1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Wong SL, Shih CL, Cho HY, Wu SN. Effective suppression of I h and I Na caused by capsazepine, known to be a blocker of TRPV1 receptor. Brain Res 2024; 1839:149008. [PMID: 38761846 DOI: 10.1016/j.brainres.2024.149008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 μM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.
Collapse
Affiliation(s)
- Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan.
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201 Taiwan.
| |
Collapse
|
3
|
Page DA, Ruben PC. Cannabidiol potentiates hyperpolarization-activated cyclic nucleotide-gated (HCN4) channels. J Gen Physiol 2024; 156:e202313505. [PMID: 38652080 PMCID: PMC11040500 DOI: 10.1085/jgp.202313505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to β-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.
Collapse
Affiliation(s)
- Dana A. Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
4
|
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, Zhang J. Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem 2024; 300:107288. [PMID: 38636662 PMCID: PMC11126801 DOI: 10.1016/j.jbc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.
Collapse
Affiliation(s)
- Bo Yu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiuyuan Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han Hu
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Yuanshuo Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tong Che
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaoguang Hua
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Cuiling Xian
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanyan Li
- Department of Chemical Biology, School of Life Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
6
|
Wang YJ, Yeh CJ, Gao ZH, Hwang E, Chen HH, Wu SN. Inhibitory Perturbations of Fluvastatin on Afterhyperpolarization Current, Erg-mediated K + Current, and Hyperpolarization-activated Cation Current in Both Pituitary GH 3 Cells and Primary Embryonic Mouse Cortical Neurons. Neuroscience 2023; 531:12-23. [PMID: 37661016 DOI: 10.1016/j.neuroscience.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. The whole-cell clamp recordings were applied to evaluate the ionic currents and action potentials of cells. Here, we have demonstrated that FLV can effectively inhibit the amplitude of erg-mediated K+ current (IK(erg)) in pituitary tumor (GH3) cells, with an IC50 of approximately 3.2 µM. In the presence of FLV, the midpoint in the activation curve of IK(erg) was distinctly shifted to a less negative potential by 10 mV, with minimal modification of the gating charge. However, the magnitude of hyperpolarization-activated cation current (Ih) elicited by long-lasting membrane hyperpolarization was progressively decreased, with an IC50 value of 8.7 µM, upon exposure to FLV. More interestingly, we also found that FLV (5 µM) could regulate the action potential and afterhyperpolarization properties in primary embryonic mouse cortical neurons. Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.
Collapse
Affiliation(s)
- Ya-Jean Wang
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu, Taiwan.
| | - Che-Jui Yeh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research and Education, An Nan Hostpial, China Medical University Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
7
|
Handlin LJ, Dai G. Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization. Nat Commun 2023; 14:6595. [PMID: 37852983 PMCID: PMC10584925 DOI: 10.1038/s41467-023-42363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Ion channels function within a membrane environment characterized by dynamic lipid compartmentalization. Limited knowledge exists regarding the response of voltage-gated ion channels to transmembrane potential within distinct membrane compartments. By leveraging fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET), we visualized the localization of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in membrane domains. HCN4 exhibits a greater propensity for incorporation into ordered lipid domains compared to HCN1. To investigate the conformational changes of the S4 helix voltage sensor of HCN channels, we used dual stop-codon suppression to incorporate different noncanonical amino acids, orthogonal click chemistry for site-specific fluorescence labeling, and transition metal FLIM-FRET. Remarkably, altered FRET levels were observed between VSD sites within HCN channels upon disruption of membrane domains. We propose that the voltage-sensor rearrangements, directly influenced by membrane lipid domains, can explain the heightened activity of pacemaker HCN channels when localized in cholesterol-poor, disordered lipid domains, leading to membrane hyperexcitability and diseases.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA.
| |
Collapse
|
8
|
Chen CS, So EC, Wu SN. Modulating Hyperpolarization-Activated Cation Currents through Small Molecule Perturbations: Magnitude and Gating Control. Biomedicines 2023; 11:2177. [PMID: 37626674 PMCID: PMC10452073 DOI: 10.3390/biomedicines11082177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The hyperpolarization-activated cation current (Ih) exhibits a slowly activating time course of the current (Ih) when the cell membrane is hyperpolarized for an extended duration. It is involved in generating electrical activity in various excitable cells. Numerous structurally distinct compounds or herbal drugs have the potential to impact both the magnitude and gating kinetics of this current. Brivaracetam, a chemical analog of levetiracetam known to be a ligand for synaptic vesicle protein 2A, could directly suppress the Ih magnitude. Carisbamate, an anticonvulsant agent, not only inhibited the Ih amplitude but also reduced the strength of voltage-dependent hysteresis (Hys(V)) associated with Ih. Cilobradine, similar to ivabradine, inhibited the amplitude of Ih; however, it also suppressed the amplitude of delayed-rectifier K+ currents. Dexmedetomidine, an agonist of α2-adrenergic receptor, exerted a depressant action on Ih in a concentration-dependent fashion. Suppression of Ih amplitude was observed when GAL-021, a breathing control modulator, was present at a concentration exceeding 30 μM. Lutein, one of the few xanthophyll carotenoids, was able to suppress the Ih amplitude as well as to depress Hys(V)'s strength of Ih. Pirfenidone, a pyridine derivative known to be an anti-fibrotic agent, depressed the Ih magnitude in a concentration- and voltage-dependent fashion. Tramadol, a synthetic centrally active analgesic, was shown to reduce the Ih magnitude, independent of its interaction with opioid receptors. Various herbal drugs, including ent-kaurane-type diterpenoids from Croton tonkinensis, Ganoderma triterpenoids, honokiol, and pterostilbene, demonstrated efficacy in reducing the magnitude of Ih. Conversely, oxaliplatin, a platinum-based chemotherapeutic compound, was observed to effectively increase the Ih amplitude. Collectively, the regulatory effects of these compounds or herbal drugs on cellular function can be partly attributed to their perturbations on Ih.
Collapse
Affiliation(s)
- Cheng-Shih Chen
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan; (C.-S.C.); (E.C.S.)
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan; (C.-S.C.); (E.C.S.)
| | - Sheng-Nan Wu
- School of Medicine, National Sun Yat Sen University College of Medicine, Kaohsiung 804, Taiwan
- Department of Medical Education & Research, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| |
Collapse
|
9
|
Hung TY, Wu SN, Huang CW. Concerted suppressive effects of carisbamate, an anti-epileptic alkyl-carbamate drug, on voltage-gated Na + and hyperpolarization-activated cation currents. Front Cell Neurosci 2023; 17:1159067. [PMID: 37293624 PMCID: PMC10244622 DOI: 10.3389/fncel.2023.1159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Carisbamate (CRS, RWJ-333369) is a new anti-seizure medication. It remains unclear whether and how CRS can perturb the magnitude and/or gating kinetics of membrane ionic currents, despite a few reports demonstrating its ability to suppress voltage-gated Na+ currents. In this study, we observed a set of whole-cell current recordings and found that CRS effectively suppressed the voltage-gated Na+ (INa) and hyperpolarization-activated cation currents (Ih) intrinsically in electrically excitable cells (GH3 cells). The effective IC50 values of CRS for the differential suppression of transient (INa(T)) and late INa (INa(L)) were 56.4 and 11.4 μM, respectively. However, CRS strongly decreased the strength (i.e., Δarea) of the nonlinear window component of INa (INa(W)), which was activated by a short ascending ramp voltage (Vramp); the subsequent addition of deltamethrin (DLT, 10 μM) counteracted the ability of CRS (100 μM, continuous exposure) to suppress INa(W). CRS strikingly decreased the decay time constant of INa(T) evoked during pulse train stimulation; however, the addition of telmisartan (10 μM) effectively attenuated the CRS (30 μM, continuous exposure)-mediated decrease in the decay time constant of the current. During continued exposure to deltamethrin (10 μM), known to be a pyrethroid insecticide, the addition of CRS resulted in differential suppression of the amplitudes of INa(T) and INa(L). The amplitude of Ih activated by a 2-s membrane hyperpolarization was diminished by CRS in a concentration-dependent manner, with an IC50 value of 38 μM. For Ih, CRS altered the steady-state I-V relationship and attenuated the strength of voltage-dependent hysteresis (Hys(V)) activated by an inverted isosceles-triangular Vramp. Moreover, the addition of oxaliplatin effectively reversed the CRS-mediated suppression of Hys(V). The predicted docking interaction between CRS and with a model of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel or between CRS and the hNaV1.7 channel reflects the ability of CRS to bind to amino acid residues in HCN or hNaV1.7 channel via hydrogen bonds and hydrophobic interactions. These findings reveal the propensity of CRS to modify INa(T) and INa(L) differentially and to effectively suppress the magnitude of Ih. INa and Ih are thus potential targets of the actions of CRS in terms of modulating cellular excitability.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Wu SN, Wu CL, Cho HY, Chiang CW. Effective Perturbations by Small-Molecule Modulators on Voltage-Dependent Hysteresis of Transmembrane Ionic Currents. Int J Mol Sci 2022; 23:9453. [PMID: 36012718 PMCID: PMC9408818 DOI: 10.3390/ijms23169453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih's Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih's Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih's Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih's Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Post-Baccalaureate Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
11
|
Chuang CW, Chang KP, Cho HY, Chuang TH, Yu MC, Wu CL, Wu SN. Characterization of Inhibitory Capability on Hyperpolarization-Activated Cation Current Caused by Lutein (β,ε-Carotene-3,3'-Diol), a Dietary Xanthophyll Carotenoid. Int J Mol Sci 2022; 23:7186. [PMID: 35806190 PMCID: PMC9266545 DOI: 10.3390/ijms23137186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lutein (β,ε-carotene-3,3'-diol), a xanthophyll carotenoid, is found in high concentrations in the macula of the human retina. It has been recognized to exert potential effectiveness in antioxidative and anti-inflammatory properties. However, whether and how its modifications on varying types of plasmalemmal ionic currents occur in electrically excitable cells remain incompletely answered. The current hypothesis is that lutein produces any direct adjustments on ionic currents (e.g., hyperpolarization-activated cation current, Ih [or funny current, If]). In the present study, GH3-cell exposure to lutein resulted in a time-, state- and concentration-dependent reduction in Ih amplitude with an IC50 value of 4.1 μM. There was a hyperpolarizing shift along the voltage axis in the steady-state activation curve of Ih in the presence of this compound, despite being void of changes in the gating charge of the curve. Under continued exposure to lutein (3 μM), further addition of oxaliplatin (10 μM) or ivabradine (3 μM) could be effective at either reversing or further decreasing lutein-induced suppression of hyperpolarization-evoked Ih, respectively. The voltage-dependent anti-clockwise hysteresis of Ih responding to long-lasting inverted isosceles-triangular ramp concentration-dependently became diminished by adding this compound. However, the addition of 10 μM lutein caused a mild but significant suppression in the amplitude of erg-mediated or A-type K+ currents. Under current-clamp potential recordings, the sag potential evoked by long-lasting hyperpolarizing current stimulus was reduced under cell exposure to lutein. Altogether, findings from the current observations enabled us to reflect that during cell exposure to lutein used at pharmacologically achievable concentrations, lutein-perturbed inhibition of Ih would be an ionic mechanism underlying its changes in membrane excitability.
Collapse
Affiliation(s)
- Chao-Wei Chuang
- Department of Ophthalmology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan; (C.-W.C.); (K.-P.C.)
| | - Kuo-Pin Chang
- Department of Ophthalmology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan; (C.-W.C.); (K.-P.C.)
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
12
|
Wu CL, Fu P, Cho HY, Chuang TH, Wu SN. Evidence for Dual Activation of IK(M) and IK(Ca) Caused by QO-58 (5-(2,6-Dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one). Int J Mol Sci 2022; 23:7042. [PMID: 35806047 PMCID: PMC9266432 DOI: 10.3390/ijms23137042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one) has been regarded to be an activator of KV7 channels with analgesic properties. However, whether and how the presence of this compound can result in any modifications of other types of membrane ion channels in native cells are not thoroughly investigated. In this study, we investigated its perturbations on M-type K+ current (IK(M)), Ca2+-activated K+ current (IK(Ca)), large-conductance Ca2+-activated K+ (BKCa) channels, and erg-mediated K+ current (IK(erg)) identified from pituitary tumor (GH3) cells. Addition of QO-58 can increase the amplitude of IK(M) and IK(Ca) in a concentration-dependent fashion, with effective EC50 of 3.1 and 4.2 μM, respectively. This compound could shift the activation curve of IK(M) toward a leftward direction with being void of changes in the gating charge. The strength in voltage-dependent hysteresis (Vhys) of IK(M) evoked by upright triangular ramp pulse (Vramp) was enhanced by adding QO-58. The probabilities of M-type K+ (KM) channels that will be open increased upon the exposure to QO-58, although no modification in single-channel conductance was seen. Furthermore, GH3-cell exposure to QO-58 effectively increased the amplitude of IK(Ca) as well as enhanced the activity of BKCa channels. Under inside-out configuration, QO-58, applied at the cytosolic leaflet of the channel, activated BKCa-channel activity, and its increase could be attenuated by further addition of verruculogen, but not by linopirdine (10 μM). The application of QO-58 could lead to a leftward shift in the activation curve of BKCa channels with neither change in the gating charge nor in single-channel conductance. Moreover, cell exposure of QO-58 (10 μM) resulted in a minor suppression of IK(erg) amplitude in response to membrane hyperpolarization. The docking results also revealed that there are possible interactions of the QO-58 molecule with the KCNQ or KCa1.1 channel. Overall, dual activation of IK(M) and IK(Ca) caused by the presence of QO-58 eventually may have high impacts on the functional activity (e.g., anti-nociceptive effect) residing in electrically excitable cells. Care must be exercised when interpreting data generated with QO-58 as it is not entirely KCNQ/KV7 selective.
Collapse
Affiliation(s)
- Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Poyuan Fu
- Department of Ophthalmology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
13
|
Mayar S, Memarpoor-Yazdi M, Makky A, Eslami Sarokhalil R, D'Avanzo N. Direct Regulation of Hyperpolarization-Activated Cyclic-Nucleotide Gated (HCN1) Channels by Cannabinoids. Front Mol Neurosci 2022; 15:848540. [PMID: 35465092 PMCID: PMC9019169 DOI: 10.3389/fnmol.2022.848540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Cannabinoids are a broad class of molecules that act primarily on neurons, affecting pain sensation, appetite, mood, learning, and memory. In addition to interacting with specific cannabinoid receptors (CBRs), cannabinoids can directly modulate the function of various ion channels. Here, we examine whether cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the most prevalent phytocannabinoids in Cannabis sativa, can regulate the function of hyperpolarization-activated cyclic-nucleotide-gated (HCN1) channels independently of CBRs. HCN1 channels were expressed in Xenopus oocytes since they do not express CBRs, and the effects of cannabinoid treatment on HCN1 currents were examined by a two-electrode voltage clamp. We observe opposing effects of CBD and THC on HCN1 current, with CBD acting to stimulate HCN1 function, while THC inhibited current. These effects persist in HCN1 channels lacking the cyclic-nucleotide binding domain (HCN1ΔCNBD). However, changes to membrane fluidity, examined by treating cells with TX-100, inhibited HCN1 current had more pronounced effects on the voltage-dependence and kinetics of activation than THC, suggesting this is not the primary mechanism of HCN1 regulation by cannabinoids. Our findings may contribute to the overall understanding of how cannabinoids may act as promising therapeutic molecules for the treatment of several neurological disorders in which HCN function is disturbed.
Collapse
|
14
|
Claveras Cabezudo A, Feriel Khoualdi A, D’Avanzo N. Computational Prediction of Phosphoinositide Binding to Hyperpolarization-Activated Cyclic-Nucleotide Gated Channels. Front Physiol 2022; 13:859087. [PMID: 35399260 PMCID: PMC8990809 DOI: 10.3389/fphys.2022.859087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Protein-lipid interactions are key regulators of ion channel function. Numerous ion channels, including hyperpolarization-activated cyclic-nucleotide gated (HCN) channels have been shown to be regulated by phosphoinositides (PIPs), with important implications in cardiac and neuronal function. Specifically, PIPs have been shown to enhance HCN activation. Using computational approaches, we aim to identify potential binding sites for HCN1-PIP interactions. Computational docking and coarse-grained simulations indicate that PIP binding to HCN1 channels is not well coordinated, but rather occurs over a broad surface of charged residues primarily in the HCN-domain, S2 and S3 helices that can be loosely organized in 2 or 3 overlapping clusters. Thus, PIP-HCN1 interactions are more resembling of electrostatic interactions that occur in myristoylated alanine-rich C kinase substrate (MARCKS) proteins, than the specifically coordinated interactions that occur in pleckstrin homology domains (PH domains) or ion channels such as inward rectifier potassium (Kir) channels. Our results also indicate that phosphatidylinositol (PI) interactions with HCN1 are even lower affinity, explaining why unphosphorylated PI have no effect on HCN1 activation unlike phosphorylated PIPs.
Collapse
Affiliation(s)
- Ainara Claveras Cabezudo
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Asma Feriel Khoualdi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Nazzareno D’Avanzo
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
16
|
Depuydt AS, Peigneur S, Tytgat J. Review: HCN Channels in the Heart. Curr Cardiol Rev 2022; 18:e040222200836. [PMID: 35125083 PMCID: PMC9893134 DOI: 10.2174/1573403x18666220204142436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Pacemaker cells are the basis of rhythm in the heart. Cardiovascular diseases, and in particular, arrhythmias are a leading cause of hospital admissions and have been implicated as a cause of sudden death. The prevalence of people with arrhythmias will increase in the next years due to an increase in the ageing population and risk factors. The current therapies are limited, have a lot of side effects, and thus, are not ideal. Pacemaker channels, also called hyperpolarizationactivated cyclic nucleotide-gated (HCN) channels, are the molecular correlate of the hyperpolarization- activated current, called Ih (from hyperpolarization) or If (from funny), that contribute crucially to the pacemaker activity in cardiac nodal cells and impulse generation and transmission in neurons. HCN channels have emerged as interesting targets for the development of drugs, in particular, to lower the heart rate. Nonetheless, their pharmacology is still rather poorly explored in comparison to many other voltage-gated ion channels or ligand-gated ion channels. Ivabradine is the first and currently the only clinically approved compound that specifically targets HCN channels. The therapeutic indication of ivabradine is the symptomatic treatment of chronic stable angina pectoris in patients with coronary artery disease with a normal sinus rhythm. Several other pharmacological agents have been shown to exert an effect on heart rate, although this effect is not always desired. This review is focused on the pacemaking process taking place in the heart and summarizes the current knowledge on HCN channels.
Collapse
Affiliation(s)
- Anne-Sophie Depuydt
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| |
Collapse
|
17
|
Cho HY, Chuang TH, Wu SN. Effective Perturbations on the Amplitude and Hysteresis of Erg-Mediated Potassium Current Caused by 1-Octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6(undecyloxy)hexyl]amino]-octanoate (SM-102), a Cationic Lipid. Biomedicines 2021; 9:1367. [PMID: 34680484 PMCID: PMC8533363 DOI: 10.3390/biomedicines9101367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino]-octanoate) is an amino cationic lipid that has been tailored for the formation of lipid nanoparticles and it is one of the essential ingredients present in the ModernaTM COVID-19 vaccine. However, to what extent it may modify varying types of plasmalemmal ionic currents remains largely uncertain. In this study, we investigate the effects of SM-102 on ionic currents either in two types of endocrine cells (e.g., rat pituitary tumor (GH3) cells and mouse Leydig tumor (MA-10) cells) or in microglial (BV2) cells. Hyperpolarization-activated K+ currents in these cells bathed in high-K+, Ca2+-free extracellular solution were examined to assess the effects of SM-102 on the amplitude and hysteresis of the erg-mediated K+ current (IK(erg)). The SM-102 addition was effective at blocking IK(erg) in a concentration-dependent fashion with a half-maximal concentration (IC50) of 108 μM, a value which is similar to the KD value (i.e., 134 μM) required for its accentuation of deactivation time constant of the current. The hysteretic strength of IK(erg) in response to the long-lasting isosceles-triangular ramp pulse was effectively decreased in the presence of SM-102. Cell exposure to TurboFectinTM 8.0 (0.1%, v/v), a transfection reagent, was able to inhibit hyperpolarization-activated IK(erg) effectively with an increase in the deactivation time course of the current. Additionally, in GH3 cells dialyzed with spermine (30 μM), the IK(erg) amplitude progressively decreased; moreover, a further bath application of SM-102 (100 μM) or TurboFectin (0.1%) diminished the current magnitude further. In MA-10 Leydig cells, the IK(erg) was also blocked by the presence of SM-102 or TurboFectin. The IC50 value for SM-102-induced inhibition of IK(erg) in MA-10 cells was 98 μM. In BV2 microglial cells, the amplitude of the inwardly rectifying K+ current was inhibited by SM-102. Taken together, the presence of SM-102 concentration-dependently inhibited IK(erg) in endocrine cells (e.g., GH3 or MA-10 cells), and such action may contribute to their functional activities, assuming that similar in vivo findings exist.
Collapse
Affiliation(s)
- Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
18
|
Lu TL, Lu TJ, Wu SN. Effectiveness in Block by Dexmedetomidine of Hyperpolarization-Activated Cation Current, Independent of Its Agonistic Effect on α 2-Adrenergic Receptors. Int J Mol Sci 2020; 21:9110. [PMID: 33266068 PMCID: PMC7730867 DOI: 10.3390/ijms21239110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dexmedetomidine (DEX), a highly selective agonist of α2-adrenergic receptors, has been tailored for sedation without risk of respiratory depression. Our hypothesis is that DEX produces any direct perturbations on ionic currents (e.g., hyperpolarization-activated cation current, Ih). In this study, addition of DEX to pituitary GH3 cells caused a time- and concentration-dependent reduction in the amplitude of Ih with an IC50 value of 1.21 μM and a KD value of 1.97 μM. A hyperpolarizing shift in the activation curve of Ih by 10 mV was observed in the presence of DEX. The voltage-dependent hysteresis of Ih elicited by long-lasting triangular ramp pulse was also dose-dependently reduced during its presence. In continued presence of DEX (1 μM), further addition of OXAL (10 μM) or replacement with high K+ could reverse DEX-mediated inhibition of Ih, while subsequent addition of yohimbine (10 μM) did not attenuate the inhibitory effect on Ih amplitude. The addition of 3 μM DEX mildly suppressed the amplitude of erg-mediated K+ current. Under current-clamp potential recordings, the exposure to DEX could diminish the firing frequency of spontaneous action potentials. In pheochromocytoma PC12 cells, DEX was effective at suppressing Ih together with a slowing in activation time course of the current. Taken together, findings from this study strongly suggest that during cell exposure to DEX used at clinically relevant concentrations, the DEX-mediated block of Ih appears to be direct and would particularly be one of the ionic mechanisms underlying reduced membrane excitability in the in vivo endocrine or neuroendocrine cells.
Collapse
Affiliation(s)
- Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung City 406040, Taiwan;
| | - Te-Jung Lu
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan City 71703, Taiwan;
| | - Sheng-Nan Wu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, No. 1, University Road, Tainan City 70101, Taiwan
| |
Collapse
|
19
|
Chang WT, Ragazzi E, Liu PY, Wu SN. Effective block by pirfenidone, an antifibrotic pyridone compound (5-methyl-1-phenylpyridin-2[H-1]-one), on hyperpolarization-activated cation current: An additional but distinctive target. Eur J Pharmacol 2020; 882:173237. [PMID: 32525005 PMCID: PMC7276140 DOI: 10.1016/j.ejphar.2020.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Pirfenidone (PFD), a pyridone compound, is well recognized as an antifibrotic agent tailored for the treatment of idiopathic pulmonary fibrosis. Recently, through its anti-inflammatory and anti-oxidant effects, PFD based clinical trial has also been launched for the treatment of coronavirus disease (COVID-19). To what extent this drug can perturb membrane ion currents remains largely unknown. Herein, the exposure to PFD was observed to depress the amplitude of hyperpolarization-activated cation current (Ih) in combination with a considerable slowing in the activation time of the current in pituitary GH3 cells. In the continued presence of ivabradine or zatebradine, subsequent application of PFD decreased Ih amplitude further. The presence of PFD resulted in a leftward shift in Ih activation curve without changes in the gating charge. The addition of this compound also led to a reduction in area of voltage-dependent hysteresis evoked by long-lasting inverted triangular (downsloping and upsloping) ramp pulse. Neither the amplitude of M-type nor erg-mediated K+ current was altered by its presence. In whole-cell potential recordings, addition of PFD reduced the firing frequency, and this effect was accompanied by the depression in the amplitude of sag voltage elicited by hyperpolarizing current stimulus. Overall, this study highlights evidence that PFD is capable of perturbing specific ionic currents, revealing a potential additional impact on functional activities of different excitable cells.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Division of Cardiology, Internal Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 71004, Taiwan.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Division of Cardiology, Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, 70401, Taiwan.
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Chang WT, Liu PY, Gao ZH, Lee SW, Lee WK, Wu SN. Evidence for the Effectiveness of Remdesivir (GS-5734), a Nucleoside-Analog Antiviral Drug in the Inhibition of I K(M) or I K(DR) and in the Stimulation of I MEP. Front Pharmacol 2020; 11:1091. [PMID: 32792942 PMCID: PMC7385287 DOI: 10.3389/fphar.2020.01091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Remdesivir (RDV, GS-5734), a broad-spectrum antiviral drug in the class of nucleotide analogs, has been particularly tailored for treatment of coronavirus infections. However, to which extent RDV is able to modify various types of membrane ion currents remains largely uncertain. In this study, we hence intended to explore the possible perturbations of RDV on ionic currents endogenous in pituitary GH3 cells and Jurkat T-lymphocytes. The whole-cell current recordings of ours disclosed that upon membrane depolarization in GH3 cells the exposure to RDV concentration-dependently depressed the peak or late components of I K(DR) elicitation with effective IC50 values of 10.1 or 2.8 μM, respectively; meanwhile, the value of dissociation constant of RDV-induced blockage of I K(DR) on the basis of the first-order reaction was yielded to be 3.04 μM. Upon the existence of RDV, the steady-state inactivation curve of I K(DR) was established in the RDV presence; moreover, the recovery became slowed. However, RDV-induced blockage of I K(DR) failed to be overcome by further addition of either α,β-methylene ATP or cyclopentyl-1,3-dipropylxanthine. The RDV addition also lessened the strength of M-type K+ current with the IC50 value of 2.5 μM. The magnitude of voltage hysteresis of I K(M) elicited by long-lasting triangular ramp pulse was diminished by adding RDV. Membrane electroporation-induced current in response to large hyperpolarization was enhanced, with an EC50 value of 5.8 μM. Likewise, in Jurkat T-lymphocytes, adding RDV declined I K(DR) amplitude concomitantly with the raised rate of current inactivation applied by step depolarization. Therefore, in terms of the RDV molecule, there appears to be an unintended activity of the prodrug on ion channels. Its inhibition of both I K(DR) and I K(M) occurring in a non-genomic fashion might provide additional but important mechanisms through which in vivo cellular functions are seriously perturbed.
Collapse
Affiliation(s)
- Wei-Ting Chang
- College of Medicine, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ping-Yen Liu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Shih-Wei Lee
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Wen-Kai Lee
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Chan MH, Chen HH, Lo YC, Wu SN. Effectiveness in the Block by Honokiol, a Dimerized Allylphenol from Magnolia Officinalis, of Hyperpolarization-Activated Cation Current and Delayed-Rectifier K + Current. Int J Mol Sci 2020; 21:4260. [PMID: 32549398 PMCID: PMC7352210 DOI: 10.3390/ijms21124260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Honokiol (HNK), a dimer of allylphenol obtained from the bark of Magnolia officinalis was demonstrated to exert an array of biological actions in different excitable cell types. However, whether or how this compound can lead to any perturbations on surface-membrane ionic currents remains largely unknown. Methods: We used the patch clamp method and found that addition of HNK effectively depressed the density of macroscopic hyperpolarization-activated cation currents (Ih) in pituitary GH3 cells in a concentration-, time- and voltage-dependent manner. By the use of a two-step voltage protocol, the presence of HNK (10 μM) shifted the steady-state activation curve of Ih density along the voltage axis to a more negative potential by approximately 11 mV, together with no noteworthy modification in the gating charge of the current. Results: The voltage-dependent hysteresis of Ih density elicited by long-lasting triangular ramp pulse was attenuated by the presence of HNK. The HNK addition also diminished the magnitude of deactivating Ih density elicited by ramp-up depolarization with varying durations. The effective half-maximal concentration (IC50) value needed to inhibit the density of Ih or delayed rectifier K+ current identified in GH3 cells was estimated to be 2.1 or 6.8 μM, respectively. In cell-attached current recordings, HNK decreased the frequency of spontaneous action currents. In Rolf B1.T olfactory sensory neurons, HNK was also observed to decrease Ih density in a concentration-dependent manner. Conclusions: The present study highlights the evidence revealing that HNK has the propensity to perturb these ionic currents and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is proposed to be a potential target for the in vivo actions of HNK and its structurally similar compounds.
Collapse
Affiliation(s)
- Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei 11605, Taiwan; (M.-H.C.); (H.-H.C.)
| | - Hwei-Hsien Chen
- Institute of Neuroscience, National Chengchi University, Taipei 11605, Taiwan; (M.-H.C.); (H.-H.C.)
- Center of Neuropsychiatric Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
22
|
Characterization of Convergent Suppression by UCL-2077 (3-(Triphenylmethylaminomethyl)pyridine), Known to Inhibit Slow Afterhyperpolarization, of erg-Mediated Potassium Currents and Intermediate-Conductance Calcium-Activated Potassium Channels. Int J Mol Sci 2020; 21:ijms21041441. [PMID: 32093314 PMCID: PMC7073080 DOI: 10.3390/ijms21041441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023] Open
Abstract
UCL-2077 (triphenylmethylaminomethyl)pyridine) was previously reported to suppress slow afterhyperpolarization in neurons. However, the information with respect to the effects of UCL-2077 on ionic currents is quite scarce. The addition of UCL-2077 decreased the amplitude of erg-mediated K+ current (IK(erg)) together with an increased deactivation rate of the current in pituitary GH3 cells. The IC50 and KD values of UCL-2077-induced inhibition of IK(erg) were 4.7 and 5.1 μM, respectively. UCL-2077 (10 μM) distinctly shifted the midpoint in the activation curve of IK(erg) to less hyperpolarizing potentials by 17 mV. Its presence decreased the degree of voltage hysteresis for IK(erg) elicitation by long-lasting triangular ramp pulse. It also diminished the probability of the opening of intermediate-conductance Ca2+-activated K+ channels. In cell-attached current recordings, UCL-2077 raised the frequency of action currents. When KCNH2 mRNA was knocked down, a UCL-2077-mediated increase in AC firing was attenuated. Collectively, the actions elaborated herein conceivably contribute to the perturbating effects of this compound on electrical behaviors of excitable cells.
Collapse
|
23
|
Kuo PC, Liu YC, Lo YC, Wu SN. Characterization of Inhibitory Effectiveness in Hyperpolarization-Activated Cation Currents by a Group of ent-Kaurane-Type Diterpenoids from Croton tonkinensis. Int J Mol Sci 2020; 21:1268. [PMID: 32070065 PMCID: PMC7072998 DOI: 10.3390/ijms21041268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Croton is an extensive flowering plant genus in the spurge family, Euphorbiaceae. Three croton compounds with the common ent-kaurane skeleton have been purified from Croton tonkinensis. METHODS We examined any modifications of croton components (i.e., croton-01 [ent-18-acetoxy-7α-hydroxykaur-16-en-15-one], croton-02 [ent-7α,14β-dihydroxykaur-16-en-15-one] and croton-03 [ent-1β-acetoxy-7α,14β-dihydroxykaur-16-en-15-one] on either hyperpolarization-activated cation current (Ih) or erg-mediated K+ current identified in pituitary tumor (GH3) cells and in rat insulin-secreting (INS-1) cells via patch-clamp methods. RESULTS Addition of croton-01, croton-02, or croton-03 effectively and differentially depressed Ih amplitude. Croton-03 (3 μM) shifted the activation curve of Ih to a more negative potential by approximately 11 mV. The voltage-dependent hysteresis of Ih was also diminished by croton-03 administration. Croton-03-induced depression of Ih could not be attenuated by SQ-22536 (10 μM), an inhibitor of adenylate cyclase, but indeed reversed by oxaliplatin (10 μM). The Ih in INS-1 cells was also depressed effectively by croton-03. CONCLUSION Our study highlights the evidence that these ent-kaurane diterpenoids might conceivably perturb these ionic currents through which they have high influence on the functional activities of endocrine or neuroendocrine cells.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, National Cheng Kung University Medical College, Tainan 70101, Taiwan;
| | - Yen-Chin Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Ching Lo
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
24
|
Chang WT, Gao ZH, Li SW, Liu PY, Lo YC, Wu SN. Characterization in Dual Activation by Oxaliplatin, a Platinum-Based Chemotherapeutic Agent of Hyperpolarization-Activated Cation and Electroporation-Induced Currents. Int J Mol Sci 2020; 21:ijms21020396. [PMID: 31936301 PMCID: PMC7014111 DOI: 10.3390/ijms21020396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin (OXAL) is regarded as a platinum-based anti-neoplastic agent. However, its perturbations on membrane ionic currents in neurons and neuroendocrine or endocrine cells are largely unclear, though peripheral neuropathy has been noted during its long-term administration. In this study, we investigated how the presence of OXAL and other related compounds can interact with two types of inward currents; namely, hyperpolarization-activated cation current (Ih) and membrane electroporation-induced current (IMEP). OXAL increased the amplitude or activation rate constant of Ih in a concentration-dependent manner with effective EC50 or KD values of 3.2 or 6.4 μM, respectively, in pituitary GH3 cells. The stimulation by this agent of Ih could be attenuated by subsequent addition of ivabradine, protopine, or dexmedetomidine. Cell exposure to OXAL (3 μM) resulted in an approximately 11 mV rightward shift in Ih activation along the voltage axis with minimal changes in the gating charge of the curve. The exposure to OXAL also effected an elevation in area of the voltage-dependent hysteresis elicited by long-lasting triangular ramp. Additionally, its application resulted in an increase in the amplitude of IMEP elicited by large hyperpolarization in GH3 cells with an EC50 value of 1.3 μM. However, in the continued presence of OXAL, further addition of ivabradine, protopine, or dexmedetomidine always resulted in failure to attenuate the OXAL-induced increase of IMEP amplitude effectively. Averaged current-voltage relation of membrane electroporation-induced current (IMEP) was altered in the presence of OXAL. In pituitary R1220 cells, OXAL-stimulated Ih remained effective. In Rolf B1.T olfactory sensory neurons, this agent was also observed to increase IMEP in a concentration-dependent manner. In light of the findings from this study, OXAL-mediated increases of Ih and IMEP may coincide and then synergistically act to increase the amplitude of inward currents, raising the membrane excitability of electrically excitable cells, if similar in vivo findings occur.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71004, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (Z.-H.G.); (S.-W.L.)
| | - Shih-Wei Li
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (Z.-H.G.); (S.-W.L.)
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Division of Cardiovascular Medicine, Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 70401, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (Z.-H.G.); (S.-W.L.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
25
|
Characterization of Effectiveness in Concerted Ih Inhibition and IK(Ca) Stimulation by Pterostilbene (Trans-3,5-dimethoxy-4'-hydroxystilbene), a Stilbenoid. Int J Mol Sci 2020; 21:ijms21010357. [PMID: 31948124 PMCID: PMC6981816 DOI: 10.3390/ijms21010357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Pterostilbene (PTER), a natural dimethylated analog of resveratrol, has been demonstrated to produce anti-neoplastic or neuroprotective actions. However, how and whether this compound can entail any perturbations on ionic currents in electrically excitable cells remains unknown. In whole-cell current recordings, addition of PTER decreased the amplitude of macroscopic Ih during long-lasting hyperpolarization in GH3 cells in a concentration-dependent manner, with an effective IC50 value of 0.84 μM. Its presence also shifted the activation curve of Ih along the voltage axis to a more hyperpolarized potential, by 11 mV. PTER at a concentration greater than 10 μM could also suppress l-type Ca2+ and transient outward K+ currents in GH3 cells. With the addition of PTER, IK(Ca) amplitude was increased, with an EC50 value of 2.23 μM. This increase in IK(Ca) amplitude was attenuated by further addition of verruculogen, but not by tolbutamide or TRAM-39. Neither atropine nor nicotine, in the continued presence of PTER, modified the PTER-stimulated IK(Ca). PTER (10 μM) slightly suppressed the amplitude of l-type Ca2+ current and transient outward K+ current. The presence of PTER (3 μM) was also effective at increasing the open-state probability of large-conductance Ca2+-activated K+ (BKCa) channels identified in hippocampal mHippoE-14 neurons; however, its inability to alter single-channel conductance was detected. Our study highlights evidence to show that PTER has the propensity to perturb ionic currents (e.g., Ih and IK(Ca)), thereby influencing the functional activities of neurons, and neuroendocrine or endocrine cells.
Collapse
|
26
|
Chang WT, Gao ZH, Lo YC, Wu SN. Evidence for Effective Inhibitory Actions on Hyperpolarization-Activated Cation Current Caused by Ganoderma Triterpenoids, the Main Active Constitutents of Ganoderma Spores. Molecules 2019; 24:4256. [PMID: 31766737 PMCID: PMC6930560 DOI: 10.3390/molecules24234256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
The triterpenoid fraction of Ganoderma (Ganoderma triterpenoids, GTs) has been increasingly demonstrated to provide effective antioxidant, neuroprotective or cardioprotective activities. However, whether GTs is capable of perturbing the transmembrane ionic currents existing in electrically excitable cells is not thoroughly investigated. In this study, an attempt was made to study whether GTs could modify hyperpolarization-activated cation currents (Ih) in pituitary tumor (GH3) cells and in HL-1 atrial cardiomyocytes. In whole-cell current recordings, the addition of GTs produced a dose-dependent reduction in the amplitude of Ih in GH3 cells with an IC50 value of 11.7 µg/mL, in combination with a lengthening in activation time constant of the current. GTs (10 µg/mL) also caused a conceivable shift in the steady-state activation curve of Ih along the voltage axis to a more negative potential by approximately 11 mV. Subsequent addition of neither 8-cyclopentyl-1,3-dipropylxanthine nor 8-(p-sulfophenyl)theophylline, still in the presence of GTs, could attenuate GTs-mediated inhibition of Ih. In current-clamp voltage recordings, GTs diminished the firing frequency of spontaneous action potentials in GH3 cells, and it also decreased the amplitude of sag potential in response to hyperpolarizing current stimuli. In murine HL-1 cardiomyocytes, the GTs addition also suppressed the amplitude of Ih effectively. In DPCPX (1 µM)-treated HL-1 cells, the inhibitory effect of GTs on Ih remained efficacious. Collectively, the inhibition of Ih caused by GTs is independent of its possible binding to adenosine receptors and it might have profound influence in electrical behaviors of different types of electrically excitable cells (e.g., pituitary and heart cells) if similar in vitro or in vivo findings occur.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71004, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan;
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
27
|
Cholesterol-Dependent Gating Effects on Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:167-190. [PMID: 30649760 DOI: 10.1007/978-3-030-04278-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the "down" and the "up" state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL-channel interactions.
Collapse
|
28
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
29
|
Cao Y, Chen S, Liang Y, Wu T, Pang J, Liu S, Zhou P. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br J Pharmacol 2018; 175:3963-3975. [PMID: 30098004 DOI: 10.1111/bph.14469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a clinically effective β-blocker broadly used for treating congestive heart failure (CHF), and several clinical trials have demonstrated that it shows a favourable effect compared with other β-blockers in patients with CHF. The mechanism underlying this beneficial effect of carvedilol compared to other β-blockers is not clearly understood. In addition to β-blockers, inhibitors of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels, which play a critical role in spontaneous rhythmic activity in the heart, have also been proposed to be suitable drugs for reducing heart rate and, therefore, beneficial for treating CHF. In the present study, we investigated the effect of carvedilol on HCN channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were used to assess the effect of carvedilol on currents from wild-type and mutant HCN1, HCN2 and HCN4 channels expressed in CHO cells. KEY RESULTS Carvedilol was the only β-blocker tested that showed inhibitory effects on the major sinoatrial HCN channel isoform HCN4. Carvedilol inhibited HCN4 in a concentration-dependent manner with an EC50 of 4.4 μM. In addition, carvedilol also inhibited HCN1 and HCN2 channels. Carvedilol blocked HCN channels by decelerating the rate of channel activation and increasing that of deactivation, and shifted the voltage-dependence of activation leftwards. Our data also showed that carvedilol, unlike other inhibitors of this channel (ivabradine and ZD7288), is not an 'open-channel' inhibitor of HCN4. CONCLUSIONS AND IMPLICATIONS Carvedilol is a negative gating modulator of HCN channels. It represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shujun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
31
|
Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:299-312. [PMID: 29277655 DOI: 10.1016/j.bbalip.2017.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
Abstract
The TMEM16A-mediated Ca2+-activated Cl- current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca2+. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.
Collapse
|
32
|
Parker AR, Welch MA, Forster LA, Tasneem SM, Dubhashi JA, Baro DJ. SUMOylation of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 Increases Surface Expression and the Maximal Conductance of the Hyperpolarization-Activated Current. Front Mol Neurosci 2017; 9:168. [PMID: 28127275 PMCID: PMC5226956 DOI: 10.3389/fnmol.2016.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/26/2016] [Indexed: 11/13/2022] Open
Abstract
Small Ubiquitin-like Modifier (SUMO) is a ∼10 kDa peptide that can be post-translationally added to a lysine (K) on a target protein to facilitate protein–protein interactions. Recent studies have found that SUMOylation can be regulated in an activity-dependent manner and that ion channel SUMOylation can alter the biophysical properties and surface expression of the channel. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel surface expression can be regulated in an activity-dependent manner through unknown processes. We hypothesized that SUMOylation might influence the surface expression of HCN2 channels. In this manuscript, we show that HCN2 channels are SUMOylated in the mouse brain. Baseline levels of SUMOylation were also observed for a GFP-tagged HCN2 channel stably expressed in Human embryonic kidney (Hek) cells. Elevating GFP-HCN2 channel SUMOylation above baseline in Hek cells led to an increase in surface expression that augmented the hyperpolarization-activated current (Ih) mediated by these channels. Increased SUMOylation did not alter Ih voltage-dependence or kinetics of activation. There are five predicted intracellular SUMOylation sites on HCN2. Site-directed mutagenesis indicated that more than one K on the GFP-HCN2 channel was SUMOylated. Enhancing SUMOylation at one of the five predicted sites, K669, led to the increase in surface expression and IhGmax. The role of SUMOylation at additional sites is currently unknown. The SUMOylation site at K669 is also conserved in HCN1 channels. Aberrant SUMOylation has been linked to neurological diseases that also display alterations in HCN1 and HCN2 channel expression, such as seizures and Parkinson’s disease. This work is the first report that HCN channels can be SUMOylated and that this can regulate surface expression and Ih.
Collapse
Affiliation(s)
- Anna R Parker
- Department of Biology, Georgia State University Atlanta, GA, USA
| | - Meghyn A Welch
- Department of Biology, Georgia State University Atlanta, GA, USA
| | - Lori A Forster
- Neuroscience Institute, Georgia State University Atlanta, GA, USA
| | - Sarah M Tasneem
- Department of Biology, Georgia State University Atlanta, GA, USA
| | | | - Deborah J Baro
- Department of Biology, Georgia State UniversityAtlanta, GA, USA; Neuroscience Institute, Georgia State UniversityAtlanta, GA, USA
| |
Collapse
|
33
|
George SA, Faye NR, Murillo-Berlioz A, Lee KB, Trachiotis GD, Efimov IR. At the Atrioventricular Crossroads: Dual Pathway Electrophysiology in the Atrioventricular Node and its Underlying Heterogeneities. Arrhythm Electrophysiol Rev 2017; 6:179-185. [PMID: 29326832 DOI: 10.15420/aer.2017.30.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The atrioventricular node (AVN) is a complex structure that performs a variety of functions in the heart. The AVN is primarily an electrical gatekeeper between the atria and ventricles and introduces a delay between atrial and ventricular excitation, allowing for efficient ventricular filling. The AVN is composed of several compartments that safely transmit electrical excitation from the atria to the ventricles via the fast or slow pathways. There are many electrophysiological differences between these pathways, including conduction time and electrical refractoriness, that increase the predisposition of the atrioventricular junction to arrhythmias such as atrioventricular nodal re-entrant tachycardia. These varied electrophysiological characteristics of the fast and slow pathways stem from their unique structural and molecular composition (tissue and cellular geometry, ion channels and gap junctions). This review summarises the structural and molecular heterogeneities of the human AVN and how they result in electrophysiological variations and arrhythmias.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, The George Washington University,Washington, DC, USA
| | - N Rokhaya Faye
- Department of Biomedical Engineering, The George Washington University,Washington, DC, USA
| | - Alejandro Murillo-Berlioz
- Department of Biomedical Engineering, The George Washington University,Washington, DC, USA.,Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center,Washington, DC, USA
| | - K Benjamin Lee
- Department of Biomedical Engineering, The George Washington University,Washington, DC, USA.,Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center,Washington, DC, USA
| | - Gregory D Trachiotis
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center,Washington, DC, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University,Washington, DC, USA
| |
Collapse
|
34
|
Silva FC, Paiva FA, Müller-Ribeiro FC, Caldeira HMA, Fontes MAP, de Menezes RCA, Casali KR, Fortes GH, Tobaldini E, Solbiati M, Montano N, Dias Da Silva VJ, Chianca DA. Chronic Treatment with Ivabradine Does Not Affect Cardiovascular Autonomic Control in Rats. Front Physiol 2016; 7:305. [PMID: 27507948 PMCID: PMC4960883 DOI: 10.3389/fphys.2016.00305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/06/2016] [Indexed: 12/05/2022] Open
Abstract
A low resting heart rate (HR) would be of great benefit in cardiovascular diseases. Ivabradine—a novel selective inhibitor of hyperpolarization-activated cyclic nucleotide gated (HCN) channels- has emerged as a promising HR lowering drug. Its effects on the autonomic HR control are little known. This study assessed the effects of chronic treatment with ivabradine on the modulatory, reflex and tonic cardiovascular autonomic control and on the renal sympathetic nerve activity (RSNA). Male Wistar rats were divided in 2 groups, receiving intraperitoneal injections of vehicle (VEH) or ivabradine (IVA) during 7 or 8 consecutive days. Rats were submitted to vessels cannulation to perform arterial blood pressure (AP) and HR recordings in freely moving rats. Time series of resting pulse interval and systolic AP were used to measure cardiovascular variability parameters. We also assessed the baroreflex, chemoreflex and the Bezold-Jarish reflex sensitivities. To better evaluate the effects of ivabradine on the autonomic control of the heart, we performed sympathetic and vagal autonomic blockade. As expected, ivabradine-treated rats showed a lower resting (VEH: 362 ± 16 bpm vs. IVA: 260 ± 14 bpm, p = 0.0005) and intrinsic HR (VEH: 369 ± 9 bpm vs. IVA: 326 ± 11 bpm, p = 0.0146). However, the chronic treatment with ivabradine did not change normalized HR spectral parameters LF (nu) (VEH: 24.2 ± 4.6 vs. IVA: 29.8 ± 6.4; p > 0.05); HF (nu) (VEH: 75.1 ± 3.7 vs. IVA: 69.2 ± 5.8; p > 0.05), any cardiovascular reflexes, neither the tonic autonomic control of the HR (tonic sympathovagal index; VEH: 0.91± 0.02 vs. IVA: 0.88 ± 0.03, p = 0.3494). We performed the AP, HR and RSNA recordings in urethane-anesthetized rats. The chronic treatment with ivabradine reduced the resting HR (VEH: 364 ± 12 bpm vs. IVA: 207 ± 11 bpm, p < 0.0001), without affecting RSNA (VEH: 117 ± 16 vs. IVA: 120 ± 9 spikes/s, p = 0.9100) and mean arterial pressure (VEH: 70 ± 4 vs. IVA: 77 ± 6 mmHg, p = 0.3293). Our results suggest that, in health rats, the long-term treatment with ivabradine directly reduces the HR without changing the RSNA modulation and the reflex and tonic autonomic control of the heart.
Collapse
Affiliation(s)
- Fernanda C Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro PretoOuro Preto, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro PretoOuro Preto, Brazil
| | - Franciny A Paiva
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro PretoOuro Preto, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro PretoOuro Preto, Brazil
| | - Flávia C Müller-Ribeiro
- Laboratory of Hypertension, Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Henrique M A Caldeira
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto Ouro Preto, Brazil
| | - Marco A P Fontes
- Laboratory of Hypertension, Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Rodrigo C A de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro PretoOuro Preto, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro PretoOuro Preto, Brazil
| | - Karina R Casali
- Laboratory of Biomedical Engineering, Institute of Science and Technology, Federal University of São Paulo São José dos Campos, Brazil
| | | | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Monica Solbiati
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Valdo J Dias Da Silva
- Department of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro Uberaba, Brazil
| | - Deoclécio A Chianca
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro PretoOuro Preto, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro PretoOuro Preto, Brazil
| |
Collapse
|
35
|
Affiliation(s)
- Elaine Wan
- From the Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York (P.A.B.); and Division of Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York (E.W.)
| | - Penelope A Boyden
- From the Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York (P.A.B.); and Division of Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York (E.W.).
| |
Collapse
|