory reactions and promote cell adhesion. Bone tissue growth on suitable biomedical implants can shorten recovery and hospitalization after surgery. Therefore, a method to improve tissue-implant integration and healing would be of scientific and clinical interest. In this work, we permeated polydimethylsiloxane (PDMS) into carbon/carbon (C/C) composites (PDMS-C/C) and then coated it with 4,5-dihydroxyanthraquinone-2-carboxylic acid (rhein) to create rhein-PDMS-C/C to increase its biocompatibility and reduce the occurrence of inflammatory reactions. We measured in vitro adhesion and proliferation of MC3T3-E1 cells and bacteria to evaluate the biocompatibility and antimicrobial properties of C/C, PDMS-C/C, and rhein-PDMS-C/C. In vivo, x-ray and micro-CT evaluation three, six and nine weeks after surgery revealed that rhein-PDMS-C/C was more effective than PDMS-C/C and C/C composite in terms of antibacterial activity, cell adhesion and tissue growth. Compared with C/C and PDMS-C/C, rhein-PDMS-C/C could be suitable for clinical applications for bone tissue engineering.
Collapse
Affiliation(s)
- Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu X, Ren J, Chen G, Wu L, Song X, Li G, Deng Y, Wang G, Gu G, Li J. Systemic blockade of P2X7 receptor protects against sepsis-induced intestinal barrier disruption. Sci Rep 2017; 7:4364. [PMID: 28663567 PMCID: PMC5491531 DOI: 10.1038/s41598-017-04231-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
Sepsis, during which the intestinal epithelial barrier is frequently disrupted, remains a challenging and life-threatening problem in clinical practice. The P2X7 receptor (P2X7R) is a non-selective adenosine triphosphate-gated cation channel present in macrophages that is involved in inflammatory responses. However, little is known about the role of P2X7R in macrophages during sepsis-induced intestinal barrier disruption. In this study, mice were treated with the P2X7R antagonist A740003 or the agonist BzATP by intra-peritoneal injection after the induction of gut-origin sepsis. The survival rates, inflammatory responses, intestinal barrier integrity, macrophage marker expression, and ERK and NF-κB activities were evaluated. Intestinal macrophages were also isolated and studied after exposure to Brilliant Blue G or BzATP. We found that a systemic P2X7R blockade downregulated sepsis-induced inflammatory responses and attenuated intestinal barrier dysfunction based on the evidence that mice in the A740003-treated group exhibited alleviated pro-inflammatory cytokine synthesis, intestinal hyperpermeability, epithelial apoptosis rates and tight junction damage compared with the septic mice. These changes were partly mediated by the inhibition of M1 macrophages activation via ERK/NF-κB pathways. Our data presented herein show that a P2X7R blockade could be a potential therapeutic target for the treatment of sepsis-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Guopu Chen
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xian Song
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guanwei Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Youming Deng
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gefei Wang
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guosheng Gu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Xu X, Lv H, Xia Z, Fan R, Zhang C, Wang Y, Wang D. Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. Altern Ther Health Med 2017; 17:140. [PMID: 28264680 PMCID: PMC5340037 DOI: 10.1186/s12906-017-1655-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
Background The brain is secondarily harmed by pathological, physiological, and biological reactions that are caused by traumatic brain injury (TBI). Rhein, a significant composition of Rhubarb, is a well-known traditional Chinese treatment method and has a strong oxidation-resisting characteristic, but Rhein’s mechanism remains unclear. Methods This study aimed to identify Rhein in the brain tissues of TBI model of rats, and confirm whether Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb. First, the ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was applied to identify Rhein in the brain tissue of the controlled cortical impact (CCI) rats after intra-gastric administration of Rhubarb. Further, for the purpose of calculating the oxidant stress of the CCI rats, the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione disulfide (GSSG), as well as the proportion of glutathione (GSH)/GSSG were measured in the brain tissues. Results The results showed that Rhein was absorbed in the brain tissues of CCI rats. Rhubarb and rhein elevated the SOD, CAT activities, GSH level, and GSH/GSSG ratio, and diminished the MDA and GSSG levels. Conclusion The data demonstrated that Rhubarb and Rhein had the potential to be used as a neuroprotective drug for TBI, and that Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb.
Collapse
|
22
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|