1
|
Maciszewski K, Wilga G, Jagielski T, Bakuła Z, Gawor J, Gromadka R, Karnkowska A. Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes. BMC Biol 2024; 22:294. [PMID: 39696433 DOI: 10.1186/s12915-024-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Plastids are usually involved in photosynthesis, but the secondary loss of this function is a widespread phenomenon in various lineages of algae and plants. In addition to the loss of genes associated with photosynthesis, the plastid genomes of colorless algae are frequently reduced further. To understand the pathways of reductive evolution associated with the loss of photosynthesis, it is necessary to study a number of closely related strains. Prototheca, a chlorophyte genus of facultative pathogens, provides an excellent opportunity to study this process with its well-sampled array of diverse colorless strains. RESULTS We have sequenced the plastid genomes of 13 Prototheca strains and reconstructed a comprehensive phylogeny that reveals evolutionary patterns within the genus and among its closest relatives. Our phylogenomic analysis revealed three independent losses of photosynthesis among the Prototheca strains and varied protein-coding gene content in their ptDNA. Despite this diversity, all Prototheca strains retain the same key plastid functions. These include processes related to gene expression, as well as crucial roles in fatty acid and cysteine biosynthesis, and membrane transport. CONCLUSIONS The retention of vestigial genomes in colorless plastids is typically associated with the biosynthesis of secondary metabolites. In contrast, the remarkable conservation of plastid membrane transport system components in the nonphotosynthetic genera Prototheca and Helicosporidium provides an additional constraint against the loss of ptDNA in this lineage. Furthermore, these genes can potentially serve as targets for therapeutic intervention, indicating their importance beyond the evolutionary context.
Collapse
Affiliation(s)
- Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Wilga
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Duarte-Silva L, Vilela R, Rodrigues IA, Magalhães VCR, Caliari MV, Mendoza L, Costa AO. Phenotypic and molecular characterization of Prototheca wickerhamii from a Brazilian case of human systemic protothecosis. PLoS Negl Trop Dis 2024; 18:e0012602. [PMID: 39495817 PMCID: PMC11563477 DOI: 10.1371/journal.pntd.0012602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/14/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
The genus Prototheca (alga) comprises a unique group of achlorophyllic saprotrophic and mammalian pathogen species. Despite its rare occurrence in humans and animals, protothecosis is considered an emerging clinical entity with relevance in immunocompromised patients. In this study, the characterization of spherical structures with endospores recovered from a blood culture in an HIV patient was investigated using phenotypic and molecular methodologies. On 2% Sabouraud dextrose agar, the isolate displayed morphological and biochemical characteristics found on isolates identified as Prototheca wickerhamii. To validate these analyses, molecular phylogeny of the internal transcript space (ITS) partial gene confirmed the identity of the isolate as P. wickerhamii. This is the first case of systemic human protothecosis in Brazil. The present case of human Prototheca and those reported in the medical literature highlight the need for novel methodologies to identify pathogenic algae in the clinical laboratory, improving in this way the diagnosis and treatment of this group of neglected pathogens.
Collapse
Affiliation(s)
- Luciana Duarte-Silva
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Raquel Vilela
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
- Microbiology, Genetics, and Immunology, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, United States of America
| | - Isabela A Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Vanessa C R Magalhães
- Hospital Eduardo de Menezes, Fundação Hospitalar, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo V Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Leonel Mendoza
- Microbiology, Genetics, and Immunology, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, United States of America
| | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
3
|
Li J, He X, Guo H, Lin D, Wu X, Chen B. Complete genome identified of clinical isolate Prototheca. J Med Microbiol 2024; 73. [PMID: 39387684 DOI: 10.1099/jmm.0.001914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Introduction. Prototheca is an opportunistic pathogen that can infect both humans and animals, of which Prototheca wickerhamii (P. wickerhamii) being the most significant pathogenic green algae.Gap statement. The incidence of human diseases caused by Prototheca has been on the rise, yet there is a significant gap in genetic research pertaining to the pathophysiological aspects of these infections.Aim. The aim of this study is to present the whole genome data from the clinical isolate InPu-22_FZ strain and to understand its genomic characteristics through comparative genomic analysis and phylogenetic tree analysis. Functional annotation of protein-coding genes and analysis of their pathogenicity are also conducted.Methodology. We described the high-quality de novo genome assembly of the clinical isolate InPu-22_FZ strain, achieved by combining Nanopore ONT and Illumina NovaSeq sequencing technologies. Phylogenetic tree was constructed to study the evolutionary relationship between the InPu-22_FZ strain and other species. The average nucleotide identity (ANI) analysis was used to assess the similarity between different species. Additionally, the size, distribution and composition of synteny blocks were also analysed to infer the evolutionary relationships of the genomes.Results. The size of the assembled nuclear genome was 18.47 Mb with 48 contigs. Key features of the genome include high overall GC content (63.31%), high number (5478) and proportion (62.24%) of protein-coding genes and more than 96.71% of genes annotated for gene function. Phylogenetic analyses showed that the InPu-22_FZ strain and other P. wickerhamii clustered into one clade with a bootstrap value of 99% and collinearity analysis revealed high levels of collinearity with ATCC 16529. The ANI analysis revealed only a relatively high similarity (89-93%) to available P. wickerhamii genomes, suggesting the overall genomic novelty of InPu-22_FZ strain. Interestingly, the analysis of the pathogen-host interaction database unveiled and demonstrated reduced virulence of this strain, albeit it was isolated from a chronic upper-limb cutaneous infection.Conclusion. The study provides an in-depth insight into the genomic structure and biological function of the InPu-22_FZ strain, revealing the genetic basis of its pathogenicity and virulence.
Collapse
Affiliation(s)
- Juanjuan Li
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Xiaorong He
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Hongen Guo
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Damin Lin
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
| | - Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
- Department of Biomedicine, University of Basel, Basel CH-4056, Switzerland
| | - Borui Chen
- Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou 350025, PR China
- Department of Dermatology, Peking University First Hospital and Research Center for Medical Mycology, Peking University, Beijing 100034, PR China
| |
Collapse
|
4
|
Jian J, Wang Z, Chen C, Workman CT, Fang X, Larsen TO, Guo J, Sonnenschein EC. Two high-quality Prototheca zopfii genomes provide new insights into their evolution as obligate algal heterotrophs and their pathogenicity. Microbiol Spectr 2024; 12:e0414823. [PMID: 38940543 PMCID: PMC11302234 DOI: 10.1128/spectrum.04148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The majority of the nearly 10,000 described species of green algae are photoautotrophs; however, some species have lost their ability to photosynthesize and become obligate heterotrophs that rely on parasitism for survival. Two high-quality genomes of the heterotrophic algae Prototheca zopfii Pz20 and Pz23 were obtained using short- and long-read genomic as well as transcriptomic data. The genome sizes were 31.2 Mb and 31.3 Mb, respectively, and contig N50 values of 1.99 Mb and 1.26 Mb. Although P. zopfii maintained its plastid genome, the transition to heterotrophy led to a reduction in both plastid and nuclear genome size, including the loss of photosynthesis-related genes from both the nuclear and plastid genomes and the elimination of genes encoding for carotenoid oxygenase and pheophorbide an oxygenase. The loss of genes, including basic leucine-zipper (bZIP) transcription factors, flavin adenine dinucleotide-linked oxidase, and helicase, could have played a role in the transmission of autotrophy to heterotrophs and in the processes of abiotic stress resistance and pathogenicity. A total of 66 (1.37%) and 73 (1.49%) genes were identified as potential horizontal gene transfer events in the two P. zopfii genomes, respectively. Genes for malate synthase and isocitrate lyase, which are horizontally transferred from bacteria, may play a pivotal role in carbon and nitrogen metabolism as well as the pathogenicity of Prototheca and non-photosynthetic organisms. The two high-quality P. zopfii genomes provide new insights into their evolution as obligate heterotrophs and pathogenicity. IMPORTANCE The genus Prototheca, characterized by its heterotrophic nature and pathogenicity, serves as an exemplary model for investigating pathobiology. The limited understanding of the protothecosis infectious disease is attributed to the lack of genomic resources. Using HiFi long-read sequencing, both nuclear and plastid genomes were generated for two strains of P. zopfii. The findings revealed a concurrent reduction in both plastid and nuclear genome size, accompanied by the loss of genes associated with photosynthesis, carotenoid oxygenase, basic leucine-zipper (bZIP) transcription factors, and others. The analysis of horizontal gene transfer revealed the presence of 1.37% and 1.49% bacterial genes, including malate synthase and isocitrate lyase, which play crucial roles in carbon and nitrogen metabolism, as well as pathogenicity and obligate heterotrophy. The two high-quality P. zopfii genomes represent valuable resources for investigating their adaptation and evolution as obligate heterotrophs, as well as for developing future prevention and treatment strategies against protothecosis.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | | | | | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
5
|
Chen H, Sosa A, Chen F. Growth and Cell Size of Microalga Auxenochlorella protothecoides AS-1 under Different Trophic Modes. Microorganisms 2024; 12:835. [PMID: 38674779 PMCID: PMC11052296 DOI: 10.3390/microorganisms12040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Certain microalgal species can grow with different trophic strategies depending on the availability of nutrient resources. They can use the energy from light or an organic substrate, or both, and can therefore be called autotrophs, heterotrophs, or mixotrophs. We recently isolated a microalgal strain from the microplastic biofilm, which was identified as Auxenochlorella protothecoides, AS-1. Strain AS-1 grew rapidly in bacterial culture media and exhibited different growth rates and cell sizes under different trophic conditions. We compared the growth performance of AS-1 under the three different trophic modes. AS-1 reached a high biomass (>4 g/L) in 6 days under mixotrophic growth conditions with a few organic carbons as a substrate. In contrast, poor autotrophic growth was observed for AS-1. Different cell sizes, including daughter and mother cells, were observed under the different growth modes. We applied a Coulter Counter to measure the size distribution patterns of AS-1 under different trophic modes. We showed that the cell size distribution of AS-1 was affected by different growth modes. Compared to the auto-, hetero- and mixotrophic modes, AS-1 achieved higher biomass productivity by increasing cell number and cell size in the presence of organic substrate. The mechanisms and advantages of having more mother cells with organic substrates are still unclear and warrant further investigations. The work here provides the growth information of a newly isolated A. protothecoides AS-1 which will be beneficial to future downstream applications.
Collapse
Affiliation(s)
- Haoyu Chen
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21613, USA; (H.C.); (A.S.)
| | - Ana Sosa
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21613, USA; (H.C.); (A.S.)
- Maryland Sea Grant College, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| | - Feng Chen
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21613, USA; (H.C.); (A.S.)
| |
Collapse
|
6
|
Buchaillot ML, Soba D, Shu T, Liu J, Aranjuelo I, Araus JL, Runion GB, Prior SA, Kefauver SC, Sanz-Saez A. Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models. PLANTA 2022; 255:93. [PMID: 35325309 PMCID: PMC8948130 DOI: 10.1007/s00425-022-03867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION By combining hyperspectral signatures of peanut and soybean, we predicted Vcmax and Jmax with 70 and 50% accuracy. The PLS was the model that better predicted these photosynthetic parameters. One proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf and canopy spectral properties.
Collapse
Affiliation(s)
- Ma Luisa Buchaillot
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198, Lleida, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Av. Pamplona 123, 31192, Mutilva, Spain
| | - Tianchu Shu
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Alabama, USA
| | - Juan Liu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Henan, China
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Av. Pamplona 123, 31192, Mutilva, Spain
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198, Lleida, Spain
| | - G Brett Runion
- U.S. Department of Agriculture-Agricultural Research Service, National Soil Dynamics Laboratory, Auburn, AL, 36832, USA
| | - Stephen A Prior
- U.S. Department of Agriculture-Agricultural Research Service, National Soil Dynamics Laboratory, Auburn, AL, 36832, USA
| | - Shawn C Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198, Lleida, Spain.
| | - Alvaro Sanz-Saez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Alabama, USA.
| |
Collapse
|
7
|
Park SH, Kyndt JA, Brown JK. Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer. Life (Basel) 2022; 12:life12030458. [PMID: 35330209 PMCID: PMC8955559 DOI: 10.3390/life12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Resequencing of the chloroplast genome (cpDNA) of Auxenochlorella protothecoides UTEX 25 was completed (GenBank Accession no. KC631634.1), revealing a genome size of 84,576 base pairs and 30.8% GC content, consistent with features reported for the previously sequenced A. protothecoides 0710, (GenBank Accession no. KC843975). The A. protothecoides UTEX 25 cpDNA encoded 78 predicted open reading frames, 32 tRNAs, and 4 rRNAs, making it smaller and more compact than the cpDNA genome of C. variabilis (124,579 bp) and C. vulgaris (150,613 bp). By comparison, the compact genome size of A. protothecoides was attributable primarily to a lower intergenic sequence content. The cpDNA coding regions of all known Chlorella species were found to be organized in conserved colinear blocks, with some rearrangements. The Auxenochlorella and Chlorella species genome structure and composition were similar, and of particular interest were genes influencing photosynthetic efficiency, i.e., chlorophyll synthesis and photosystem subunit I and II genes, consistent with other biofuel species of interest. Phylogenetic analysis revealed that Prototheca cutis is the closest known A. protothecoides relative, followed by members of the genus Chlorella. The cpDNA of A. protothecoides encodes 37 genes that are highly homologous to representative cyanobacteria species, including rrn16, rrn23, and psbA, corroborating a well-recognized symbiosis. Several putative coding regions were identified that shared high nucleotide sequence identity with virus-like sequences, suggestive of horizontal gene transfer. Despite these predictions, no corresponding transcripts were obtained by RT-PCR amplification, indicating they are unlikely to be expressed in the extant lineage.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001, USA
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
- Correspondence:
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
| |
Collapse
|
8
|
Guo J, Jian J, Wang L, Xiong L, Lin H, Zhou Z, Sonnenschein EC, Wu W. Genome Sequences of Two Strains of Prototheca wickerhamii Provide Insight Into the Protothecosis Evolution. Front Cell Infect Microbiol 2022; 12:797017. [PMID: 35186789 PMCID: PMC8847788 DOI: 10.3389/fcimb.2022.797017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The Prototheca alga is the only chlorophyte known to be involved in a series of clinically relevant opportunistic infections in humans and animals, namely, protothecosis. Most pathogenic cases in humans are caused by Prototheca wickerhamii. In order to investigate the evolution of Prototheca and the genetic basis for its pathogenicity, the genomes of two P. wickerhamii strains S1 and S931 were sequenced using Nanopore long-read and Illumina short-read technologies. The mitochondrial, plastid, and nuclear genomes were assembled and annotated including a transcriptomic data set. The assembled nuclear genome size was 17.57 Mb with 19 contigs and 17.45 Mb with 26 contigs for strains S1 and S931, respectively. The number of predicted protein-coding genes was approximately 5,700, and more than 96% of the genes could be annotated with a gene function. A total of 2,798 gene families were shared between the five currently available Prototheca genomes. According to the phylogenetic analysis, the genus of Prototheca was classified in the same clade with A. protothecoides and diverged from Chlorella ~500 million years ago (Mya). A total of 134 expanded genes were enriched in several pathways, mostly in metabolic pathways, followed by biosynthesis of secondary metabolites and RNA transport. Comparative analysis demonstrated more than 96% consistency between the two herein sequenced strains. At present, due to the lack of sufficient understanding of the Prototheca biology and pathogenicity, the diagnosis rate of protothecosis is much lower than the actual infection rate. This study provides an in-depth insight into the genome sequences of two strains of P. wickerhamii isolated from the clinic to contribute to the basic understanding of this alga and explore future prevention and treatment strategies.
Collapse
Affiliation(s)
- Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lili Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijuan Xiong
- Department of Laboratory Medicine, Guizhou University The Second Affiliated Hospital of Traditional Chinese Medicine, Guizhou, China
| | - Huiping Lin
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziyi Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Wenjuan Wu, ; Eva C. Sonnenschein,
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wenjuan Wu, ; Eva C. Sonnenschein,
| |
Collapse
|
9
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Bakuła Z, Siedlecki P, Gromadka R, Gawor J, Gromadka A, Pomorski JJ, Panagiotopoulou H, Jagielski T. A first insight into the genome of Prototheca wickerhamii, a major causative agent of human protothecosis. BMC Genomics 2021; 22:168. [PMID: 33750287 PMCID: PMC7941945 DOI: 10.1186/s12864-021-07491-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colourless microalgae of the Prototheca genus are the only known plants that have consistently been implicated in a range of clinically relevant opportunistic infections in both animals and humans. The Prototheca algae are emerging pathogens, whose incidence has increased importantly over the past two decades. Prototheca wickerhamii is a major human pathogen, responsible for at least 115 cases worldwide. Although the algae are receiving more attention nowadays, there is still a substantial knowledge gap regarding their biology, and pathogenicity in particular. Here we report, for the first time, the complete nuclear genome, organelle genomes, and transcriptome of the P. wickerhamii type strain ATCC 16529. RESULTS The assembled genome size was of 16.7 Mbp, making it the smallest and most compact genome sequenced so far among the protothecans. Key features of the genome included a high overall GC content (64.5%), a high number (6081) and proportion (45.9%) of protein-coding genes, and a low repetitive sequence content (2.2%). The vast majority (90.6%) of the predicted genes were confirmed with the corresponding transcripts upon RNA-sequencing analysis. Most (93.2%) of the genes had their putative function assigned when searched against the InterProScan database. A fourth (23.3%) of the genes were annotated with an enzymatic activity possibly associated with the adaptation to the human host environment. The P. wickerhamii genome encoded a wide array of possible virulence factors, including those already identified in two model opportunistic fungal pathogens, i.e. Candida albicans and Trichophyton rubrum, and thought to be involved in invasion of the host or elicitation of the adaptive stress response. Approximately 6% of the P. wickerhamii genes matched a Pathogen-Host Interaction Database entry and had a previously experimentally proven role in the disease development. Furthermore, genes coding for proteins (e.g. ATPase, malate dehydrogenase) hitherto considered as potential virulence factors of Prototheca spp. were demonstrated in the P. wickerhamii genome. CONCLUSIONS Overall, this study is the first to describe the genetic make-up of P. wickerhamii and discovers proteins possibly involved in the development of protothecosis.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jan J Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Hanna Panagiotopoulou
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
11
|
Masuda M, Jagielski T, Danesi P, Falcaro C, Bertola M, Krockenberger M, Malik R, Kano R. Protothecosis in Dogs and Cats-New Research Directions. Mycopathologia 2020; 186:143-152. [PMID: 33206310 DOI: 10.1007/s11046-020-00508-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Protothecosis refers to disease of humans and animals caused by infection with fungus-like, colourless microalgae of the genus Prototheca. Although protothecosis remains an uncommon infection, increasing numbers of human and animal cases are being diagnosed worldwide. This review summarises major new findings in basic science (sequencing analyses of sterol 14α-demethylase (CYP51/ERG11) genes and organelle genomes of Prototheca wickerhamii) to elucidate taxonomic features of this pathogen. Furthermore, this review updates and summarises the clinical features, diagnosis and treatment of protothecosis in dogs and cats. This content of this review is based on information presented at the medical phycology symposium held in the 20th Congress of the International Society for Human and Animal Mycology ( https://www.isham.org/ ).
Collapse
Affiliation(s)
- Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Patrizia Danesi
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, PD, Italy
| | - Mark Krockenberger
- Veterinary Pathology Diagnostic Services (VPDS), Sydney School of Veterinary Science, The University of Sydney, B14, Sydney, NSW, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, B22, Sydney, NSW, 2006, Australia
| | - Rui Kano
- Department of Veterinary Dermatology, Nihon University School of Veterinary Medicine, 1866, Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
12
|
Bakuła Z, Gromadka R, Gawor J, Siedlecki P, Pomorski JJ, Maciszewski K, Gromadka A, Karnkowska A, Jagielski T. Sequencing and Analysis of the Complete Organellar Genomes of Prototheca wickerhamii. FRONTIERS IN PLANT SCIENCE 2020; 11:1296. [PMID: 32983192 PMCID: PMC7492744 DOI: 10.3389/fpls.2020.01296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Of the Prototheca genus, Prototheca wickerhamii has the highest clinical significance in humans. However, neither nuclear nor organellar genomes of this species were sequenced until now. The hitherto determined and analyzed mitochondrial and plastid genomes of the alleged P. wickerhamii species belong in fact to another species, recently named Prototheca xanthoriae. This study provides a first insight into the organellar genomes of a true P. wickerhamii (type strain ATCC 16529). The P. wickerhamii mitochondrion had a 53.8-kb genome, which was considerably larger than that of Prototheca ciferrii (formerly Prototheca zopfii gen. 1) and Prototheca bovis (formerly Prototheca zopfii gen. 2), yet similarly functional, with the differences in size attributable to a higher number of introns and the presence of extra unique putative genes. The 48-kb plastid genome of P. wickerhamii, compared to autotrophic Trebouxiophyceae, was highly reduced due to the elimination of the photosynthesis-related genes. The gene content of the plastid genome of P. wickerhamii was, however, very similar to other colorless Prototheca species. Plastid genome-based phylogeny reinforced the polyphyly of the genus Prototheca, with Helicosporidium and Auxenochlorella branching within clades of Prototheca species. Phylogenetic reconstruction also confirmed the close relationship of P. wickerhamii and P. xanthoriae, which is reflected in the synteny of their organellar genomes. Interestingly, the entire set of atp genes was lost in P. wickerhamii plastid genome while being preserved in P. xanthoriae.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Oligonucleotides Synthesis Laboratory at the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Jan J. Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Ding H, Zhu R, Dong J, Bi D, Jiang L, Zeng J, Huang Q, Liu H, Xu W, Wu L, Kan X. Next-Generation Genome Sequencing of Sedum plumbizincicola Sheds Light on the Structural Evolution of Plastid rRNA Operon and Phylogenetic Implications within Saxifragales. PLANTS (BASEL, SWITZERLAND) 2019; 8:E386. [PMID: 31569538 PMCID: PMC6843225 DOI: 10.3390/plants8100386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023]
Abstract
The genus Sedum, with about 470 recognized species, is classified in the family Crassulaceae of the order Saxifragales. Phylogenetic relationships within the Saxifragales are still unresolved and controversial. In this study, the plastome of S. plumbizincicola was firstly presented, with a focus on the structural analysis of rrn operon and phylogenetic implications within the order Saxifragaceae. The assembled complete plastome of S. plumbizincicola is 149,397 bp in size, with a typical circular, double-stranded, and quadripartite structure of angiosperms. It contains 133 genes, including 85 protein-coding genes (PCGs), 36 tRNA genes, 8 rRNA genes, and four pseudogenes (one ycf1, one rps19, and two ycf15). The predicted secondary structure of S. plumbizincicola 16S rRNA includes three main domains organized in 74 helices. Further, our results confirm that 4.5S rRNA of higher plants is associated with fragmentation of 23S rRNA progenitor. Notably, we also found the sequence of putative rrn5 promoter has some evolutionary implications within the order Saxifragales. Moreover, our phylogenetic analyses suggested that S. plumbizincicola had a closer relationship with S. sarmentosum than S. oryzifolium, and supported the taxonomic revision of Phedimus. Our findings of the present study will be useful for further investigation of the evolution of plastid rRNA operon and phylogenetic relationships within Saxifragales.
Collapse
Affiliation(s)
- Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Jinxiu Dong
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - De Bi
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Qingyu Huang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Huan Liu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| |
Collapse
|
14
|
Onyshchenko A, Ruck EC, Nakov T, Alverson AJ. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta). AMERICAN JOURNAL OF BOTANY 2019; 106:560-572. [PMID: 30958893 DOI: 10.1002/ajb2.1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Loss of photosynthesis is a common and often repeated trajectory in nearly all major groups of photosynthetic eukaryotes. One small subset of "apochloritic" diatoms in the genus Nitzschia have lost their ability to photosynthesize and require extracellular carbon for growth. Similar to other secondarily nonphotosynthetic taxa, apochloritic diatoms maintain colorless plastids with highly reduced plastid genomes. Although the narrow taxonomic breadth of apochloritic Nitzschia suggests a single loss of photosynthesis in their common ancestor, previous phylogenetic analyses suggested that photosynthesis was lost multiple times. METHODS We analyzed genes from the nuclear, plastid, and mitochondrial genomes for a broad set of taxa to test whether photosynthesis was lost one or multiple times in Bacillariales. We also sequenced and characterized the plastid genome of a nonphotosynthetic Nitzschia species. KEY RESULTS Phylogenetic analyses showed that genes from all three genetic compartments either supported or failed to reject monophyly of apochloritic Nitzschia species, consistent with a single loss of photosynthesis in this group. The plastid genomes of two apochloritic Nitzschia are highly similar in all respects, indicating streamlining of the plastid genome before the split of these two species. CONCLUSIONS A better understanding of the phylogeny and ecology of apochloritic Nitzschia, together with emerging genomic resources, will help identify the factors that have driven and maintained the loss of photosynthesis in this group of diatoms. Finally, some habitats host diverse communities of co-occurring nonphotosynthetic diatoms, reflecting resource abundance or resource partitioning in ecologically favorable habitats.
Collapse
Affiliation(s)
- Anastasiia Onyshchenko
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701,, USA
| |
Collapse
|
15
|
Severgnini M, Lazzari B, Capra E, Chessa S, Luini M, Bordoni R, Castiglioni B, Ricchi M, Cremonesi P. Genome sequencing of Prototheca zopfii genotypes 1 and 2 provides evidence of a severe reduction in organellar genomes. Sci Rep 2018; 8:14637. [PMID: 30279542 PMCID: PMC6168571 DOI: 10.1038/s41598-018-32992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Prototheca zopfii (P. zopfii, class Trebouxiophyceae, order Chlorellales, family Chlorellaceae), a non-photosynthetic predominantly free-living unicellular alga, is one of the few pathogens belonging to the plant kingdom. This alga can affect many vertebrate hosts, sustaining systemic infections and diseases such as mastitis in cows. The aim of our work was to sequence and assemble the P. zopfii genotype 1 and genotype 2 mitochondrial and plastid genomes. Remarkably, the P. zopfii mitochondrial (38 Kb) and plastid (28 Kb) genomes are models of compaction and the smallest known in the Trebouxiophyceae. As expected, the P. zopfii genotype 1 and 2 plastid genomes lack all the genes involved in photosynthesis, but, surprisingly, they also lack those coding for RNA polymerases. Our results showed that plastid genes are actively transcribed in P. zopfii, which suggests that the missing RNA polymerases are substituted by nuclear-encoded paralogs. The simplified architecture and highly-reduced gene complement of the P. zopfii mitochondrial and plastid genomes are closer to those of P. stagnora and the achlorophyllous obligate parasite Helicosporidium than to those of P. wickerhamii or P. cutis. This similarity is also supported by maximum likelihood phylogenetic analyses inferences. Overall, the P. zopfii sequences reported here, which include nuclear genome drafts for both genotypes, will help provide both a deeper understanding of the evolution of Prototheca spp. and insights into the corresponding host/pathogen interactions.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Barbara Lazzari
- PTP-Science Park, Lodi, Italy.,Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Stefania Chessa
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Mario Luini
- Lombardy and Emilia Romagna Experimental Zootechnic Institute (IZSLER), Lodi, Italy
| | - Roberta Bordoni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| | - Matteo Ricchi
- Lombardy and Emilia Romagna Experimental Zootechnic Institute (IZSLER), Piacenza, Italy.
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Lodi, Italy
| |
Collapse
|
16
|
Krasovec M, Vancaester E, Rombauts S, Bucchini F, Yau S, Hemon C, Lebredonchel H, Grimsley N, Moreau H, Sanchez-Brosseau S, Vandepoele K, Piganeau G. Genome Analyses of the Microalga Picochlorum Provide Insights into the Evolution of Thermotolerance in the Green Lineage. Genome Biol Evol 2018; 10:2347-2365. [PMID: 30113623 PMCID: PMC6141220 DOI: 10.1093/gbe/evy167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
While the molecular events involved in cell responses to heat stress have been extensively studied, our understanding of the genetic basis of basal thermotolerance, and particularly its evolution within the green lineage, remains limited. Here, we present the 13.3-Mb haploid genome and transcriptomes of a halotolerant and thermotolerant unicellular green alga, Picochlorum costavermella (Trebouxiophyceae) to investigate the evolution of the genomic basis of thermotolerance. Differential gene expression at high and standard temperatures revealed that more of the gene families containing up-regulated genes at high temperature were recently evolved, and less originated at the ancestor of green plants. Inversely, there was an excess of ancient gene families containing transcriptionally repressed genes. Interestingly, there is a striking overlap between the thermotolerance and halotolerance transcriptional rewiring, as more than one-third of the gene families up-regulated at 35 °C were also up-regulated under variable salt concentrations in Picochlorum SE3. Moreover, phylogenetic analysis of the 9,304 protein coding genes revealed 26 genes of horizontally transferred origin in P. costavermella, of which five were differentially expressed at higher temperature. Altogether, these results provide new insights about how the genomic basis of adaptation to halo- and thermotolerance evolved in the green lineage.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France.,Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sheree Yau
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Claire Hemon
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hugo Lebredonchel
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, Biologie Integrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
17
|
Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Sci Rep 2018; 8:940. [PMID: 29343788 PMCID: PMC5772498 DOI: 10.1038/s41598-017-18378-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/02/2022] Open
Abstract
Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis.
Collapse
|
18
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
19
|
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. The Plastid Genome of Polytoma uvella Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles. PLANT PHYSIOLOGY 2017; 173:932-943. [PMID: 27932420 PMCID: PMC5291040 DOI: 10.1104/pp.16.01628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/07/2016] [Indexed: 05/11/2023]
Abstract
The loss of photosynthesis is frequently associated with parasitic or pathogenic lifestyles, but it also can occur in free-living, plastid-bearing lineages. A common consequence of becoming nonphotosynthetic is the reduction in size and gene content of the plastid genome. In exceptional circumstances, it can even result in the complete loss of the plastid DNA (ptDNA) and its associated gene expression system, as reported recently in several lineages, including the nonphotosynthetic green algal genus Polytomella Closely related to Polytomella is the polyphyletic genus Polytoma, the members of which lost photosynthesis independently of Polytomella Species from both genera are free-living organisms that contain nonphotosynthetic plastids, but unlike Polytomella, Polytoma members have retained a genome in their colorless plastid. Here, we present the plastid genome of Polytoma uvella: to our knowledge, the first report of ptDNA from a nonphotosynthetic chlamydomonadalean alga. The P. uvella ptDNA contains 25 protein-coding genes, most of which are related to gene expression and none are connected to photosynthesis. However, despite its reduced coding capacity, the P. uvella ptDNA is inflated with short repeats and is tens of kilobases larger than the ptDNAs of its closest known photosynthetic relatives, Chlamydomonas leiostraca and Chlamydomonas applanata In fact, at approximately 230 kb, the ptDNA of P. uvella represents the largest plastid genome currently reported from a nonphotosynthetic alga or plant. Overall, the P. uvella and Polytomella plastid genomes reveal two very different evolutionary paths following the loss of photosynthesis: expansion and complete deletion, respectively. We hypothesize that recombination-based DNA-repair mechanisms are at least partially responsible for the different evolutionary outcomes observed in such closely related nonphotosynthetic algae.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.)
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.)
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.)
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.)
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| | - David R Smith
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.);
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.);
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (F.F.-M., A.M.N., A.R.-P.);
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma Metropolitana, Vicentina, Mexico City 0934, Mexico (F.F.-M.);
- Biology Department, University of Western Ontario, London, Ontario, Canada N6A 5B7 (D.R.S.); and
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (A.R.-P.)
| |
Collapse
|
20
|
R Marcelino V, Cremen MCM, Jackson CJ, Larkum AAW, Verbruggen H. Evolutionary Dynamics of Chloroplast Genomes in Low Light: A Case Study of the Endolithic Green Alga Ostreobium quekettii. Genome Biol Evol 2016; 8:2939-2951. [PMID: 27566760 PMCID: PMC5633697 DOI: 10.1093/gbe/evw206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Some photosynthetic organisms live in extremely low light environments. Light limitation is associated with selective forces as well as reduced exposure to mutagens, and over evolutionary timescales it can leave a footprint on species’ genomes. Here, we present the chloroplast genomes of four green algae (Bryopsidales, Ulvophyceae), including the endolithic (limestone-boring) alga Ostreobium quekettii, which is a low light specialist. We use phylogenetic models and comparative genomic tools to investigate whether the chloroplast genome of Ostreobium corresponds to our expectations of how low light would affect genome evolution. Ostreobium has the smallest and most gene-dense chloroplast genome among Ulvophyceae reported to date, matching our expectation that light limitation would impose resource constraints reflected in the chloroplast genome architecture. Rates of molecular evolution are significantly slower along the phylogenetic branch leading to Ostreobium, in agreement with the expected effects of low light and energy levels on molecular evolution. We expected the ability of Ostreobium to perform photosynthesis in very low light to be associated with positive selection in genes related to the photosynthetic machinery, but instead, we observed that these genes may be under stronger purifying selection. Besides shedding light on the genome dynamics associated with a low light lifestyle, this study helps to resolve the role of environmental factors in shaping the diversity of genome architectures observed in nature.
Collapse
Affiliation(s)
| | | | | | - Anthony A W Larkum
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, NSW 2007, Australia
| | | |
Collapse
|