1
|
Rowe C, Santiago N, Warner J, Tsytsarev V, Rozhkova EA, Ngwu-Hyacinth O, Bolding M. Human perception of ionizing radiation. Phys Life Rev 2025; 53:1-21. [PMID: 39987784 DOI: 10.1016/j.plrev.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Here we address the question of whether humans can perceive ionizing radiation. We conducted a thorough review of the clinical and experimental literature related to ionizing radiation, with a focus on its acute effects. Specifically, we examined the three domains of X-ray perception found in animals (abdominal, olfactory, and retinal), which led us to instances of ionizing radiation-induced hearing and taste sensory phenomena in humans thus suggesting that humans can perceive X-rays across various sensory modalities via multiple mechanisms. We also analyzed literature to understand the mechanisms associated with reported symptoms, this led us to the concept of radiomodulation, an understudied modulatory effect of sub-ablative ionizing radiation doses on neurons. Based on this review of the literature we propose the hypothesis that a significant radiomodulation mechanism is the formation of reactive oxygen species from radiolysis which activates immune and sensory signal transduction mechanisms specifically related to the redox activity in TRP and K+ channels. Additionally, we find evidence to support the previous claims of perception stemming from Cherenkov radiation and ozone production which are perceived using canonical sensory modalities. Finally, for we provide a concise summary of the applications of ionizing radiation in clinical imaging and therapy, as well as prospects for future developments of radiation technologies for biomedical and fundamental research.
Collapse
Affiliation(s)
- Caleb Rowe
- Department of Surgery, University of Alabama at Birmingham, United States
| | - Nathan Santiago
- Department of Immunology, University of Alabama at Birmingham, United States
| | - Jeffrey Warner
- Department of Ophthalmology, University of Alabama at Birmingham, United States
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, United States
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, United States
| | | | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, United States.
| |
Collapse
|
2
|
Matsumoto T, Matsumoto K, Tatsuno I, Sakuragawa C, Hiwatashi A, Hasegawa T, Tomita M, Iwata H. Time-dose reciprocity mechanism for the inactivation of Escherichia coli using X-ray irradiation. Sci Rep 2025; 15:14803. [PMID: 40295535 PMCID: PMC12037914 DOI: 10.1038/s41598-025-96461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
The time-dose reciprocity has long been a cornerstone in understanding ultraviolet (UV) sterilization. However, recent studies have demonstrated significant deviations from this law, attributed to complex mechanisms involving reactive oxygen species (ROS). This study investigates whether similar deviations occur at much shorter wavelengths of electromagnetic radiation than UV, specifically in the X-ray region, with a focus on the dose-rate dependence of bacterial inactivation. Using Escherichia coli as a model organism, it is found that dose-rate effects were highly dependent on the bacterial growth phase. In the stationary phase, lower dose rates with prolonged irradiation resulted in greater inactivation efficacy. The inactivation ratio obtained by the dose rate of 15.3 mGy/s shows more than 3 times larger than that obtained by the dose rate of 147 mGy/s at the dose of 200 Gy, which is consistent with findings from previous UV studies. On the other hand, in the exponential phase, higher dose rates with shorter irradiation durations were more effective. The inactivation ratio obtained by the dose rate of 147 mGy/s shows 40 times larger than that obtained by the dose rate of 15.3 mGy/s at the dose of 200 Gy. These results can be effectively explained by a stochastic multi-hit model that accounts for three terms of linearly proportional to dose, nonlinearly proportional to dose, and binary fission. This work bridges fundamental physical biology with practical applications, such as gamma sterilization, offering a robust framework for optimizing dose-rate strategies across diverse fields.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| | - Kazuhisa Matsumoto
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Ichiro Tatsuno
- Department of Microbiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Chiyori Sakuragawa
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan
| | - Akio Hiwatashi
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Department of Microbiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University Wese Medical Center, Nagoya, 462-8508, Japan
| |
Collapse
|
3
|
Sakae T, Takada K, Kamizawa S, Terunuma T, Ando K. Formulation of Time-Dependent Cell Survival with Saturable Repairability of Radiation Damage. Radiat Res 2023; 200:139-150. [PMID: 37303133 DOI: 10.1667/rade-21-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.
Collapse
Affiliation(s)
- Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kenta Takada
- Graduate School of Radiology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Satoshi Kamizawa
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Ando
- Gunma University Heavy Ion Medical Center, 3-39, Showamachi, Maebashi, Gunma 371-0034, Japan
| |
Collapse
|
4
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
Zhao L, Tang A, Long F, Mi D, Sun Y. Modeling of ionizing radiation-induced chromosome aberration and tumor prevalence based on two classes of DNA double-strand breaks clustering in chromatin domains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115038. [PMID: 37229870 DOI: 10.1016/j.ecoenv.2023.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
There has been some controversy over the use of radiobiological models when modeling the dose-response curves of ionizing radiation (IR)-induced chromosome aberration and tumor prevalence, as those curves usually show obvious non-targeted effects (NTEs) at low doses of high linear energy transfer (LET) radiation. The lack of understanding the contribution of NTEs to IR-induced carcinogenesis can lead to distinct deviations of relative biological effectiveness (RBE) estimations of carcinogenic potential, which are widely used in radiation risk assessment and radiation protection. In this work, based on the initial pattern of two classes of IR-induced DNA double-strand breaks (DSBs) clustering in chromatin domains and the subsequent incorrect repair processes, we proposed a novel radiobiological model to describe the dose-response curves of two carcinogenic-related endpoints within the same theoretical framework. The representative experimental data was used to verify the consistency and validity of the present model. The fitting results indicated that, compared with targeted effect (TE) and NTE models, the current model has better fitting ability when dealing with the experimental data of chromosome aberration and tumor prevalence induced by multiple types of IR with different LETs. Notably, the present model without introducing an NTE term was adequate to describe the dose-response curves of IR-induced chromosome aberration and tumor prevalence with NTEs in low-dose regions. Based on the fitting parameters, the LET-dependent RBE values were calculated for three given low doses. Our results showed that the RBE values predicted by the current model gradually decrease with the increase of doses for the endpoints of chromosome aberration and tumor prevalence. In addition, the calculated RBE was also compared with those evaluated from other models. These analyses show that the proposed model can be used as an alternative tool to well describe dose-response curves of multiple carcinogenic-related endpoints and effectively estimate RBE in low-dose regions.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Aiping Tang
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Fei Long
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| |
Collapse
|
6
|
Matsumoto T, Tatsuno I, Yoshida Y, Tomita M, Hasegawa T. Time-dose reciprocity mechanism for the inactivation of Escherichia coli explained by a stochastic process with two inactivation effects. Sci Rep 2022; 12:22588. [PMID: 36585428 PMCID: PMC9801147 DOI: 10.1038/s41598-022-26783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
There is a great demand for developing and demonstrating novel disinfection technologies for protection against various pathogenic viruses and bacteria. In this context, ultraviolet (UV) irradiation offers an effective and convenient method for the inactivation of pathogenic microorganisms. The quantitative evaluation of the efficacy of UV sterilization relies on the simple time-dose reciprocity law proposed by Bunsen-Roscoe. However, the inactivation rate constants reported in the literature vary widely, even at the same dose and wavelength of irradiation. Thus, it is likely that the physical mechanism of UV inactivation cannot be described by the simple time-dose reciprocity law but requires a secondary inactivation process, which must be identified to clarify the scientific basis. In this paper, we conducted a UV inactivation experiment with Escherichia coli at the same dose but with different irradiances and irradiation durations, varying the irradiance by two to three orders of magnitude. We showed that the efficacy of inactivation obtained by UV-light emitting diode irradiation differs significantly by one order of magnitude at the same dose but different irradiances at a fixed wavelength. To explain this, we constructed a stochastic model introducing a second inactivation rate, such as that due to reactive oxygen species (ROS) that contribute to DNA and/or protein damage, together with the fluence-based UV inactivation rate. By solving the differential equations based on this model, the efficacy of inactivation as a function of the irradiance and irradiation duration under the same UV dose conditions was clearly elucidated. The proposed model clearly shows that at least two inactivation rates are involved in UV inactivation, where the generally used UV inactivation rate does not depend on the irradiance, but the inactivation rate due to ROS does depend on the irradiance. We conclude that the UV inactivation results obtained to date were simply fitted by one inactivation rate that superimposed these two inactivation rates. The effectiveness of long-term UV irradiation at a low irradiance but the same dose provides useful information for future disinfection technologies such as the disinfection of large spaces, for example, hospital rooms using UV light, because it can reduce the radiation dose and its risk to the human body.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| | - Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yukiya Yoshida
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| |
Collapse
|
7
|
Cordoni FG, Missiaggia M, La Tessa C, Scifoni E. Multiple levels of stochasticity accounted for in different radiation biophysical models: from physics to biology. Int J Radiat Biol 2022; 99:807-822. [PMID: 36448923 DOI: 10.1080/09553002.2023.2146230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
PURPOSE In the present paper we investigate how some stochastic effects are included in a class of radiobiological models with particular emphasis on how such randomnesses reflect into the predicted cell survival curve. MATERIALS AND METHODS We consider four different models, namely the Generalized Stochastic Microdosimetric Model GSM2, in its original full form, the Dirac GSM2 the Poisson GSM2 and the Repair-Misrepair Model (RMR). While GSM2 and the RMR models are known in literature, the Dirac and the Poisson GSM2 have been newly introduced in this work. We further numerically investigate via Monte Carlo simulation of four different particle beams, how the proposed stochastic approximations reflect into the predicted survival curves. To achieve these results, we consider different ion species at energies of interest for therapeutic applications, also including a mixed field scenario. RESULTS We show how the Dirac GSM2, the Poisson GSM2 and the RMR can be obtained from the GSM2 under suitable approximations on the stochasticity considered. We analytically derive the cell survival curve predicted by the four models, characterizing rigorously the high and low dose limits. We further study how the theoretical findings emerge also using Monte Carlo numerical simulations. CONCLUSIONS We show how different models include different levels of stochasticity in the description of cellular response to radiation. This translates into different cell survival predictions depending on the radiation quality.
Collapse
Affiliation(s)
- Francesco G. Cordoni
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- TIFPA-INFN, Trento, Italy
| | - Marta Missiaggia
- TIFPA-INFN, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Chiara La Tessa
- TIFPA-INFN, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | | |
Collapse
|
8
|
Rastorgueva E, Liamina D, Panchenko I, Iurova E, Beloborodov E, Pogodina E, Dmitrii S, Slesarev S, Saenko Y. The effect of chromosome abnormalities on expression of SnoRNA in radioresistant and radiosensitive cell lines after irradiation. Cancer Biomark 2022; 34:545-553. [PMID: 35275519 DOI: 10.3233/cbm-210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In this paper, we have studied the role of chromosomal abnormalities in the expression of small nucleolar RNAs (snoRNAs) of radioresistant (K562) and radiosensitive (HL-60) leukemia cell line. Cells were exposed to an X-ray dose of 4 Gy. SnoRNA expression was investigated using NGS sequencing. The distribution of expressed snoRNAs on chromosomes has been found to be different for two cell lines. The most significant differences in the expression of snoRNAs were found in the K562 cell line based on the analysis of the dynamics of log2fc values. The type of clustering, the number and type of snoRNAs slightly differed in the chromosomes with trisomy and monosomy and had a pronounced difference in pairs with marker chromosomes in both cell lines. In this study, we have demonstrated that chromosomal abnormalities alter the expression of snoRNA after irradiation. Trisomies and monosomies do not have such a noticeable effect on the expression of snoRNAs as the presence of marker chromosomes.
Collapse
Affiliation(s)
- Eugenia Rastorgueva
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian.,Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russian
| | - Daria Liamina
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian
| | - Ivan Panchenko
- Second Surgical Department, Ulyanovsk Oncology Center, Ulyanovsk, Russian
| | - Elena Iurova
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian
| | - Evgenii Beloborodov
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian
| | - Evgeniya Pogodina
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian
| | - Sugak Dmitrii
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian
| | - Sergei Slesarev
- Department of Biology, Ecology and Natural Resources Management, Faculty of Ecology, Ulyanovsk State University, Ulyanovsk, Russia
| | - Yury Saenko
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, Ulyanovsk, Russian
| |
Collapse
|
9
|
Zhao L, Tian J, Borasi G, Mi D, Sun Y. Improved Asymptotic Expansions in High- and Low-Dose Ranges for Generalized Multi-Hit Model of Radiation-Induced Cell Survival. Radiat Res 2021; 196:306-314. [PMID: 34143217 DOI: 10.1667/rade-20-00227.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/24/2021] [Indexed: 11/03/2022]
Abstract
By considering an upper bound on the number of radiation-induced potential lethal damages that can be repaired in a cell, we have proposed the generalized multi-hit (GMH) model with a closed-form solution, which can better fit various radiation-induced cell survival curves. Recent analysis shows that the asymptotic expansions that we gave before can be used to approximate the generalized single-hit single-target (GSHST) model rather than the GMH model. To illustrate the asymptotic trends of radiation-induced cell survival curves, in this study, we improve the asymptotic expansions of the GMH model in low- and high-dose ranges based on the limit formula of the incomplete gamma function in the corresponding dose ranges. When the upper limit of the number of radiation-induced potential lethal damages is one, the improved expansions of the GMH model can be reduced to the previous expansions of the GSHST model, and the improved asymptotic expansions of the GMH model also indicate that the GMH model has the generalized linear-quadratic-linear (LQL) feature. The numerical simulations indicate that the improved asymptotic expansions in high- and low-dose ranges agree well with the non-linear fitting of the GMH model in six kinds of cell lines under the corresponding dose ranges. In addition, we analyze the relative errors of the improved expansions of the GMH model in high- and low-dose ranges to demonstrate the accuracy and effectiveness of the improved expansions. Based on the error analysis, we further give the reasonable ranges of radiation dose applicable to the improved asymptotic expansions of the GMH model.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Jiahuan Tian
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Giovanni Borasi
- University of Milano-Bicocca, Department of Medicine, Reggio Emilia, 42123, Italy
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| |
Collapse
|
10
|
Abolaban FA, Djouider FM. Gamma irradiation-mediated inactivation of enveloped viruses with conservation of genome integrity: Potential application for SARS-CoV-2 inactivated vaccine development. Open Life Sci 2021; 16:558-570. [PMID: 34131589 PMCID: PMC8174122 DOI: 10.1515/biol-2021-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Radiation inactivation of enveloped viruses occurs as the result of damages at the molecular level of their genome. The rapidly emerging and ongoing coronavirus disease 2019 (COVID-19) pneumonia pandemic prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now a global health crisis and an economic devastation. The readiness of an active and safe vaccine against the COVID-19 has become a race against time in this unqualified global panic caused by this pandemic. In this review, which we hope will be helpful in the current situation of COVID-19, we analyze the potential use of γ-irradiation to inactivate this virus by damaging at the molecular level its genetic material. This inactivation is a vital step towards the design and development of an urgently needed, effective vaccine against this disease.
Collapse
Affiliation(s)
- Fouad A. Abolaban
- Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, PO Box 80204, Jeddah, 21589, Saudi Arabia
| | - Fathi M. Djouider
- Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, PO Box 80204, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4834965. [PMID: 32908893 PMCID: PMC7468606 DOI: 10.1155/2020/4834965] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Ionising radiation- (IR-) induced DNA double-strand breaks (DSBs) are considered to be the deleterious DNA lesions that pose a serious threat to genomic stability. The major DNA repair pathways, including classical nonhomologous end joining, homologous recombination, single-strand annealing, and alternative end joining, play critical roles in countering and eliciting IR-induced DSBs to ensure genome integrity. If the IR-induced DNA DSBs are not repaired correctly, the residual or incorrectly repaired DSBs can result in genomic instability that is associated with certain human diseases. Although many efforts have been made in investigating the major mechanisms of IR-induced DNA DSB repair, it is still unclear what determines the choices of IR-induced DNA DSB repair pathways. In this review, we discuss how the mechanisms of IR-induced DSB repair pathway choices can operate in irradiated cells. We first briefly describe the main mechanisms of the major DNA DSB repair pathways and the related key repair proteins. Based on our understanding of the characteristics of IR-induced DNA DSBs and the regulatory mechanisms of DSB repair pathways in irradiated cells and recent advances in this field, We then highlight the main factors and associated challenges to determine the IR-induced DSB repair pathway choices. We conclude that the type and distribution of IR-induced DSBs, chromatin state, DNA-end structure, and DNA-end resection are the main determinants of the choice of the IR-induced DNA DSB repair pathway.
Collapse
|
12
|
Zhao L, Bao C, Shang Y, He X, Ma C, Lei X, Mi D, Sun Y. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: doi.org/10.1155/2020/4834965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionising radiation- (IR-) induced DNA double-strand breaks (DSBs) are considered to be the deleterious DNA lesions that pose a serious threat to genomic stability. The major DNA repair pathways, including classical nonhomologous end joining, homologous recombination, single-strand annealing, and alternative end joining, play critical roles in countering and eliciting IR-induced DSBs to ensure genome integrity. If the IR-induced DNA DSBs are not repaired correctly, the residual or incorrectly repaired DSBs can result in genomic instability that is associated with certain human diseases. Although many efforts have been made in investigating the major mechanisms of IR-induced DNA DSB repair, it is still unclear what determines the choices of IR-induced DNA DSB repair pathways. In this review, we discuss how the mechanisms of IR-induced DSB repair pathway choices can operate in irradiated cells. We first briefly describe the main mechanisms of the major DNA DSB repair pathways and the related key repair proteins. Based on our understanding of the characteristics of IR-induced DNA DSBs and the regulatory mechanisms of DSB repair pathways in irradiated cells and recent advances in this field, We then highlight the main factors and associated challenges to determine the IR-induced DSB repair pathway choices. We conclude that the type and distribution of IR-induced DSBs, chromatin state, DNA-end structure, and DNA-end resection are the main determinants of the choice of the IR-induced DNA DSB repair pathway.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Chengyu Bao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| | - Chiyuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026 Liaoning, China
| |
Collapse
|
13
|
Zhao L, Chen X, Tian J, Shang Y, Mi D, Sun Y. Generalized Multi-Hit Model of Radiation-Induced Cell Survival with a Closed-Form Solution: An Alternative Method for Determining Isoeffect Doses in Practical Radiotherapy. Radiat Res 2020; 193:359-371. [PMID: 32031917 DOI: 10.1667/rr15505.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The standard linear-quadratic (LQ) model is currently the preferred model for describing the ionizing radiation-induced cell survival curves and tissue responses. And the LQ model is also widely used to calculate isoeffect doses for comparing different fractionated schemes in clinical radiotherapy. Despite its ubiquity, because the actual dose-response curve may appear linear at high doses in the semilogarithmic plot, the application of the LQ model is greatly challenged in the high-dose region, while the dose employed in stereotactic body radiotherapy (SBRT) is often in this area. Alternatively, the biophysical models of radiation-induced effects with a linear-quadratic-linear (LQL) characteristic can well fit the dose-survival curve of cells in vitro. However, most of these LQL models are phenomenological and have not fully considered the biophysical mechanism of radiation-induced damage and repair, and the fitting quality decreases in some high-dose ranges. In this work, to provide an alternative model to describe the cell survival curves in high-dose ranges and predict the biologically effective dose (BED) for SBRT, we propose a novel generalized multi-hit model with a closed-form solution by considering an upper bound on the number of lethal damages induced by radiation that can be repaired in a cell. This model has a clear biophysical basis and a simple expression, and also has the LQL characteristic under low- and high-dose approximate conditions. The experimental data fitting indicated that compared to the standard LQ model and our previously generalized target model, the current model can better fit the radiation-induced cell survival curves in the high-dose ranges (P < 0.05). The current model parameters and parameter ratios were determined from the fits in different kinds of cell lines irradiated with various dose rates and linear energy transfer (LET), which indicates that the model parameters significantly depend on the dose rate and LET. Based on the current model, we derived two equivalence formulae for the BED calculations in the low- and high-dose ranges, and then calculated the BED for the clinical data of SBRT from 17 selected studies. The correlation analysis showed that there were significant linear correlations between the BED at isocenter and planning target volume (PTV) edge calculated by this model and the LQ model (R > 0.86, P < 0.001). In conclusion, the generalized multi-hit model proposed in this work can be used as an alternative tool to handle in vitro radiation-induced cell survival curves in high-dose ranges, and calculate the in vivo BED for comparing the dose fractionation schemes in clinical radiotherapy.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Xinpeng Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Jiahuan Tian
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| |
Collapse
|
14
|
Hasse FC, Koerber SA, Prigge ES, Liermann J, von Knebel Doeberitz M, Debus J, Sterzing F. Overcoming radioresistance in WiDr cells with heavy ion irradiation and radiosensitization by 2-deoxyglucose with photon irradiation. Clin Transl Radiat Oncol 2019; 19:52-58. [PMID: 31517070 PMCID: PMC6733777 DOI: 10.1016/j.ctro.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/31/2022] Open
Abstract
2-DG acts as a radiosensitizer to photons depending on the time of its application. There is no sensitization to 12C irradiation by 2-DG. 12C combination therapy still has the higher dose effectiveness.
Background and purpose Radiosensitizers and heavy ion irradiation could improve therapy for female patients with malignant tumors located in the pelvic region through dose reduction. Aim of the study was to investigate the radiosensitizing potential of 2-deoxy-d-glucose (2-DG) in combination with carbon ion-irradiation (12C) in representative cell lines of cancer in the female pelvic region. Materials and methods The human cervix carcinoma cell line CaSki and the colorectal carcinoma cell line WiDr were used. 2-DG was employed in two different settings, pretreatment and treatment simultaneous to irradiation. Clonogenic survival, α and β values for application of the linear quadratic model and relative biological effectiveness (RBE) were determined. ANOVA tests were used for statistical group comparison. Isobolograms were generated for curve comparisons. Results The comparison of monotherapy with 12C versus photons yielded RBE values of 2.4 for CaSki and 3.5 for WiDr along with a significant increase of α values in the 12C setting. 2-DG monotherapy reduced the colony formation of both cell lines. Radiosensitization was found in WiDr for the combination of photon irradiation with synchronous application of 2-DG. The same setup for 12C showed no radiosensitization, but rather an additive effect. In all settings with CaSki, the combination of irradiation and 2-DG exhibited additive properties. Conclusion The combination of 2-DG and photon therapy, as well as irradiation with carbon ions can overcome radioresistance of tumor cells such as WiDr.
Collapse
Affiliation(s)
- Felix Christian Hasse
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Elena Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Zhao L, He X, Chen X, Shang Y, Mi D, Sun Y. Fitting the Generalized Target Model to Cell Survival Data of Proton Radiation Reveals Dose-Dependent RBE and Inspires an Alternative Method to Estimate RBE in High-Dose Regions. Radiat Res 2019; 192:507-516. [PMID: 31418641 DOI: 10.1667/rr15428.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The imprecise estimation of the relative biological effectiveness (RBE) of proton radiation has been one of the main challenges for further calculating the biologically effective dose in proton therapy. Since dose levels can greatly influence the proton RBE, the relationship between the two should be clarified first. In addition, since the dose-response curves are usually too complex to readily assess RBE in high-dose regions, a reliable and simple method is needed to predict the RBE of proton radiation accurately in clinically relevant doses. The standard linear-quadratic (LQ) model is widely used to determine the RBE of particles for clinical applications. However, there has been some debate over its use when modeling the cell survival curves in high-dose regions, since those survival curves usually show linear behavior in the semilogarithmic plot. By considering both cellular repair effects and indirect effects of radiation, we have proposed a generalized target model with linear-quadratic linear (LQL) characteristics. For the more accurate evaluation of proton RBE in radiotherapy, here we used this generalized target model to fit the cell survival data in V79 and C3H 10T1/2 cells exposed to proton radiation with different LETs. The fitting results show that the generalized target model works as well as the LQ model in general. Based on the fitting parameters of the generalized target model, the RBE of six given doses DT (RBET) could be calculated in the corresponding cell lines with different LETs. The results show that the RBET gradually decreases with increased dose in both cell types. In addition, inspired by the calculation method of the maximum values of RBE (RBEM) in the low-dose region, a novel method was proposed for estimating the RBE in the high-dose region (RBEH) based on the slope ratio of the dose-response curves in this region. Linear regression analysis indicated a significant linear correlation between the proposed RBEH and the RBET in high-dose regions, which suggests that the current method can be used as an alternative tool, which is both simple and robust, to estimate RBE in high-dose regions.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Xinpeng Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| |
Collapse
|
16
|
Mechanistic Modelling of Radiation Responses. Cancers (Basel) 2019; 11:cancers11020205. [PMID: 30744204 PMCID: PMC6406300 DOI: 10.3390/cancers11020205] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
Radiobiological modelling has been a key part of radiation biology and therapy for many decades, and many aspects of clinical practice are guided by tools such as the linear-quadratic model. However, most of the models in regular clinical use are abstract and empirical, and do not provide significant scope for mechanistic interpretation or making predictions in novel cell lines or therapies. In this review, we will discuss the key areas of ongoing mechanistic research in radiation biology, including physical, chemical, and biological steps, and review a range of mechanistic modelling approaches which are being applied in each area, highlighting the possible opportunities and challenges presented by these techniques.
Collapse
|
17
|
McMahon SJ. The linear quadratic model: usage, interpretation and challenges. ACTA ACUST UNITED AC 2018; 64:01TR01. [DOI: 10.1088/1361-6560/aaf26a] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
19
|
Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, Li J. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep 2018; 8:16202. [PMID: 30385845 PMCID: PMC6212584 DOI: 10.1038/s41598-018-34159-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
A mechanistic model of cellular survival following radiation-induced DNA double-strand breaks (DSBs) was proposed in this study. DSBs were assumed as the initial lesions in the DNA of the cell nucleus induced by ionizing radiation. The non-homologous end-joining (NHEJ) pathway was considered as the domain pathway of DSB repair in mammalian cells. The model was proposed to predict the relationship between radiation-induced DSBs in nucleus and probability of cell survival, which was quantitatively described by two input parameters and six fitting parameters. One input parameter was the average number of primary particles which caused DSB, the other input parameter was the average number of DSBs yielded by each primary particle that caused DSB. The fitting parameters were used to describe the biological characteristics of the irradiated cells. By determining the fitting parameters of the model with experimental data, the model is able to estimate surviving fractions for the same type of cells exposed to particles with different physical parameters. The model further revealed the mechanism of cell death induced by the DSB effect. Relative biological effectiveness (RBE) of charged particles at different survival could be calculated with the model, which would provide reference for clinical treatment.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Chunyan Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China.
| | - Yizheng Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| |
Collapse
|
20
|
Hahn MB, Meyer S, Schröter MA, Seitz H, Kunte HJ, Solomun T, Sturm H. Direct electron irradiation of DNA in a fully aqueous environment. Damage determination in combination with Monte Carlo simulations. Phys Chem Chem Phys 2018; 19:1798-1805. [PMID: 28059422 DOI: 10.1039/c6cp07707b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D1/2 = 1.7 ± 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- Free University Berlin, Department of Physics, D-14195 Berlin, Germany. and Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Susann Meyer
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and University of Potsdam, Institute of Biochemistry and Biology, D-14476 Potsdam, Germany
| | | | - Harald Seitz
- Fraunhofer-Institut für Zelltherapie und Immunologie, Institutsteil Bioanalytik und Bioprozesse, D-14476 Potsdam, Germany
| | - Hans-Jörg Kunte
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Tihomir Solomun
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and Technical University Berlin, D-10587 Berlin, Germany
| |
Collapse
|
21
|
Kimler BF. Keep your eye on the target<sup/>. Int J Radiat Biol 2017; 94:756-758. [PMID: 29035121 DOI: 10.1080/09553002.2017.1393580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper provides a historical perspective on the origin and development of Target Theory and how its central concepts have influenced the thought processes of radiation biologists for almost a century.
Collapse
Affiliation(s)
- Bruce F Kimler
- a Department of Radiation Oncology , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
22
|
Zhao L, Mi D, Sun Y. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution. J Theor Biol 2017; 420:135-143. [PMID: 28284991 DOI: 10.1016/j.jtbi.2017.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 01/26/2023]
Abstract
The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, PR China
| | - Dong Mi
- Department of Physics, Dalian Maritime University, Dalian, Liaoning, PR China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, PR China.
| |
Collapse
|
23
|
Zhao L, Wu D, Mi D, Sun Y. Radiosensitivity and relative biological effectiveness based on a generalized target model. JOURNAL OF RADIATION RESEARCH 2017; 58:8-16. [PMID: 27422933 PMCID: PMC5321180 DOI: 10.1093/jrr/rrw062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 05/09/2023]
Abstract
By considering both cellular repair effects and indirect effects of radiation, we have generalized the traditional target model, and made it have a linear-quadratic-linear characteristic. To assess the repair capacity-dependent radiosensitivity and relative biological effectiveness (RBE), the generalized target model was used to fit the survival of human normal embryonic lung fibroblast MRC-5 cells in the G0 and G1 phases after various types of radiations. The fitting results indicate that the generalized target model works well in the dose ranges considered. The resulting calculations qualitatively show that the parameter ratio (a/V) in the model could represent the cellular repair capacity. In particular, the significant linear correlations between radiosensitivity/RBE and cellular repair capacity are observed for different slopes of the linear regression curves. These results show that the radiosensitivity and RBE depend on the cellular repair capacity and can be regulated by linear energy transfer. These analyses suggest that the ratio a/V in the generalized target model can also be used for radiation damage assessment in radiotherapy.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, PR China
| | - Di Wu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, PR China
| | - Dong Mi
- Department of Physics, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, Liaoning, 116026, PR China
| |
Collapse
|