1
|
Shiekh Suliman N, Talaei-Hassanloui R, Abachi H, Zarei S, Osdaghi E. Taxonomic refinement of Bacillus thuringiensis. Front Microbiol 2025; 16:1518307. [PMID: 39990150 PMCID: PMC11843730 DOI: 10.3389/fmicb.2025.1518307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Bacillus thuringiensis is the most important biological control agent against various agricultural pests. The bacterium taxonomically belongs to the Bacillus cereus group, which also contains human pathogenic species, e.g., Bacillus anthracis. Thus, precise identification and taxonomic delineation of candidate strains for agricultural usage is of high importance in terms of both public health and biosecurity. By October 2023, whole genome sequences (WGS) of 885 bacterial strains were labeled as B. thuringiensis in the NCBI GenBank database. This study investigates the taxonomic authenticity of those strains using DNA similarity indexes, i.e., average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). All strains were compared with the type strain of B. thuringiensis ATCC 10972T. WGS-based phylotaxonomic investigations showed that out of 885 strains 803 strains authentically belonged to B. thuringiensis while 82 strains were mislabeled as B. thuringiensis having dDDH and ANI values less than the acceptable threshold of 70 and 95% respectively, for prokaryotic species definition in comparison with the B. thuringiensis type strain. Among these 82 mislabeled strains, 39 strains need to be reclassified within the B. cereus group in the species B. anthracis (33 strains), Bacillus toyonensis (five strains), and Bacillus mycoides (one strain). Furthermore, four strains were identified as Bacillus tropicus while one strain belonged to each of the species Bacillus licheniformis, Bacillus paranthracis, and Bacillus weidmannii. The remaining 36 strains did not match with any known Bacillus species nor the species of other bacterial genera, thus they could be assigned to hypothetical new species. Results of the present study, on the one hand, pave the way of comprehensive taxonomic refinements within B. thuringiensis species. On the other hand, highlight the role of taxonomic investigations in targeting authentic B. thuringiensis strains for biological control purposes.
Collapse
Affiliation(s)
- Nagham Shiekh Suliman
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Sadegh Zarei
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
Allende A, Alvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, Dohmen W, Guillier L, Jacxsens L, Nauta M, Mughini‐Gras L, Ottoson J, Peixe L, Perez‐Rodriguez F, Skandamis P, Suffredini E, Chemaly M, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L, Suarez JE, Sundh I, Botteon A, Fulvio B, Correia S, Herman L. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 21: Suitability of taxonomic units notified to EFSA until September 2024. EFSA J 2025; 23:e9169. [PMID: 39834754 PMCID: PMC11744300 DOI: 10.2903/j.efsa.2025.9169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TUs). The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms. Of 54 microorganisms notified to EFSA between April and September 2024 (33 as feed additives, 17 as food enzymes or additives, 4 as novel foods), 50 were not evaluated because: 12 were filamentous fungi, 1 was Enterococcus faecium and 8 were Escherichia coli (all excluded from the QPS evaluation), and 29 were TUs that already have a QPS status. One notification (Ensifer adhaerens) was already evaluated in a previous Panel Statement. Another notification (Enterococcus lactis) was already evaluated in the previous 3-year QPS cycle and was reassessed within this document. Two TUs were notified for the first time and were assessed for a possible QPS status: Serratia plymuthica and Lacticaseibacillus huelsenbergensis. Bacillus thuringiensis and Bacillus nakamurai have been assessed for a possible QPS status in response to internal requests. The following was concluded on the five assessed TUs. L. huelsenbergensis can be granted the QPS status based on its close relatedness to several other QPS Lacticaseibacillus species. E. lactis is not recommended for the QPS status due to insufficient information on safety. S. plymuthica and B. thuringiensis are not recommended for the QPS status due to safety concerns. B. nakamurai cannot be recommended for the QPS list due to a lack of body of knowledge for its use in the food and feed chain.
Collapse
|
3
|
Yılmaz S, Idris AB, Ayvaz A, Temizgül R, Çetin A, Hassan MA. Genome mining of Bacillus thuringiensis strain SY49.1 reveals novel candidate pesticidal and bioactive compounds. PEST MANAGEMENT SCIENCE 2025; 81:298-307. [PMID: 39324581 PMCID: PMC11632210 DOI: 10.1002/ps.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Bacillus thuringiensis SY49.1 (Bt SY49.1) strain has promising insecticidal and fungicidal activity against phytopathogens and pests. Therefore, we selected this strain for whole-genome sequencing (WGS), annotation and analysis, with the aim of identifying genes responsible for producing putative pesticidal toxins, antimicrobial metabolites and plant growth-promoting features. RESULTS Our results showed that the SY49.1 genome is 6. 32 Mbp long with a GC content of 34.68%. Genome mining revealed the presence of multiple gene inventories for the biosynthesis of bioactive compounds such as insecticidal delta endotoxins, secondary metabolites, and several plant growth-promoting proteins. Multiple sequence alignment revealed residue variations in the toxic core of Cry1Ab when compared with known Cry1Ab sequences from Bt nomenclature databases. This suggests that the cry1Ab of SY49.1 is a new kind of its group. Among the predicted secondary metabolites, we found a kurstakin with a predicted peptide that differs from the known kurstakin peptide available in the NORINE database. In addition, lipopeptides extracted from SY49.1 suppressed the growth of Verticillium dahliae and Fusarium oxysporum. CONCLUSION We anticipate that the complete genome of Bt SY49.1 may provide a model for properly understanding and studying antimicrobial compound mining, genetic diversity among the B. cereus group, and pathogenicity against insects. This is the first report on the WGS and mining of the Bt strain isolated from Turkey. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
| | - Abeer Babiker Idris
- Department of Agricultural Sciences and Technologies, Graduate School of Natural and Applied SciencesErciyes UniversityKayseriTurkey
| | - Abdurrahman Ayvaz
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Rıdvan Temizgül
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Aysun Çetin
- Department of Medical Biochemistry, Faculty of MedicineErciyes UniversityKayseriTurkey
| | - Mohammed A Hassan
- Department of BioinformaticsAfrica City of TechnologyKhartoumSudan
- Sanimed international lab and management l.l.CAbu DhabiUAE
| |
Collapse
|
4
|
Singh RP, Sinha A, Deb S, Kumari K. First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium Acinetobacter pittii S-30, isolated from environmental sample. Front Microbiol 2024; 15:1351161. [PMID: 38741743 PMCID: PMC11089254 DOI: 10.3389/fmicb.2024.1351161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
A newly isolated bacterium Acinetobacter pittii S-30 was recovered from waste-contaminated soil in Ranchi, India. The isolated bacterium belongs to the ESKAPE organisms which represent the major nosocomial pathogens that exhibit high antibiotic resistance. Furthermore, average nucleotide identity (ANI) analysis also showed its closest match (>95%) to other A. pittii genomes. The isolate showed metal-resistant behavior and was able to survive up to 5 mM of ZnSO4. Whole genome sequencing and annotations revealed the occurrence of various genes involved in stress protection, motility, and metabolism of aromatic compounds. Moreover, genome annotation identified the gene clusters involved in secondary metabolite production (biosynthetic gene clusters) such as arylpolyene, acinetobactin like NRP-metallophore, betalactone, and hserlactone-NRPS cluster. The metabolic potential of A. pittii S-30 based on cluster of orthologous, and Kyoto Encyclopedia of Genes and Genomes indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux systems etc., which is relatively rare in A. pittii strains. Additionally, the presence of various carbohydrate-active enzymes such as glycoside hydrolases (GHs), glycosyltransferases (GTs), and other genes associated with lignocellulose breakdown suggests that strain S-30 has strong biomass degradation potential. Furthermore, an analysis of genetic diversity and recombination in A. pittii strains was performed to understand the population expansion hypothesis of A. pittii strains. To our knowledge, this is the first report demonstrating the detailed genomic characterization of a heavy metal-resistant bacterium belonging to A. pittii. Therefore, the A. pittii S-30 could be a good candidate for the promotion of plant growth and other biotechnological applications.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
5
|
Alves GB, Lemes TSO, Pereira EJG, Jurat-Fuentes JL, Smagghe G, Santos GR, Haddi K, Corrêa RFT, Melo FL, Jumbo LOV, Oliveira EE, Peron AJ, Ribeiro BM, Aguiar RWS. Draft genome of neotropical Bacillus thuringiensis UFT038 and its potential against lepidopteran soybean pests. Folia Microbiol (Praha) 2024; 69:91-99. [PMID: 38017300 DOI: 10.1007/s12223-023-01114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.
Collapse
Affiliation(s)
- Giselly B Alves
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Timóteo S O Lemes
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Eliseu J G Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Gil R Santos
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Khalid Haddi
- Departamento de Entomologia, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil
| | - Roberto F T Corrêa
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Luis O Viteri Jumbo
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
- Carrera de Agronomía, Universidad Nacional de Loja (UNL), Loja, 110103, Ecuador
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Antônio J Peron
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Raimundo W S Aguiar
- Departamento de Biotecnologia, Universidade Federal de Tocantins, Gurupi, TO, 77413-070, Brazil.
| |
Collapse
|
6
|
Berçot MR, Queiroz PRM, Grynberg P, Togawa R, Martins ÉS, Rocha GT, Monnerat RG. Distribution and Genetic Diversity of Genes from Brazilian Bacillus thuringiensis Strains Toxic to Agricultural Insect Pests Revealed by Real-Time PCR. MICROBIAL ECOLOGY 2023; 86:2515-2526. [PMID: 37392204 DOI: 10.1007/s00248-023-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.
Collapse
Affiliation(s)
- Marcelo Rodrigues Berçot
- Entompathogenic Bacteria Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | | | - Priscila Grynberg
- Bioinformatics Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | - Roberto Togawa
- Bioinformatics Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | - Érica Soares Martins
- Distrito Federal State Department of Education (SEEDF), SBN Quadra 02 Bloco C, Edifício Phenícia, CEP: 70040-020, Brazil
| | - Gabriela Teodoro Rocha
- Entompathogenic Bacteria Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| | - Rose Gomes Monnerat
- Entompathogenic Bacteria Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília, DF-CEP, 70770-917, Brazil
| |
Collapse
|
7
|
Alves GB, de Oliveira EE, Jumbo LOV, dos Santos GR, dos Santos MM, Ootani MA, Ribeiro BM, Aguiar RWDS. Genomic–proteomic analysis of a novel Bacillus thuringiensis strain: toxicity against two lepidopteran pests, abundance of Cry1Ac5 toxin, and presence of InhA1 virulence factor. Arch Microbiol 2023; 205:143. [PMID: 36967401 DOI: 10.1007/s00203-023-03479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/28/2023]
Abstract
Bacillus thuringiensis (Bt) is a biological alternative to the indiscriminate use of chemical insecticides in agriculture. Due to resistance development on insect pests to Bt crops, isolating novel Bt strains is a strategy for screening new pesticidal proteins or strains containing toxin profile variety that can delay resistance. Besides, the combined genomic and proteomic approaches allow identifying pesticidal proteins and virulence factors accurately. Here, the genome of a novel Bt strain (Bt TOL651) was sequenced, and the proteins from the spore-crystal mixture were identified by proteomic analysis. Toxicity bioassays with the spore-crystal mixture against larvae of Diatraea saccharalis and Anticarsia gemmatalis, key pests of sugarcane and soybean, respectively, were performed. The toxicity of Bt TOL651 varies with the insect; A. gemmatalis (LC50 = 1.45 ng cm-2) is more susceptible than D. saccharalis (LC50 = 73.77 ng cm-2). Phylogenetic analysis of the gyrB gene indicates that TOL651 is related to Bt kenyae strains. The genomic analysis revealed the presence of cry1Aa18, cry1Ac5, cry1Ia44, and cry2Aa9 pesticidal genes. Virulence factor genes such as phospholipases (plcA, piplc), metalloproteases (inhA), hemolysins (cytK, hlyIII, hblA, hblC, hblD), and enterotoxins (nheA, nheB, nheC) were also identified. The combined use of the genomic and proteomic data indicated the expression of Cry1Aa18, Cry1Ac5, and Cry2Aa9 proteins, with Cry1Ac5 being the most abundant. InhA1 also was expressed and may contribute to Bt TOL651 pathogenicity. These results provide Bt TOL651 as a new tool for the biocontrol of lepidopteran pests.
Collapse
|
8
|
Rabha M, Das D, Konwar T, Acharjee S, Sarmah BK. Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil. BMC Microbiol 2023; 23:91. [PMID: 37003972 PMCID: PMC10064770 DOI: 10.1186/s12866-023-02821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a gram-positive ubiquitous saprophytic bacterium that produces proteins (Crystal protein, Vegetative insecticidal protein, and Secreted insecticidal protein) toxic to insects during its growth cycle. In the present study, the whole genome of a locally isolated B. thuringiensis strain BA04 was sequenced to explore the genetic makeup and to identify the genes responsible to produce insecticidal proteins including the virulence factors. The strain was isolated from the soil sample of the Kaziranga National Park, Assam, North-Eastern part of India (Latitude: 26°34'39.11''N and Longitude: 93°10'16.04''E). RESULTS The whole genome sequencing (WGS) of the BA04 strain revealed that it has a circular genome of size 6,113,005 bp with four numbers of plasmids. A total of 6,111 genes including two novel crystal protein-encoding genes (MH753362.1 and MH753363.1) were identified. The BLASTn analysis of MH753362.1 showed 84% similarities (maximum identity) with Cry1Ia (KJ710646.1) gene, whereas MH753363.1 exhibited 66% identity with Insecticidal Crystal Protein (ICP)-6 gene (KM053257.1). At the protein level, MH753362.1 and MH753363.1 shared 79% identity with Cry1Ia (AIW52613.1) and 40% identity with Insecticidal Crystal Protein (ICP)-6 (AJW76687.1) respectively. Three-dimensional structures of these two novel protein sequences revealed that MH753362.1 have 48% structural similarity with Cry8ea1 protein, whereas MH753363.1 showed only 20% structural similarity with Cry4Aa protein. Apart from these insecticidal genes, the strain was also found to contain virulence and virulence-associated factors including the antibiotic resistance genes and Clustered regularly interspaced short palindromic repeat (CRISPR) sequences. CONCLUSION This is the first report on the whole genome sequence of Bt strain BA04 isolated from Assam, a North-Eastern state of India. The WGS of strain BA04 unveils the presence of two novel types of insecticidal crystal protein-encoding genes which can be used for the development of insect-resistant transgenic crops. Additionally, the strain could be used for the formulations of effective biopesticides. The WGS provides the fastest and cheapest platform for a better understanding of the genetic makeup of a strain and helps to explore the role of virulence genes in pathogenicity against the insect host.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Silkworm Pathology Section, Central Sericultural Research and Training Institute, Central Silk Board, Ministry of Textile, Govt of India, Berhampore, West Bengal, 7421 01, India
| | - Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Trishna Konwar
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| |
Collapse
|
9
|
Fichant A, Felten A, Gallet A, Firmesse O, Bonis M. Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods 2022; 11:foods11233924. [PMID: 36496733 PMCID: PMC9739007 DOI: 10.3390/foods11233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Arnaud Felten
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
10
|
Zhu L, Chu Y, Zhang B, Yuan X, Wang K, Liu Z, Sun M. Creation of an Industrial Bacillus thuringiensis Strain With High Melanin Production and UV Tolerance by Gene Editing. Front Microbiol 2022; 13:913715. [PMID: 35935220 PMCID: PMC9355638 DOI: 10.3389/fmicb.2022.913715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis produces insecticidal crystal proteins (ICPs) which exhibit strong insecticidal toxicity. But when used in the field, ICPs would be destroyed by ultraviolet (UV) radiation in sunlight, thus decreasing the insecticidal activity and shortening the persistence. To improve the duration of B. thuringiensis preparations, we endowed a highly toxic industrial B. thuringiensis HD-1 with UV tolerance by making it produce melanin, a pigment that absorbs UV radiation. In B. thuringiensis, melanin is derived from homogentisate (HGA), an intermediate in the tyrosine pathway. And the absence of homogentisate-1,2-dioxygenase (HmgA) will lead to the formation of melanin. In this study, we used the CRISPR/Cas9 system to knock out the hmgA gene and obtained a melanin-producing mutant HD-1-ΔhmgA from strain HD-1. The melanin yield by mutant HD-1-ΔhmgA reached 3.60 mg/mL. And the anti-UV test showed that melanin serves as a protection to both the organism and the ICPs. After UV irradiation for 3 h, mutant HD-1-ΔhmgA still had an 80% insecticidal activity against the cotton bollworm, Helicoverpa armigera, while the control line only had about 20%. This study creates a light-stable biopesticide prototype based on a classic industrial strain that can be applied directly and takes the melanin-producing strain as a concept to improve the preparation validity.
Collapse
Affiliation(s)
- Lingyi Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yawen Chu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Shuiguohu Senior High School, Wuhan, China
| | - Bowen Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ximu Yuan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kai Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Ming Sun
| |
Collapse
|
11
|
Expression of the Bacillus thuringiensis vip3A Insecticidal Toxin Gene Is Activated at the Onset of Stationary Phase by VipR, an Autoregulated Transcription Factor. Microbiol Spectr 2022; 10:e0120522. [PMID: 35727045 PMCID: PMC9430311 DOI: 10.1128/spectrum.01205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Vegetative insecticidal protein Vip3A is produced by some Bacillus thuringiensis strains from the mid-log growth phase to sporulation. Although Vip3A is important for the entomopathogenicity of B. thuringiensis, the vip3A gene regulation is unknown. In the B. thuringiensis serovar kurstaki HD1 strain, vip3A is carried by the pBMB299 plasmid, which is absent in the closely related strain B. thuringiensis kurstaki HD73. Using a transcriptional fusion between the vip3A promoter and lacZ, we observed that the HD73 strain is unable to express vip3A. This result suggests that a specific regulator is required for vip3A expression. Assuming that the regulator gene is located on the same plasmid as vip3A, we transferred pBMB299 from the HD1 strain to the HD73 strain. We found that Vip3A was produced in the HD73 strain containing pBMB299, suggesting that the regulator gene is located on this plasmid. Using this heterologous host and promoter-lacZ transcription fusions, we showed that a specific regulator, VipR, is essential to activate vip3A expression at the onset of stationary phase. We demonstrated that vipR transcription is positively autoregulated and the determination of the vipR and vip3A promoters pinpointed a putative VipR target upstream from the Sigma A-specific −10 region of these two promoters. Surprisingly, this conserved sequence was also found upstream of cry1I and cry2 genes. Finally, we showed that vip3A and vipR expression is increased drastically in a Δspo0A mutant unable to initiate sporulation. In conclusion, we have characterized a novel regulator involved in the entomopathogenic potency of B. thuringiensis through a sporulation-independent pathway. IMPORTANCE The insecticidal properties of Bacillus thuringiensis are due mainly to Cry toxins which form a crystalline inclusion during sporulation. However, other proteins participate in the pathogenicity of the bacterium, notably, the Vip3A toxins that are produced from vegetative growth to sporulation. The VipR regulator that activates vip3A gene expression at the onset of stationary phase is positively autoregulated, and an analysis of the promoter region of the vip3A and vipR genes reveals the presence of a highly conserved DNA sequence. This possible VipR target sequence is also found upstream of the cry2A and cry1I genes, suggesting that Cry toxins can be produced before the bacteria enter sporulation. Such a result could allow us to better understand the role of Cry and Vip3A toxins during the B. thuringiensis infectious cycle in insects, in addition to the primary role of the Cry toxins in the toxemia caused by ingestion of crystals.
Collapse
|
12
|
Ortiz-Rodríguez T, Mendoza-Acosta F, Martínez-Zavala SA, Salcedo-Hernández R, Casados-Vázquez LE, Bideshi DK, Barboza-Corona JE. Thurincin H Is a Nonhemolytic Bacteriocin of Bacillus thuringiensis with Potential for Applied Use. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09952-2. [PMID: 35610496 DOI: 10.1007/s12602-022-09952-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Thurincin H, a bacteriocin produced by Bacillus thuringiensis, exhibits antibacterial activity against Gram-positive and Gram-negative bacteria. While much is known about its expression and antimicrobial spectrum, its hemolytic property has yet to be established. In this study, thurincin H was produced in a plasmid-free acrystalliferous strain of B. thuringiensis (Bt Cry-B) that naturally lacked antimicrobial and hemolytic activities. When grown in Tryptic Soy Broth (TSB), the bacteriocin's maximal production in Bt Cry-B harboring the thurincin H genetic cluster (Bt Cry-B/pThur) was observed at 24 h. Thurincin H was purified as a sole peptide of ~5 kDa using three purification steps, i.e., salt precipitation, ultrafiltration, and gel filtration chromatography. The bacteriocin showed inhibitory activity against B. cereus (5631 U), Bt Cry-B (8827 U), E. faecium wild type (11,197 U), and E. faecium ATCC 19,434 (6950 U), but not against Bt Cry-B/pThurH and Bt Cry-B/pThurHΔThnA. In addition, a minimum inhibitory concentration (MIC) of 5.0 μg/mL against B. cereus 183 was observed. In silico predictions suggested that thuricin H lacks hemolytic activity, which was validated in vitro using 4 × the MIC, i.e., 20 μg/ml. Our data lay a foundation for the potential safe use of thurincin H as an antibacterial peptide for medical use, in food products, and for expression in probiotic bacteria.
Collapse
Affiliation(s)
- Tomás Ortiz-Rodríguez
- Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México
| | - Fernanda Mendoza-Acosta
- Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México
| | - Sheila A Martínez-Zavala
- Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México
| | - Rubén Salcedo-Hernández
- Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México.,Departamento de Alimentos, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México
| | - Luz E Casados-Vázquez
- Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México.,Departamento de Alimentos, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México.,CONACYT- Universidad de Guanajuato, Campus Irapuato-Salamanca, Irapuato, Guanajuato, 36500, México
| | - Dennis K Bideshi
- Department of Biological Sciences, California Baptist University, 8432 Magnolia Avenue, Riverside, CA, 92504, USA
| | - José E Barboza-Corona
- Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México. .,Departamento de Alimentos, Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Irapuato, Guanajuato, 36500, México.
| |
Collapse
|
13
|
Li Y, Zhao D, Wu H, Ji Y, Liu Z, Guo X, Guo W, Bi Y. Bt GS57 Interaction With Gut Microbiota Accelerates Spodoptera exigua Mortality. Front Microbiol 2022; 13:835227. [PMID: 35401496 PMCID: PMC8989089 DOI: 10.3389/fmicb.2022.835227] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
The Beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae, Spodoptera) is an important global polyphagous pest. Pathogen infection could destroy the intestinal microbial homeostasis of insects, leading to the death of the host. However, the effect of the host intestinal microbial community on the insecticidal effect of Bacillus thuringiensis is rarely studied. In this study, the genome characteristics of Bt GS57 and the diversity and functions of the gut bacteria in S. exigua are investigated using crystal morphology, biological activity, and Illumina HiSeq high-throughput sequencing. The total size of the Bt GS57 genome is 6.17 Mbp with an average G + C content of 35.66%. Furthermore, the Bt GS57 genome contains six cry genes: cry1Ca, cry1Da, cry2Ab, cry9Ea, cry1Ia, and cry1Aa, and a vegetative insecticidal protein gene vip3Aa. The Bt GS57 strain can produce biconical crystals, mainly expressing 70 kDa and 130 kDa crystal proteins. The LC50 value of the Bt GS57 strain against the S. exigua larvae was 0.339 mg mL–1. Physiological and biochemical reactions showed that Bt GS57 belongs to B.t. var. thuringiensis. In addition, we found that B. thuringiensis can cause a dynamic change in the gut microbiota of S. exigua, with a significant reduction in bacterial diversity and a substantial increase in bacterial load. In turn, loss of gut microbiota significantly decreased the B. thuringiensis susceptibility of S. exigua larvae. Our findings reveal the vital contribution of the gut microbiota in B. thuringiensis-killing activity, providing new insights into the mechanisms of B. thuringiensis pathogenesis in insects.
Collapse
Affiliation(s)
- Yazi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaorui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaochang Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wei Guo,
| | - Yang Bi
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
14
|
Zheng Z, Lan X, Wang Q, Zhang C, Huang G, Zhang J, Wang H. Draft Genome Sequence of Bacillus thuringiensis ZZQ-130 with Multiple Pesticidal Genes, Isolated from Caka Salt Lake, China. Microbiol Resour Announc 2022; 11:e0088721. [PMID: 35142556 PMCID: PMC8830341 DOI: 10.1128/mra.00887-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is a typical pesticide, with global application for over 40 years. Here, we report the draft genome sequence of B. thuringiensis ZZQ-130 from a salt lake; this strain has 31 pesticidal genes, including five cry genes, one vip gene, two vpa genes, and two vpb genes.
Collapse
Affiliation(s)
- Ziqiang Zheng
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Xinjiang, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaojie Lan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Qi Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chengjun Zhang
- Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoqiang Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Xinjiang, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
15
|
Bianco A, Capozzi L, Monno MR, Del Sambro L, Manzulli V, Pesole G, Loconsole D, Parisi A. Characterization of Bacillus cereus Group Isolates From Human Bacteremia by Whole-Genome Sequencing. Front Microbiol 2021; 11:599524. [PMID: 33510722 PMCID: PMC7835510 DOI: 10.3389/fmicb.2020.599524] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Members of the Bacillus cereus group are spore-forming organisms commonly associated with food poisoning and intestinal infections. Moreover, some strains of the group (i.e., B. cereus sensu stricto and Bacillus thuringiensis) can cause bacteremia in humans, mainly in immunocompromised individuals. Here we performed the genetic characterization of 17 human clinical strains belonging to B. cereus group isolated from blood culture. The whole-genome sequencing (WGS) revealed that the isolates were closely related to B. cereus sensu stricto and B. thuringiensis-type strain. Multilocus sequence typing analysis performed on the draft genome revealed the genetic diversity of our isolates, which were assigned to different sequence types. Based on panC nucleotide sequence, the isolates were grouped in the phylogenetic groups III and IV. The NHE, cer, and inhA gene cluster, entA, entFM, plcA, and plcB, were the most commonly detected virulence genes. Although we did not assess the ability to generate biofilm by phenotypic tests, we verified the prevalence of biofilm associated genes using an in silico approach. A high prevalence of pur gene cluster, xerC, clpY, codY, tasA, sipW, sinI, and sigB genes, was found. Genes related to the resistance to penicillin, trimethoprim, and ceftriaxone were identified in most of the isolates. Intriguingly, the majority of these virulence and AMR genes appeared to be evenly distributed among B. cereus s.s. isolates, as well as closely related to B. thuringiensis isolates. We showed the WGS represents a good approach to rapidly characterize B. cereus group strains, being able to give useful information about genetic epidemiology, the presence of virulence and antimicrobial genes, and finally about the potential hazard related to this underestimated risk.
Collapse
Affiliation(s)
- Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Maria Rosa Monno
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari "A. Moro", Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council and Consorzio Interuniversitario Biotecnologie, Bari, Italy
| | - Daniela Loconsole
- Department of Biomedical Sciences and Human Oncology, Hygiene Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
16
|
Jalali E, Maghsoudi S, Noroozian E. Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method. Sci Rep 2020; 10:20633. [PMID: 33244110 PMCID: PMC7691366 DOI: 10.1038/s41598-020-77721-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/17/2020] [Indexed: 11/12/2022] Open
Abstract
An encapsulated formulation of Bacillus thuringiensis (Bt) was produced by the Pickering emulsion technique to improve its activity and stability under UV-A radiation. In this technique latex particles, GO nanosheets, olive oil, ethanol, and water were used to encapsulate Bt in colloidosomes. The protective efficacy of this formulation in protecting Bt subsp. Kurstaki against deactivation by UV-A irradiation was measured, so that spore viability and mortality on Ephestia kuehniella (E. kuehniella) Zeller larvae under UV-A radiation are investigated. According to the results of both tests, encapsulated formulation at a concentration of 0.045% has the highest protection of viability. Hence, colloidosome microcapsule formulations successfully provide good protection against UV radiation.
Collapse
Affiliation(s)
- Elham Jalali
- Department of Chemistry, Shahid Bahonar University of Kerman, P.O. Box 76169-133, Kerman, Iran.,Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran
| | - Shahab Maghsoudi
- Department of Chemistry, Shahid Bahonar University of Kerman, P.O. Box 76169-133, Kerman, Iran.
| | - Ebrahim Noroozian
- Department of Chemistry, Shahid Bahonar University of Kerman, P.O. Box 76169-133, Kerman, Iran
| |
Collapse
|
17
|
Genomics and Proteomics Analyses Revealed Novel Candidate Pesticidal Proteins in a Lepidopteran-Toxic Bacillus thuringiensis Strain. Toxins (Basel) 2020; 12:toxins12110673. [PMID: 33114565 PMCID: PMC7693509 DOI: 10.3390/toxins12110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Discovery and identification of novel insecticidal proteins in Bacillus thuringiensis (Bt) strains are of crucial importance for efficient biological control of pests and better management of insect resistance. In this study, the Bt strain KhF, toxic for Plodia interpunctella and Grapholita molesta larvae, underwent genomics and proteomics analyses to achieve a better understanding of the bases of its pathogenicity. The whole-genome sequencing results revealed that the KhF strain contained nine coding sequences with homologies to Bt insecticidal genes. The lepidopteran toxic mixture of spores and crystals of this Bt strain was subjected to liquid chromatography and tandem mass spectrometry (LC-MS/MS) to assess the protein composition. The results of the proteomic analyses, combined with the toxin gene sequences, revealed that two of the main components of the crystals were two new candidate pesticidal proteins, named KhFA and KhFB. These proteins showed a similarity lower than 36% to the other known Bt toxins. The phylogenetic analysis showed that the KhFA and KhFB grouped with the newly denominated Xpp and Mpp (former ETX/Mtx) pesticidal protein groups, respectively. Altogether, this study has led to the discovery of two novel candidate pesticidal toxins in the lepidopteran toxic KhF strain.
Collapse
|
18
|
Zheng Z, Zhang Y, Liu Z, Dong Z, Xie C, Bravo A, Soberón M, Mahillon J, Sun M, Peng D. The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. THE ISME JOURNAL 2020; 14:1479-1493. [PMID: 32132663 PMCID: PMC7242445 DOI: 10.1038/s41396-020-0623-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
CRISPR-Cas systems are considered as barriers to horizontal gene transfer (HGT). However, the influence of such systems on HGT within species is unclear. Also, little is known about the impact of CRISPR-Cas systems on bacterial evolution at the population level. Here, using Bacillus cereus sensu lato as model, we investigate the interplay between CRISPR-Cas systems and HGT at the population scale. We found that only a small fraction of the strains have CRISPR-Cas systems (13.9% of 1871), and most of such systems are defective based on their gene content analysis. Comparative genomic analysis revealed that the CRISPR-Cas systems are barriers to HGT within this group, since strains harboring active systems contain less mobile genetic elements (MGEs), have lower fraction of unique genes and also display limited environmental distributions than strains without active CRISPR-Cas systems. The introduction of a functional CRISPR-Cas system into a strain lacking the system resulted in reduced adaptability to various stresses and decreased pathogenicity of the transformant strain, indicating that B. cereus group strains could benefit from inactivating such systems. Our work provides a large-scale case to support that the CRISPR-Cas systems are barriers to HGT within species, and that in the B. cereus group the inactivation of CRISPR-Cas systems correlated with acquisition of MGEs that could result in better adaptation to diverse environments.
Collapse
Affiliation(s)
- Ziqiang Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yulan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhiyu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaoxia Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chuanshuai Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud, 2 - L7.05.12, B-1348, Louvain-la-Neuve, Belgium
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
19
|
González-Rizo A, Castañet CE, Companioni A, Menéndez Z, Hernández H, Magdalena-Rodríguez M, Gato R. Effect of Chlorine and Temperature on Larvicidal Activity of Cuban Bacillus thuringiensis Isolates. J Arthropod Borne Dis 2019; 13:39-49. [PMID: 31346534 PMCID: PMC6643015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/08/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The efficacy of biolarvicides may be influenced by species of mosquito, larval age and density, temperature, water quality, bacterial formulation, and others. The aim of this study was to evaluate the influence of temperature and chlorine on larvicidal activity of Bacillus thuringiensis Cuban isolates against Aedes aegypti. METHODS The influence of temperature (25, 30, 35 °C) and chlorine (2.25mg/L) on the larvicidal activity of eleven B. thuringiensis Cuban isolates (collected between 2007 and 2009) were tested under laboratory conditions following WHO protocols. Bioassay data were analyzed by Probit program. The effect of chlorine and temperature (25, 30, 35 and 40 °C) on the Cry and Cyt proteins of these isolates was determined by SDS-PAGE polyacrylamide gel electrophoresis. RESULTS The pathogenicity of the isolates U81, X48 was affected at 35 °C. However, A21, A51, L910, and R89 isolates increase their entomopathogen activity at 35 °C. No differences were observed in toxicity of M29, R84, R85 and R87 isolates at different temperatures. The Cry 4, Cry 10 and Cry 11 proteins were reduced in A21, X48, R85 isolates at 35 and 40 °C. The Cyt proteins were reduced at 35 and 40 °C in A21, X48, R85, and A51 isolates. In L910 and R84 isolates, the Cyt toxin was degraded only at 40 °C. In chlorinated water, the lethal concentrations 50 and 90 in A21, A51, M29, R84, U81, and X48 isolates were increase. CONCLUSION A21, A51, L910, R85, and X48 isolates have a strong larvicidal activity for the treatment of Ae. aegypti breeding's sites exposed to high temperature and chlorine.
Collapse
Affiliation(s)
- Aileen González-Rizo
- Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba,Corresponding author: Dr Aileen González-Rizo, E-mail: ,
| | | | - Ariamys Companioni
- Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba
| | - Zulema Menéndez
- Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba
| | - Hilda Hernández
- Departamento de Parasitología, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba
| | - M Magdalena-Rodríguez
- Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba
| | - Rene Gato
- Departamento Control de Vectores, Centro de Investigación Diagnóstico y Referencia, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba
| |
Collapse
|
20
|
Wan L, Lin J, Du H, Zhang Y, Bravo A, Soberón M, Sun M, Peng D. Bacillus thuringiensistargets the host intestinal epithelial junctions for successful infection ofCaenorhabditis elegans. Environ Microbiol 2019; 21:1086-1098. [DOI: 10.1111/1462-2920.14528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Liting Wan
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Jian Lin
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Hongwen Du
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Alejandra Bravo
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Apdo. postal 510‐3, Cuernavaca, 62250 Morelos Mexico
| | - Mario Soberón
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Apdo. postal 510‐3, Cuernavaca, 62250 Morelos Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| |
Collapse
|
21
|
Zheng D, Zeng Z, Xue B, Deng Y, Sun M, Tang YJ, Ruan L. Bacillus thuringiensis produces the lipopeptide thumolycin to antagonize microbes and nematodes. Microbiol Res 2018; 215:22-28. [DOI: 10.1016/j.micres.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/23/2018] [Accepted: 06/02/2018] [Indexed: 11/28/2022]
|
22
|
Fiedoruk K, Daniluk T, Mahillon J, Leszczynska K, Swiecicka I. Genetic Environment of cry1 Genes Indicates Their Common Origin. Genome Biol Evol 2018; 9:2265-2275. [PMID: 29617829 PMCID: PMC5604178 DOI: 10.1093/gbe/evx165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Although in Bacillus thuringiensis the cry genes coding for the insecticidal crystal proteins are plasmid-borne and are usually associated with mobile genetic elements, several aspects related to their genomic organization, diversification, and transmission remain to be elucidated. Plasmids of B. thuringiensis and other members of the Bacillus cereus group (n = 364) deposited in GenBank were screened for the presence of cry1 genes, and their genetic environment was analyzed using a comparative bioinformatic approach. The cry1 genes were identified in 27 B. thuringiensis plasmids ranging from 64 to 761 kb, and were predominantly associated with the ori44, ori60, or double orf156/orf157 and pXO1-16/pXO1-14 replication systems. In general, the cry1 genes occur individually or as a part of an insecticidal pathogenicity island (PAI), and are preceded by genes coding for an N-acetylmuramoyl-l-alanine amidase and a putative K+(Na+)/H+ antiporter. However, except in the case of the PAI, the latter gene is disrupted by the insertion of IS231B. Similarly, numerous mobile elements were recognized in the region downstream of cry1, except for cry1I that follows cry1A in the PAI. Therefore, the cassette involving cry1 and these two genes, flanked by transposable elements, named as the cry1 cassette, was the smallest cry1-carrying genetic unit recognized in the plasmids. Conservation of the genomic environment of the cry1 genes carried by various plasmids strongly suggests a common origin, possibly from an insecticidal PAI carried by B. thuringiensis megaplasmids.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Poland
- Corresponding author: E-mail:
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Poland
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Izabela Swiecicka
- Department of Microbiology, University of Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Poland
| |
Collapse
|
23
|
Comparative Genomics of Bacillus thuringiensis Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts. mBio 2017; 8:mBio.00822-17. [PMID: 28790205 PMCID: PMC5550751 DOI: 10.1128/mbio.00822-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the genetic basis of host shifts is a key genomic question for pathogen and parasite biology. The Bacillus cereus group, which encompasses Bacillus thuringiensis and Bacillus anthracis, contains pathogens that can infect insects, nematodes, and vertebrates. Since the target range of the essential virulence factors (Cry toxins) and many isolates is well known, this group presents a powerful system for investigating how pathogens can diversify and adapt to phylogenetically distant hosts. Specialization to exploit insects occurs at the level of the major clade and is associated with substantial changes in the core genome, and host switching between insect orders has occurred repeatedly within subclades. The transfer of plasmids with linked cry genes may account for much of the adaptation to particular insect orders, and network analysis implies that host specialization has produced strong associations between key toxin genes with similar targets. Analysis of the distribution of plasmid minireplicons shows that plasmids with orf156 and orf157, which carry genes encoding toxins against Lepidoptera or Diptera, were contained only by B. thuringiensis in the specialized insect clade (clade 2), indicating that tight genome/plasmid associations have been important in adaptation to invertebrate hosts. Moreover, the accumulation of multiple virulence factors on transposable elements suggests that cotransfer of diverse virulence factors is advantageous in terms of expanding the insecticidal spectrum, overcoming insect resistance, or through gains in pathogenicity via synergistic interactions between toxins.IMPORTANCE Population genomics have provided many new insights into the formation, evolution, and dynamics of bacterial pathogens of humans and other higher animals, but these pathogens usually have very narrow host ranges. As a pathogen of insects and nematodes, Bacillus thuringiensis, which produces toxins showing toxicity to many orders of insects and other invertebrates, can be used as a model to study the evolution of pathogens with wide host ranges. Phylogenomic analysis revealed that host specialization and switching occur at the level of the major clade and subclade, respectively. A toxin gene co-occurrence network indicates that multiple toxins with similar targets were accumulated by the same cell in the whole species. This accumulation may be one of the strategies that B. thuringiensis has used to fight against host resistance. This kind of formation and evolution of pathogens represents a different path used against multiple invertebrate hosts from that used against higher animals.
Collapse
|
24
|
Pérez MP, Sauka DH, Onco MI, Berretta MF, Benintende GB. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil ( Anthonomus grandis , Coleoptera: Curculionidae) larvae. Rev Argent Microbiol 2017; 49:264-272. [DOI: 10.1016/j.ram.2016.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
|
25
|
Sauka DH, Benintende GB. Diversity and distribution of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Argentina. Rev Argent Microbiol 2017; 49:273-281. [PMID: 28576334 DOI: 10.1016/j.ram.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 02/01/2017] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
A total of 268 Bacillus thuringiensis strains obtained from different sources of Argentina were analyzed to determine the diversity and distribution of the cry1, cry2, cry8, cry9 and vip3A genes encoding for lepidopteran-specific insecticidal proteins. Twin strains were excluded. Ten different profiles were detected among the 80 selected B. thuringiensis strains. Two of these profiles (cry1Aa, cry1Ac, cry1Ia, cry2Aa, cry2Ab and vip3Aa (35/80), and cry1Aa, cry1Ab, cry1Ac, cry1Ia, cry2Aa, cry2Ab and vip3Aa (25/80)) pooled 75% of the strains. The existence of this low diversity is rare, since in most of the studied collections a great diversity of insecticidal toxin gene profiles has been described. In addition, the most frequently detected profile was also most frequently derived from soil (70%), stored product dust (59%) and spider webs (50%). In contrast, the cry1Aa, cry1Ab, cry1Ac, cry1Ia, cry2Aa, cry2Ab and vip3Aa profiles were mainly detected in strains isolated from leaves (40%) and dead insect larvae (50%). Six of the identified insecticidal toxin gene profiles were discovered in strains isolated from stored product dust and leaves indicating higher diversity of profiles in these kinds of sources than in others. Some strains with high insecticidal activity against Epinotia aporema (Lepidoptera) larvae were identified, which is important to explore future microbial strategies for the control of this crop pest in the region.
Collapse
Affiliation(s)
- Diego H Sauka
- Instituto de Microbiología y Zoología Agrícola INTA, CC No 25 (1712), Castelar, Buenos Aires, Argentina.
| | - Graciela B Benintende
- Instituto de Microbiología y Zoología Agrícola INTA, CC No 25 (1712), Castelar, Buenos Aires, Argentina
| |
Collapse
|
26
|
Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Res Microbiol 2017; 168:309-318. [DOI: 10.1016/j.resmic.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
|
27
|
Djenane Z, Nateche F, Amziane M, Gomis-Cebolla J, El-Aichar F, Khorf H, Ferré J. Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria. Toxins (Basel) 2017; 9:E139. [PMID: 28406460 PMCID: PMC5408213 DOI: 10.3390/toxins9040139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 11/23/2022] Open
Abstract
This work represents the first initiative to analyze the distribution of B. thuringiensis in Algeria and to evaluate the biological potential of the isolates. A total of 157 isolates were recovered, with at least one isolate in 94.4% of the samples. The highest Bt index was found in samples from rhizospheric soil (0.48) and from the Mediterranean area (0.44). Most isolates showed antifungal activity (98.5%), in contrast to the few that had antibacterial activity (29.9%). A high genetic diversity was made evident by the finding of many different crystal shapes and various combinations of shapes within a single isolate (in 58.4% of the isolates). Also, over 50% of the isolates harbored cry1, cry2, or cry9 genes, and 69.3% contained a vip3 gene. A good correlation between the presence of chitinase genes and antifungal activity was observed. More than half of the isolates with a broad spectrum of antifungal activity harbored both endochitinase and exochitinase genes. Interestingly, 15 isolates contained the two chitinase genes and all of the above cry family genes, with some of them harboring a vip3 gene as well. The combination of this large number of genes coding for entomopathogenic proteins suggests a putative wide range of entomotoxic activity.
Collapse
Affiliation(s)
- Zahia Djenane
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
- Department of Science and Technology, Faculty of Science, University Dr Yahia Frès, 26000 Médéa, Algeria.
| | - Farida Nateche
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Meriam Amziane
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Joaquín Gomis-Cebolla
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| | - Fairouz El-Aichar
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Hassiba Khorf
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Juan Ferré
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| |
Collapse
|
28
|
Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 2017; 101:2691-2711. [PMID: 28235989 DOI: 10.1007/s00253-017-8175-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Abstract
Bacillus thuringiensis (Bt) is known as the most successful microbial insecticide against different orders of insect pests in agriculture and medicine. Moreover, Bt toxin genes also have been efficiently used to enhance resistance to insect pests in genetically modified crops. In light of the scientific advantages of new molecular biology technologies, recently, some other new potentials of Bt have been explored. These new environmental features include the toxicity against nematodes, mites, and ticks, antagonistic effects against plant and animal pathogenic bacteria and fungi, plant growth-promoting activities (PGPR), bioremediation of different heavy metals and other pollutants, biosynthesis of metal nanoparticles, production of polyhydroxyalkanoate biopolymer, and anticancer activities (due to parasporins). This review comprehensively describes recent advances in the Bt whole-genome studies, the last updated known Bt toxins and their functions, and application of cry genes in plant genetic engineering. Moreover, the review thoroughly describes the new features of Bt which make it a suitable cell factory that might be used for production of different novel valuable bioproducts.
Collapse
|
29
|
Navas LE, Amadio AF, Ortiz EM, Sauka DH, Benintende GB, Berretta MF, Zandomeni RO. Complete Sequence and Organization of pFR260, the Bacillus thuringiensis INTA Fr7-4 Plasmid Harboring Insecticidal Genes. J Mol Microbiol Biotechnol 2017; 27:43-54. [DOI: 10.1159/000451056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
We report the complete sequence and analysis of pFR260, a novel megaplasmid of 260,595 bp from the <i>Bacillus thuringiensis</i> strain INTA Fr7-4 isolated in Argentina. It carries 7 insecticidal genes: 3 <i>cry8</i> copies previously reported, 2 <i>vip1,</i> and 2 <i>vip2</i>. Also, it carries a gene encoding a putative atypical Cry protein. These genes are arranged in a region of approximately 105 kbp in size with characteristics of a pathogenicity island with a potential coleopteran-specific insecticide profile. DNA strand composition asymmetry, as determined by GC skew analysis, and the presence of a Rep protein involved in the initiation of replication suggest a bidirectional <i>theta</i> mechanism of replication. In addition, many genes involved in conjugation and a CRISPR-Cas system were detected. The pFR260 sequence was deposited in GenBank under accession number KX258624.
Collapse
|
30
|
Du C, Cao S, Shi X, Nie X, Zheng J, Deng Y, Ruan L, Peng D, Sun M. Genetic and Biochemical Characterization of a Gene Operon for trans-Aconitic Acid, a Novel Nematicide from Bacillus thuringiensis. J Biol Chem 2017; 292:3517-3530. [PMID: 28087696 DOI: 10.1074/jbc.m116.762666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/31/2016] [Indexed: 12/31/2022] Open
Abstract
trans-Aconitic acid (TAA) is an isomer of cis-aconitic acid (CAA), an intermediate of the tricarboxylic acid cycle that is synthesized by aconitase. Although TAA production has been detected in bacteria and plants for many years and is known to be a potent inhibitor of aconitase, its biosynthetic origins and the physiological relevance of its activity have remained unclear. We have serendipitously uncovered key information relevant to both of these questions. Specifically, in a search for novel nematicidal factors from Bacillus thuringiensis, a significant nematode pathogen harboring many protein virulence factors, we discovered a high yielding component that showed activity against the plant-parasitic nematode Meloidogyne incognita and surprisingly identified it as TAA. Comparison with CAA, which displayed a much weaker nematicidal effect, suggested that TAA is specifically synthesized by B. thuringiensis as a virulence factor. Analysis of mutants deficient in plasmids that were anticipated to encode virulence factors allowed us to isolate a TAA biosynthesis-related (tbr) operon consisting of two genes, tbrA and tbrB We expressed the corresponding proteins, TbrA and TbrB, and characterized them as an aconitate isomerase and TAA transporter, respectively. Bioinformatics analysis of the TAA biosynthetic gene cluster revealed the association of the TAA genes with transposable elements relevant for horizontal gene transfer as well as a distribution across B. cereus bacteria and other B. thuringiensis strains, suggesting a general role for TAA in the interactions of B. cereus group bacteria with nematode hosts in the soil environment. This study reveals new bioactivity for TAA and the TAA biosynthetic pathway, improving our understanding of virulence factors employed by B. thuringiensis pathogenesis and providing potential implications for nematode management applications.
Collapse
Affiliation(s)
- Cuiying Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Shi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangtao Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Wang Y, Fu J, Zhu Q, Zhu L, Zheng J, Liu H, Peng D, Ruan L, Sun M. Complete genome sequence of Bacillus thuringiensis serovar alesti BGSC 4C1, a typical strain with toxicity to Lepidoptera insects. J Biotechnol 2016; 239:61-64. [DOI: 10.1016/j.jbiotec.2016.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022]
|
32
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
33
|
Wang P, Zhu Y, Zhang Y, Zhang C, Xu J, Deng Y, Peng D, Ruan L, Sun M. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus. Microb Cell Fact 2016; 15:108. [PMID: 27286821 PMCID: PMC4902927 DOI: 10.1186/s12934-016-0492-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022] Open
Abstract
Background Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. Results We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. Conclusion The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0492-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuyang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chunyi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianyi Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|