1
|
Yan Q, Wang S, Guan K, Guan X, He L. Cathodoluminescence and tip-plasmon resonance of Bi2Te3 triangular nanostructures. PLoS One 2024; 19:e0291251. [PMID: 38241382 PMCID: PMC10798455 DOI: 10.1371/journal.pone.0291251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 01/21/2024] Open
Abstract
Bi2Te3, as a topological insulator, is able to support plasmonic emission in the visible spectral range. Thin Bi2Te3 flakes can be exfoliated directly from a Bi2Te3 crystal, and the shape of Bi2Te3 flakes can be further modified by focused ion beam milling. Therefore, we have designed a Bi2Te3 triangular antenna with distinct tip angles for the application of plasmonic resonance. The plasmonic emission of the Bi2Te3 triangular antenna is excited and investigated by cathodoluminescence in the scanning electron microscope. Enhanced tip plasmons have been observed from distinct tips with angles of 20º, 36º, 54º, 70º, and 90º, respectively. Due to the confinement of geometric boundaries for oscillating charges, the resonant peak position of tip plasmon with a smaller angle has a blue shift. Moreover, the dependence of plasmonic behavior on the excitation position has been discovered as well. This research provides a unique approach to fabricate Bi2Te3 nanostructures and manipulate the corresponding plasmonic properties.
Collapse
Affiliation(s)
- Qigeng Yan
- Department of Physics, Baoding University, Baoding, Hebei, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Siyuan Wang
- Department of Science and Research, Baoding University, Baoding, Hebei, China
| | - Kuiwen Guan
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Xiaojin Guan
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Lei He
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
2
|
Ku YC, Kuo MK, Liaw JW. Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:61. [PMID: 38202516 PMCID: PMC10781037 DOI: 10.3390/nano14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The streamlines of the energy flux (Poynting vectors) and chirality flux as well as the intensity of the electric field around various plasmonic nanostructures (nanocube, nanocuboid, nanotriangle, hexagonal nanoplate and bowtie nanoantenna) induced by a circularly polarized (CP) or linearly polarized (LP) light were studied theoretically. The boundary element method combined with the method of moment was used to solve a set of surface integral equations, based on the Stratton-Chu formulation, for analyzing the highly distorted electromagnetic (EM) field in the proximity of these nanostructures. We discovered that the winding behavior of these streamlines exhibits versatility for various modes of the surface plasmon resonance of different nanostructures. Recently, using plasmonic nanostructures to facilitate a photochemical reaction has gained significant attention, where the hot carriers (electrons) play important roles. Our findings reveal a connection between the flow pattern of energy flux and the morphology of the photochemical deposition around various plasmonic nanostructures irradiated by a CP light. For example, numerical results exhibit vertically helical streamlines of the Poynting vector around an Au nanocube and transversely twisted-roll streamlines around a nanocuboid. Additionally, the behaviors of the winding energy and chirality fluxes at the gap and corners of a plasmonic bowtie nanoantenna, implying a highly twisted EM field, depend on the polarization of the incident LP light. Our analysis of the streamlines of the Poynting vector and chirality flux offers an insight into the formation of plasmon-enhanced photocatalysis.
Collapse
Affiliation(s)
- Yun-Cheng Ku
- Department of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan 333, Taiwan;
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Mao-Kuen Kuo
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan 333, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Proton and Radiation Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
3
|
Najem M, Carcenac F, Coutaud L, Mouhibi M, Taliercio T, Gonzalez-Posada F. Honeycomb-like aluminum antennas for surface-enhanced infrared absorption sensing. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2199-2212. [PMID: 39634040 PMCID: PMC11501651 DOI: 10.1515/nanoph-2023-0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 12/07/2024]
Abstract
Surface-enhanced infrared absorption (SEIRA) spectroscopy is a competent method to detect trace quantity of molecules and even protein conformational flexibility by enhancing their vibrational modes. To improve the spectroscopy features, we propose a surface with honeycomb-like (HC) arrangement of aluminum equilateral triangles within a metal-insulator-metal configuration. With adjustable geometric parameters, the HC nanoantennas allow a tunable and wide spectral coverage in the IR. The reflectance measurements correlate extremely well with the numerical simulations. Being compact and insensitive to the light polarization, the HC are appealing for boosting the signal-to-noise ratio and increasing the number of hotspots as required for sensing applications. These nanoantennas are thus suitable for accurate and broadband SEIRA sensing via a spectral overlap between the large plasmonic resonances and the narrow IR vibrational modes of our analyte (vanillin). In line with our previously studied bowties nanoantennas, we demonstrate, using HC, SEIRA enhancement factors greater than 107 achieved at a tuning ratio below 1 stating the best spectral overlap. Around 104 molecules are sensed per HC tip. The investigation results are matching the best-reported SEIRA studies. These findings pave the way toward sensitive, adaptable, and miniaturized IR spectroscopy devices for vital applications like biosensing and environmental monitoring.
Collapse
Affiliation(s)
- Melissa Najem
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Franck Carcenac
- CNRS Laboratory for Systems Analysis and Architecture, Toulouse, Occitanie, France
| | - Luka Coutaud
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Mohamed Mouhibi
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Thierry Taliercio
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Fernando Gonzalez-Posada
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| |
Collapse
|
4
|
Hu XL, Li F, Chen GH, Tang LY, Liu WJ. High-performance plasmonic polymer modulators through mode hybridization and electro-thermomechanical effects. OPTICS LETTERS 2023; 48:964-967. [PMID: 36790986 DOI: 10.1364/ol.482028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
In this work, an electro-optical polymer modulator with double-layered gold nanostrips, a polymer nanograting, and a metal substrate is proposed and designed. Interestingly, mode hybridization between the Fabry-Pérot (F-P) and anti-bonding modes is formed, and strongly depends on the nanograting size, which can be controllably modulated by an injection current. The simulation and calculation results show that the temperature sensitivity and large structural sensitivity for the polymer modulator could remain constant during the current-tuning process, and a near-zero reflectance and a low linewidth of 13.8 nm in the red region corresponding to a high quality (Q) factor of 51 is achieved. In addition, a large redshift of 60.7 nm and a super-high modulation depth of 424 are obtained at only 8 µA.
Collapse
|
5
|
Verma S, Rahman B. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. SENSORS (BASEL, SWITZERLAND) 2023; 23:1290. [PMID: 36772328 PMCID: PMC9921925 DOI: 10.3390/s23031290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications.
Collapse
|
6
|
Luo X, Yue W, Zhang S, Liu H, Chen Z, Qiao L, Wu C, Li P, He Y. SARS-CoV-2 proteins monitored by long-range surface plasmon field-enhanced Raman scattering with hybrid bowtie nanoaperture arrays and nanocavities. LAB ON A CHIP 2023; 23:388-399. [PMID: 36621932 DOI: 10.1039/d2lc01006b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The identification of biomacromolecules by using surface-enhanced Raman scattering (SERS) remains a challenge because of the near-field effect of traditional substrates. Long-range surface plasmon resonance (LRSPR) is a special type of surface optical phenomenon that provides higher electromagnetic field enhancement and longer penetration depth than conventional surface plasmon resonance. To break the limit of SERS detection distance and obtain a SERS substrate with increased enhancement ability, a bowtie nanoaperture array was sandwiched between two symmetric dielectric environments. Then, an Au mirror was inserted to form a metal-insulator-metal configuration. Finite-difference time-domain simulations revealed that numerous hybrid modes can be provided by this novel configuration (denoted as long-range SERS [LR-SERS] substrate). In particular, the LRSPR mode can be excited and reach the maximum value through the regulation of the polarizations of the incident light and the geometrical parameters of the LR-SERS substrate. The optimized LR-SERS substrate was then applied to detect SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. This substrate displayed ultralow detection limits of ∼9.2 and ∼11.3 pg mL-1 for the S and N proteins, respectively. Moreover, with the help of principal component analysis and receiver operating characteristic methods, our fabricated sensors exhibited excellent selectivity and hold great potential for the diagnosis of SARS-CoV-2 proteins in real samples.
Collapse
Affiliation(s)
- Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Weiling Yue
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Shutong Zhang
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Haopeng Liu
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Zhinan Chen
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Caijun Wu
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Panjie Li
- School of Chemistry and Chemical Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| |
Collapse
|
7
|
Wu P, Luo X, Xu Y, Zhu J, Jia W, Fang N, Cai C, Zhu JJ. Long-Range SERS Detection of the SARS-CoV-2 Antigen on a Well-Ordered Gold Hexagonal Nanoplate Film. Anal Chem 2022; 94:17541-17550. [PMID: 36475600 PMCID: PMC9743488 DOI: 10.1021/acs.analchem.2c03846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The development of an effective method for identifying severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) via direct viral protein detection is significant but challenging in combatting the COVID-19 epidemic. As a promising approach for direct detection, viral protein detection using surface-enhanced Raman scattering (SERS) is limited by the larger viral protein size compared to the effective electromagnetic field (E-field) range because only the analyte remaining within the E-field can achieve high detection sensitivity. In this study, we designed and fabricated a novel long-range SERS (LR-SERS) substrate with an Au nanoplate film/MgF2/Au mirror/glass configuration to boost the LR-SERS resulting from the extended E-field. On applying the LR-SERS to detect the SARS-CoV-2 spike protein (S protein), reagent-free detection achieved a low detection limit of 9.8 × 10-11 g mL-1 and clear discrimination from the SARS-CoV S protein. The developed technique also allows testing of the S protein in saliva with 98% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
| | - Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Yihong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
| | - Jingtian Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
| | - Wenyu Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
| | - Ningning Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry
and Materials Science, Nanjing Normal University,
Nanjing210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science,
School of Chemistry & Chemical Engineering, Nanjing
University, Nanjing210023, P. R. China
- Shenzhen Research Institute of Nanjing
University, Shenzhen518000, China
| |
Collapse
|
8
|
Dong Y, Bandaru PR. Enhanced graphene surface plasmonics through incorporation into metallic nanostructures. OPTICS EXPRESS 2022; 30:30696-30704. [PMID: 36242168 DOI: 10.1364/oe.461754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
A methodology for enhancing the surface plasmon polariton (SPP) resonance associated with graphene, through nanoscale metal-dielectric-metal (MDM) gaps, is proposed. The modulation of the resonances, in the range of 0.7 µm to 1 µm was done through tuning the carrier density in graphene and has been shown to be of potential utility for surface analyte sensing. It was shown, from finite element simulations in the frequency domain, that the related hybrid SPP modes could be clearly delineated in far field spectroscopy.
Collapse
|
9
|
Wu P, Qu S, Zeng X, Su N, Chen M, Yu Y. High- Q refractive index sensors based on all-dielectric metasurfaces. RSC Adv 2022; 12:21264-21269. [PMID: 35975043 PMCID: PMC9344899 DOI: 10.1039/d2ra02176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Possessing fantastic abilities to freely manipulate electromagnetic waves on an ultrathin platform, metasurfaces have aroused intense interest in the academic circle. In this work, we present a high-sensitivity refractive index sensor excited by the guided mode of a two-dimensional periodic TiO2 dielectric grating structure. Numerical simulation results show that the optimized nanosensor can excite guided-mode resonance with an ultra-narrow linewidth of 0.19 nm. When the thickness of the biological layer is 20 nm, the sensitivity, Q factor, and FOM values of the nanosensor can reach 82.29 nm RIU-1, 3207.9, and 433.1, respectively. In addition, the device shows insensitivity to polarization and good tolerance to the angle of incident light. This demonstrates that the utilization of low-loss all-dielectric metasurfaces is an effective way to achieve ultra-sensitive biosensor detection.
Collapse
Affiliation(s)
- Pinghui Wu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Shuangcao Qu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Xintao Zeng
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Ning Su
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Musheng Chen
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Yanzhong Yu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
10
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Shaky MM, Chowdhury MH. Bowtie-based plasmonic metal nanoparticle complexes to enhance the opto-electronic performance of thin-film solar cells. APPLIED OPTICS 2021; 60:5094-5103. [PMID: 34143075 DOI: 10.1364/ao.424978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
This computational study investigates the possibility of using different multi-particle plasmonic nanoparticle complexes to enhance the opto-electronic performance of thin-film solar cells (TFSCs). The nanoparticle complexes are in a bowtie nanocomplex (BNC) configuration whereby each of the BNCs comprises a set of bowtie nanoantenna and a spherical nanoparticle. The results show that such plasmonic BNCs significantly enhance the opto-electronic performance of thin-film solar cells when compared to a bare TFSC or a TFSC modified with a single plasmonic nanoparticle. These results indicate a potential new, to the best of our knowledge, avenue of designing high-performance TFSCs of the future.
Collapse
|
12
|
Wu D, Chen J. Broadening Bandwidths of Few-Layer Absorbers by Superimposing Two High-Loss Resonators. NANOSCALE RESEARCH LETTERS 2021; 16:26. [PMID: 33566218 PMCID: PMC7876209 DOI: 10.1186/s11671-020-03471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Efficient broadband absorption of solar radiation is desired for sea water desalination, icephobicity and other renewable energy applications. We propose an idea of superimposing two high-loss resonances to broaden bandwidths of a few-layer absorber, which is made of dielectric/ metal/dielectric/ metal layers. Both the simulation and experiment show that the structure has an averaged absorption efficiency higher than 97% at wavelengths ranging from 350 to 1200 nm. The bandwidth of the absorption larger than 90% is up to 1000 nm (410-1410 nm), which is greater than that (≤ 750 nm) of previous MIM planar absorbers. Especially, the average absorption from 350 to 1000 nm is kept above 90% at an incidence angle as high as 65°, meanwhile still maintained above 80% even at an incident angle of 75°. The performance of angular insensitivity is much better than that of previous few-layer solar absorbers. The flexible 1D nonoble metasurface absorbers are fabricated in a single evaporation step. Under the illumination of a halogen lamp of P = 1.2 kW/m2, the flexible metasurface increases its surface temperature by 25.1 K from room temperature. Further experiments demonstrate that the heat localization rapidly melts the accumulated ice. Our illumination intensity (P = 1.2 kW/m2) is only half of that (P = 2.4 kW/m2) in previous solar anti-ice studies based on gold/TiO2 particle metasurfaces, indicating that our metasurface is more advantageous topractical applications. Our results illustrate an effective pathway toward the broadband metasurface absorbers with the attractive properties of mechanical flexibility, low cost of the no-noble metals, and large-area fabrications, which have promising prospects in the applications of solar heat utilization.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Jianjun Chen
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China.
- Frontiers Science Center for Nano-Optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
13
|
Fu Y, Zhang X, Wang M, Zhang X. A spatially pinned surface plasmon through short-circuiting electronic oscillation in waveguide-sustained SPPs. NANOSCALE 2020; 12:21703-21712. [PMID: 33094789 DOI: 10.1039/d0nr05991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A spatially pinned surface plasmon is constructed by connecting a gold nanoshell grating with a planar gold nanofilm, forming a periodical array of gold nanoloops. Dramatic electric field modulation and high charge carrier density on the contact sites enable balanced plasmonic electron distribution over the spatially pinned nanostructures. Compared with its counterpart, spacer-supported double-layer surface plasmon polaritons (SPPs), the pinned structure not only changed the electronic oscillation channels but also short-circuited the propagating SPPs at the top and bottom interfaces. Ultrafast spectroscopic dynamics identified a much-extended relaxation lifetime of the pinned plasmon and revealed a holding time as long as 1.3 ps for the double-layer SPPs, which was sustained by microcavities based on distributed optical feedback. These results introduced a new type of surface plasmon and a new design of time retarders for optical logic circuits.
Collapse
Affiliation(s)
- Yulan Fu
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China.
| | | | | | | |
Collapse
|
14
|
Theoretical analysis of a circular hybrid plasmonic waveguide to design a hybrid plasmonic nano-antenna. Sci Rep 2020; 10:15122. [PMID: 32934251 PMCID: PMC7493997 DOI: 10.1038/s41598-020-71863-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022] Open
Abstract
In this paper, a circular hybrid plasmonic waveguide-fed nano-antenna (CHPWFNA) has been introduced for operating at the standard telecommunication wavelength of 1,550 nm. For the first time, the dispersion relation of a circular hybrid plasmonic waveguide as the feed line of the proposed nano-antenna has been derived, analytically. To verify the accuracy of the analytical solution, two numerical techniques of finite element method (FEM) and finite-difference time-domain (FDTD) method have been used. Numerical results are well-matched with the theoretical ones. The characteristics of the CHPWFNA have been studied by two mentioned methods. The obtained realized gains (directivities) by the FDTD and FEM simulations are 9.03 dB (9.38 dBi) and 10.00 dB (10.32 dBi), respectively, at 1,550 nm wavelength. For on-chip point-to-point wireless link performance, the obtained quality factor by the FDTD method (FEM) is 63.97 (100). The obtained radiation characteristics and link performance reveal that at 1,550 nm, the proposed antenna has the best performance. Besides, the frequency bandwidth of the antenna (185–200 THz) covers the low-loss optical frequency range. Also, paying attention to the laser eye safety is so important. Consequently, the wavelength of 1,550 nm has been chosen as the target wavelength. Moreover, the array configuration has been studied and the directivity and realized gain have been obtained based on the array factor theory and numerical methods, which are agree with each other. The attained realized gain by the FDTD method (FEM) for the considered single row array, at 1,550 nm, is 11.20 dB (11.30 dB). There is a little difference between the numerical results due to the total mesh size, the grid size refinement and the relative error of the numerical methods convergence. Finally, as one of the most important challenges in fabrication is the gold surface quality, we have studied the effect of gold surface roughness and its pentagonal cross section on the antenna performance.
Collapse
|
15
|
Wang B, Zou Y, Lu H, Kong W, Singh SC, Zhao C, Yao C, Xing J, Zheng X, Yu Z, Tong C, Xin W, Yu W, Zhao B, Guo C. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001417. [PMID: 32407005 DOI: 10.1002/smll.202001417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Triple-cation mixed metal halide perovskites are important optoelectronic materials due to their high photon to electron conversion efficiency, low exciton binding energy, and good thermal stability. However, the perovskites have low photon to electron conversion efficiency in near-infrared (NIR) due to their weak intrinsic absorption at longer wavelength, especially near the band edge and over the bandgap wavelength. A plasmonic functionalized perovskite photodetector (PD) is designed and fabricated in this study, in which the perovskite ((Cs0.06 FA0.79 MA0.15 )Pb(I0.85 Br0.15 )3 ) active materials are spin-coated on the surface of Au bowtie nanoantenna (BNA) arrays substrate. Under 785 nm laser illumination, near the bandedge of perovskite, the fabricated BNA-based plasmonic PD exhibits ≈2962% enhancement in the photoresponse over the Si/SiO2 -based normal PD. Moreover, the detectivity of the plasmonic PD has a value of 1.5 × 1012 with external quantum efficiency as high as 188.8%, more than 30 times over the normal PD. The strong boosting in the plasmonic PD performance is attributed to the enhanced electric field around BNA arrays through the coupling of localized surface plasmon resonance. The demonstrated BNA-perovskite design can also be used to enhance performance of other optoelectronic devices, and the concept can be extended to other spectral regions with different active materials.
Collapse
Affiliation(s)
- Bin Wang
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuting Zou
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huanyu Lu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Wenchi Kong
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Subhash C Singh
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Chen Zhao
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaonan Yao
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xing
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zheng
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi Yu
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Cunzhu Tong
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Wei Xin
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Weili Yu
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Bo Zhao
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Chunlei Guo
- The Guo Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
- The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
16
|
Chu S, Wang Q, Yu L, Gao H, Liang Y, Peng W. Numerical Investigation on Multiple Resonant Modes of Double-Layer Plasmonic Grooves for Sensing Application. NANOMATERIALS 2020; 10:nano10020308. [PMID: 32054024 PMCID: PMC7075115 DOI: 10.3390/nano10020308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/27/2022]
Abstract
A high-performance multi-resonance plasmonic sensor with double-layer metallic grooves is theoretically constructed by introducing a polymethyl methacrylate groove with a numerical simulation method. Multiple resonance wavelengths can be generated at the oblique incidence, and the number and feature of resonant mode for sensing detection is different for various incident angles. Specifically, at the incident angle of 30°, the reflection spectrum exhibits two resonant dips, in which the dip at the wavelength of 1066 nm has an extremely narrow line width of ~4.5 nm and high figure of merit of ~111.11. As the incident angle increases, the electric dipole mode gradually weakens, but the surface plasmon resonance and cavity resonance mode are enhanced. Therefore, for an incident angle of 65°, three resonance dips for sensing can be generated in the reflection spectrum to realize three-channel sensing measurement. These double-layer plasmonic grooves have potential in the development of advanced biochemical surface plasmon polariton measurements.
Collapse
Affiliation(s)
- Shuwen Chu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (S.C.); (L.Y.); (H.G.)
| | - Qiao Wang
- School of Physics, Dalian University of Technology, Dalian 116024, China;
- Correspondence: (Q.W.); (W.P.); Tel.: +86-411-8470-6693 (W.P.)
| | - Li Yu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (S.C.); (L.Y.); (H.G.)
| | - Huixuan Gao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (S.C.); (L.Y.); (H.G.)
| | - Yuzhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China;
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian 116024, China;
- Correspondence: (Q.W.); (W.P.); Tel.: +86-411-8470-6693 (W.P.)
| |
Collapse
|
17
|
Dong Y, Bandaru PR. Interaction and hybridization of orthogonal Fabry-Pérot like surface plasmon modes in metal-dielectric grating structures. OPTICS EXPRESS 2020; 28:3541-3551. [PMID: 32122020 DOI: 10.1364/oe.384321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The interaction of specific surface plasmon modes in metal-dielectric-metal arrangements is investigated, motivated by their relevance to device-based configurations. The absorption spectra of the relevant nanostructures considering geometrical variation, such as the width and height of the metal or dielectric, are probed considering such interactions. Frequency domain simulations are used to study related multiple surface plasmon polariton resonance modes. It is indicated that the resonant energy level interaction due to the coupling between modes in a horizontal dielectric layer and those in a vertical groove can be engineered and understood in terms of energy level hybridization.
Collapse
|
18
|
Zhang K, Deng R, Song L, Zhang T. Broadband Near-Infrared Absorber Based on All Metallic Metasurface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3568. [PMID: 31671708 PMCID: PMC6862091 DOI: 10.3390/ma12213568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022]
Abstract
Perfect broadband absorbers have increasingly been considered as important components for controllable thermal emission, energy harvesting, modulators, etc. However, perfect absorbers which can operate over a wide optical regime is still a big challenge to achieve. Here, we propose and numerically investigate a perfect broadband near-infrared absorber based on periodic array of four isosceles trapezoid prism (FITP) unit cell made of titanium (Ti) over a continuous silver film. The structure operates with low quality (Q) factor of the localized surface plasmon resonance (LSPR) because of the intrinsic high loss, which is the foundation of the broadband absorption. The high absorption of metal nanostructures mainly comes from the power loss caused by the continuous electron transition excited by the incident light inside the metal, and the resistance loss depends on the enhanced localized electric field caused by the FITP structure. Under normal incidence, the simulated absorption is over 90% in the spectrum ranging from 895 nm to 2269 nm. The absorber is polarization-independent at normal incidence, and has more than 80% high absorption persisting up to the incident angle of ~45° at TM polarization.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruixiang Deng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixin Song
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Zhang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Wilson K, Marocico CA, Pedrueza-Villalmanzo E, Smith C, Hrelescu C, Bradley AL. Plasmonic Colour Printing by Light Trapping in Two-Metal Nanostructures. NANOMATERIALS 2019; 9:nano9070963. [PMID: 31266205 PMCID: PMC6669635 DOI: 10.3390/nano9070963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022]
Abstract
Structural colour generation by nanoscale plasmonic structures is of major interest for non-bleaching colour printing, anti-counterfeit measures and decoration applications. We explore the physics of a two-metal plasmonic nanostructure consisting of metallic nanodiscs separated from a metallic back-reflector by a uniform thin polymer film and investigate the potential for vibrant structural colour in reflection. We demonstrate that light trapping within the nanostructures is the primary mechanism for colour generation. The use of planar back-reflector and polymer layers allows for less complex fabrication requirements and robust structures, but most significantly allows for the easy incorporation of two different metals for the back-reflector and the nanodiscs. The simplicity of the structure is also suitable for scalability. Combinations of gold, silver, aluminium and copper are considered, with wide colour gamuts observed as a function of the polymer layer thickness. The structural colours are also shown to be insensitive to the viewing angle. Structures of copper nanodiscs with an aluminium back-reflector produce the widest colour gamut.
Collapse
Affiliation(s)
- Keith Wilson
- School of Physics and CRANN, Trinity College Dublin, Dublin D2, Ireland
| | | | | | - Christopher Smith
- School of Physics and CRANN, Trinity College Dublin, Dublin D2, Ireland
| | - Calin Hrelescu
- School of Physics and CRANN, Trinity College Dublin, Dublin D2, Ireland
| | - A Louise Bradley
- School of Physics and CRANN, Trinity College Dublin, Dublin D2, Ireland.
| |
Collapse
|
20
|
Cheng YC, Chang YJ, Chuang YC, Huang BZ, Chen CC. A plasmonic refractive index sensor with an ultrabroad dynamic sensing range. Sci Rep 2019; 9:5134. [PMID: 30914670 PMCID: PMC6435793 DOI: 10.1038/s41598-019-41353-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
Refractive index sensors based on surface plasmon resonance (SPR) promise to deliver high sensitivities. However, these sensitivities depend on the derivative of the monitored SPR parameters near resonance, so this dependency leads to a relatively narrow detection range for refractive index changes. Herein, we introduce an idea to improve the detection range refractive index through a high-contrast-index curved waveguide surrounded with an outer gold ring. The proposed detection technique, based on the output power measurement of the curved waveguide, offers a linear response over an ultrabroad range of the refractive index for a surrounding medium from n = 1 to 2.36. Meanwhile, an theoretically ultrahigh refractive index resolution (RIU) of 4.53 × 10−10 could be accessible for such a broad testing range, available for both gas and aqueous chemical sample refractive indices Furthermore, the power detection approach enables an integrated photodetector for a lab-on-chip sensor platform, revealing a high potential for a multifunctional, compact, and highly sensitive sensor-on-chip device.
Collapse
Affiliation(s)
- Yu-Chieh Cheng
- Department of Electro-Optical Engineering, National Taipei University of Technology, 10608, Taipei, Taiwan.
| | - Ya-Ju Chang
- Department of Optics and Photonics, National Central University, 32001, Jhongli, Taiwan
| | - Yu-Ching Chuang
- Department of Electro-Optical Engineering, National Taipei University of Technology, 10608, Taipei, Taiwan
| | - Bo-Zhi Huang
- Department of Electro-Optical Engineering, National Taipei University of Technology, 10608, Taipei, Taiwan
| | - Chii-Chang Chen
- Department of Optics and Photonics, National Central University, 32001, Jhongli, Taiwan.
| |
Collapse
|
21
|
Geometric frustration in ordered lattices of plasmonic nanoelements. Sci Rep 2019; 9:3529. [PMID: 30837626 PMCID: PMC6401306 DOI: 10.1038/s41598-019-40117-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 11/08/2022] Open
Abstract
Inspired by geometrically frustrated magnetic systems, we present the optical response of three cases of hexagonal lattices of plasmonic nanoelements. All of them were designed using a metal-insulator-metal configuration to enhance absorption of light, with elements in close proximity to exploit near-field coupling, and with triangular symmetry to induce frustration of the dipolar polarization in the gaps between neighboring structures. Both simulations and experimental results demonstrate that these systems behave as perfect absorbers in the visible and/or the near infrared. Besides, the numerical study of the time evolution shows that they exhibit a relatively extended time response over which the system fluctuates between localized and collective modes. It is of particular interest the echoed excitation of surface lattice resonance modes, which are still present at long times because of the geometric frustration inherent to the triangular lattice. It is worth noting that the excitation of collective modes is also enhanced in other types of arrays where dipolar excitations of the nanoelements are hampered by the symmetry of the array. However, we would like to emphasize that the enhancement in triangular arrays can be significantly larger because of the inherent geometric incompatibility of dipolar excitations and three-fold symmetry axes.
Collapse
|
22
|
Safaei A, Modak S, Vázquez-Guardado A, Franklin D, Chanda D. Cavity-induced hybrid plasmon excitation for perfect infrared absorption. OPTICS LETTERS 2018; 43:6001-6004. [PMID: 30547990 DOI: 10.1364/ol.43.006001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Photonic microcavity coupling of a subwavelength hole-disk array, a two-element metal/dielectric composite structure with enhanced extraordinary transmission, leads to 100% coupling of incident light to the cavity system and subsequent absorption. This light-funneling process arises from the temporal and spatial coupling of the broadband localized surface plasmon resonance on the coupled hole-disk array and the photonic modes of the optical cavity, which induces spectral narrowing of the perfect absorption of light. A simple nanoimprint lithography-based large-area fabrication process paves the path towards practical implementation of plasmonic cavity-based devices and sensors.
Collapse
|
23
|
Sharac N, Giles AJ, Perkins K, Tischler J, Bezares F, Prokes SM, Folland TG, Glembocki OJ, Caldwell JD. Implementation of plasmonic band structure to understand polariton hybridization within metamaterials. OPTICS EXPRESS 2018; 26:29363-29374. [PMID: 30470101 DOI: 10.1364/oe.26.029363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/14/2018] [Indexed: 06/09/2023]
Abstract
Gap surface plasmons (GSPs) serve a diverse range of plasmonic applications, including energy harvesting, communications, molecular sensing, and optical detection. GSPs may be realized where tightly spaced plasmonic structures exhibit strong spatial overlap between the evanescent fields. We demonstrate that within similar, nested geometries that the near-fields of the GSPs within the individual nanostructures are hybridized. This creates two or more distinct resonances exhibiting near-field distributions extended over adjacent spatial regions. In contrast, dissimilar, nested structures exhibit two distinct resonances with nominally uncoupled near-fields, resulting in two or more individual antenna resonance modes. We deploy plasmonic band structure calculations to provide insight into the type and degree of hybridization within these systems, comparing the individual components. This understanding can be used in the optimized design of polaritonic metamaterial structures for desired applications.
Collapse
|
24
|
Liu X, Jia X, Fischer M, Huang Z, Smith DR. Enhanced Two-Photon Photochromism in Metasurface Perfect Absorbers. NANO LETTERS 2018; 18:6181-6187. [PMID: 30204445 DOI: 10.1021/acs.nanolett.8b02042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Light switchable materials are essential to optoelectronic applications in photovoltaics, memories, sensors, and communications. Natural switchable materials suffer from weak absorption and slow response times, preventing their use in low-power, ultrafast applications. Integrating light switchable materials with metasurface perfect absorbers offers an innovative route to achieving desirable features for nanophotonic devices, such as directional emission, low-power and broadband operation, high radiative quantum efficiency, and large spontaneous emission rates. Here we show an enhanced two-photon photochromism based on a metasurface perfect absorber: film-coupled colloidal silver nanocubes. The photochromic molecules, spiropyrans, are sandwiched between the silver nanocubes and the gold substrate. With nearly 100% absorption and an accompanying large field enhancement in the molecular junction, the transformation of spiropyrans to merocyanines is observed under excitation with 792 nm laser light. Fluorescence lifetime measurements on the merocyanine form reveal that large Purcell enhancement in the film-coupled nanocubes leads to large enhancements of the spontaneous emission rate and a high quantum efficiency. An averaged incident power as low as 10 μW is enough to initiate the two-photon isomerization of spiropyran in the film-coupled nanocubes, and a power of 100nW is able to excite the merocyanines to emit fluorescence. The power consumption is orders of magnitude lower than bare spiropyran thin films on silicon and gold, which is highly desirable for the writing and reading processes relevant to optical data storage. By sweeping the plasmonic resonance of the film-coupled nanocubes, wavelength specificity is demonstrated, which opens up new possibilities for minimizing the cross talk between adjacent bits in nanophotonic devices.
Collapse
Affiliation(s)
- Xiaojun Liu
- Center for Metamaterial and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering , Duke University , Box 90291, Durham , North Carolina 27708 , United States
| | - Xiaomeng Jia
- Department of Physics , Duke University , Box 90305, Durham , North Carolina 27708 , United States
| | - Martin Fischer
- Department of Physics , Duke University , Box 90305, Durham , North Carolina 27708 , United States
- Department of Chemistry , Duke University , Box 90354, Durham , North Carolina 27708 , United States
| | - Zhiqin Huang
- Center for Metamaterial and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering , Duke University , Box 90291, Durham , North Carolina 27708 , United States
| | - David R Smith
- Center for Metamaterial and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering , Duke University , Box 90291, Durham , North Carolina 27708 , United States
- Department of Physics , Duke University , Box 90305, Durham , North Carolina 27708 , United States
| |
Collapse
|
25
|
Conde-Rubio A, Rodríguez AF, Borrisé X, Perez-Murano F, Batlle X, Labarta A. Geometric frustration in a hexagonal lattice of plasmonic nanoelements. OPTICS EXPRESS 2018; 26:20211-20224. [PMID: 30119347 DOI: 10.1364/oe.26.020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
We introduce the concept of geometric frustration in plasmonic arrays of nanoelements. In particular, we present the case of a hexagonal lattice of Au nanoasterisks arranged so that the gaps between neighboring elements are small and lead to a strong near-field dipolar coupling. Besides, far-field interactions yield higher-order collective modes around the visible region that follow the translational symmetry of the lattice. However, dipolar excitations of the gaps in the hexagonal array are geometrically frustrated for interactions beyond nearest neighbors, yielding the destabilization of the low energy modes in the near infrared. This in turn results in a slow dynamics of the optical response and a complex interplay between localized and collective modes, a behavior that shares features with geometrically frustrated magnetic systems.
Collapse
|
26
|
Chen C, Wang G, Zhang Z, Zhang K. Dual narrow-band absorber based on metal-insulator-metal configuration for refractive index sensing. OPTICS LETTERS 2018; 43:3630-3633. [PMID: 30067641 DOI: 10.1364/ol.43.003630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Plasmonic gap mode in metal-insulator-metal (MIM) structure has proven promising for refractive index sensing due to its near unity absorption. However, the sensing performance of gap mode has been limited by the broad resonance band, which is related to high plasmonic loss. In this work, square-patch-based MIM structures are used for simultaneous excitation of both the surface plasmon polariton and Rayleigh anomaly with large absorptions, and demonstrate their excellent sensing performances. For the Rayleigh anomaly, the sensitivity and full width half-maximum are 1470 nm/RIU and 0.23 nm, respectively. The corresponding figure of merit is calculated to be 6400 in wavelength shift form and 58,800 in intensity variation form. It is also observed that the two Wood's anomalies have reverse incident-angle-dependent properties, which can be explained by the opposite propagating direction of surface waves.
Collapse
|
27
|
Matsumori K, Fujimura R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. OPTICS LETTERS 2018; 43:2981-2984. [PMID: 29905739 DOI: 10.1364/ol.43.002981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
A plasmonic broadband light absorber, whose absorption is insensitive to incident angles and polarizations, in the UV to near-infrared regions is demonstrated. In experimental observations, the maximum average absorption of 83% over a wavelength range from 300 to 1000 nm was confirmed. Our proposed plasmonic absorber is based on a three-layer stack of metal-insulator-metal, and the top metal layer is nanostructured by colloidal lithography. This structure is composed of Al, which is an excellent and cost-effective plasmonic material. This fabrication simplicity and economical material allows us to produce a large-scale device of solar absorbers.
Collapse
|
28
|
Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem Rev 2018; 118:5912-5951. [PMID: 29863344 PMCID: PMC6026846 DOI: 10.1021/acs.chemrev.8b00243] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
When metal nanoparticles are arranged
in an ordered array, they
may scatter light to produce diffracted waves. If one of the diffracted
waves then propagates in the plane of the array, it may couple the
localized plasmon resonances associated with individual nanoparticles
together, leading to an exciting phenomenon, the drastic narrowing
of plasmon resonances, down to 1–2 nm in spectral width. This
presents a dramatic improvement compared to a typical single particle
resonance line width of >80 nm. The very high quality factors of
these
diffractively coupled plasmon resonances, often referred to as plasmonic
surface lattice resonances, and related effects have made this topic
a very active and exciting field for fundamental research, and increasingly,
these resonances have been investigated for their potential in the
development of practical devices for communications, optoelectronics,
photovoltaics, data storage, biosensing, and other applications. In
the present review article, we describe the basic physical principles
and properties of plasmonic surface lattice resonances: the width
and quality of the resonances, singularities of the light phase, electric
field enhancement, etc. We pay special attention to the conditions
of their excitation in different experimental architectures by considering
the following: in-plane and out-of-plane polarizations of the incident
light, symmetric and asymmetric optical (refractive index) environments,
the presence of substrate conductivity, and the presence of an active
or magnetic medium. Finally, we review recent progress in applications
of plasmonic surface lattice resonances in various fields.
Collapse
Affiliation(s)
- V G Kravets
- School of Physics and Astronomy , University of Manchester , Manchester , M13 9PL , U.K
| | - A V Kabashin
- Aix Marseille Univ , CNRS, LP3 , Marseille , France.,MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , BioNanophotonic Lab. , 115409 Moscow , Russia
| | - W L Barnes
- School for Physics and Astronomy , University of Exeter , Exeter , EX4 4QL , U.K
| | - A N Grigorenko
- School of Physics and Astronomy , University of Manchester , Manchester , M13 9PL , U.K
| |
Collapse
|
29
|
Wu D, Yang L, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Ma R, Ye H. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling. NANOSCALE RESEARCH LETTERS 2018; 13:144. [PMID: 29748920 PMCID: PMC5945566 DOI: 10.1186/s11671-018-2564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(|Eloc|/|E0| > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Liu Yang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Chang Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Zenghui Xu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Zhongyuan Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Lei Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Rui Ma
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
30
|
Ogawa S, Kimata M. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. MATERIALS 2018; 11:ma11030458. [PMID: 29558454 PMCID: PMC5873037 DOI: 10.3390/ma11030458] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/20/2023]
Abstract
Electromagnetic wave absorbers have been investigated for many years with the aim of achieving high absorbance and tunability of both the absorption wavelength and the operation mode by geometrical control, small and thin absorber volume, and simple fabrication. There is particular interest in metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) due to their complete fulfillment of these demands. MIM-PMAs consist of top periodic micropatches, a middle dielectric layer, and a bottom reflector layer to generate strong localized surface plasmon resonance at absorption wavelengths. In particular, in the visible and infrared (IR) wavelength regions, a wide range of applications is expected, such as solar cells, refractive index sensors, optical camouflage, cloaking, optical switches, color pixels, thermal IR sensors, IR microscopy and gas sensing. The promising properties of MIM-PMAs are attributed to the simple plasmonic resonance localized at the top micropatch resonators formed by the MIMs. Here, various types of MIM-PMAs are reviewed in terms of their historical background, basic physics, operation mode design, and future challenges to clarify their underlying basic design principles and introduce various applications. The principles presented in this review paper can be applied to other wavelength regions such as the ultraviolet, terahertz, and microwave regions.
Collapse
Affiliation(s)
- Shinpei Ogawa
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661, Japan.
| | - Masafumi Kimata
- College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
31
|
Plasmofluidics for Biosensing and Medical Diagnostics. NANOTECHNOLOGY CHARACTERIZATION TOOLS FOR BIOSENSING AND MEDICAL DIAGNOSIS 2018. [PMCID: PMC7122966 DOI: 10.1007/978-3-662-56333-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plasmofluidics, an extension of optofluidics into the nanoscale regime, merges plasmonics and micro-/nanofluidics for highly integrated and multifunctional lab on a chip. In this chapter, we focus on the applications of plasmofluidics in the versatile manipulation and sensing of biological cell, organelles, molecules, and nanoparticles, which underpin advanced biomedical diagnostics.
Collapse
|
32
|
Li R, Wu D, Liu Y, Yu L, Yu Z, Ye H. Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating. NANOSCALE RESEARCH LETTERS 2017; 12:1. [PMID: 28395480 PMCID: PMC5214594 DOI: 10.1186/s11671-016-1773-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
A perfect ultra-narrow band infrared metamaterial absorber based on the all-metal-grating structure is proposed. The absorber presents a perfect absorption efficiency of over 98% with an ultra-narrow bandwidth of 0.66 nm at normal incidence. This high efficient absorption is contributed to the surface plasmon resonance. Moreover, the surface plasmon resonance-induced strong surface electric field enhancement is favorable for application in biosensing system. When operated as a plasmonic refractive index sensor, the ultra-narrow band absorber has a wavelength sensitivity 2400 nm/RIU and an ultra-high figure of merit 3640, which are much better than those of most reported similar plasmonic sensors. Besides, we also comprehensively investigate the influences of structural parameters on the sensing properties. Due to the simplicity of its geometry structure and its easiness to be fabricated, the proposed high figure of merit and sensitivity sensor indicates a competitive candidate for applications in sensing or detecting fields.
Collapse
Affiliation(s)
- Ruifang Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876 Beijing, China
| | - Dong Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876 Beijing, China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876 Beijing, China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876 Beijing, China
- School of Science, Beijing University of Posts and Telecommunications, 100876 Beijing, China
| | - Zhongyuan Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876 Beijing, China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876 Beijing, China
| |
Collapse
|
33
|
Chau YFC, Wang CK, Shen L, Lim CM, Chiang HP, Chao CTC, Huang HJ, Lin CT, Kumara NTRN, Voo NY. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci Rep 2017; 7:16817. [PMID: 29196641 PMCID: PMC5711893 DOI: 10.1038/s41598-017-17024-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022] Open
Abstract
A plasmonic nanostructure (PNS) which integrates metallic and dielectric media within a single structure has been shown to exhibit specific plasmonic properties which are considered useful in refractive index (RI) sensor applications. In this paper, the simultaneous realization of sensitivity and tunability of the optical properties of PNSs consisting of alternative Ag and dielectric of nanosphere/nanorod array have been proposed and compared by using three-dimensional finite element method. The proposed system can support plasmonic hybrid modes and the localized surface plasmonic resonances and cavity plasmonic resonances within the individual PNS can be excited by the incident light. The proposed PNSs can be operated as RI sensor with a sensitivity of 500 nm/RIU (RIU = refractive index unit) ranging from UV to the near-infrared. In addition, a narrow bandwidth and nearly zero transmittance along with a high absorptance can be achieved by a denser PNSs configuration in the unit cell of PNS arrays. We have demonstrated the number of modes sustained in the PNS system, as well as, the near-field distribution can be tailored by the dielectric media in PNSs.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| | - Chan-Kuang Wang
- Department of Electronic Engineering, Chien Hsin University of Science and Technology, No. 229, Jianxing Rd., Zhongli City, Taoyuan County, 32097, Taiwan (R.O.C.)
| | - Linfang Shen
- Institute of Space Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Chee Ming Lim
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Hai-Pang Chiang
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, No. 2 Pei-Ning Rd., 202, Keelung, Taiwan. .,Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | | | - Hung Ji Huang
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Chun-Ting Lin
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - N T R N Kumara
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Nyuk Yoong Voo
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| |
Collapse
|
34
|
Ghobadi A, Dereshgi SA, Hajian H, Birant G, Butun B, Bek A, Ozbay E. 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. NANOSCALE 2017; 9:16652-16660. [PMID: 28901365 DOI: 10.1039/c7nr04186a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we propose a facile and large scale compatible design to obtain perfect ultrabroadband light absorption using metal-dielectric core-shell nanowires. The design consists of atomic layer deposited (ALD) Pt metal uniformly wrapped around hydrothermally grown titanium dioxide (TiO2) nanowires. It is found that the randomly oriented dense TiO2 nanowires can impose excellent light trapping properties where the existence of an ultrathin Pt layer (with a thickness of 10 nm) can absorb the light in an ultrabroadband frequency range with an amount near unity. Throughout this study, we first investigate the formation of resonant modes in the metallic nanowires. Our findings prove that a nanowire structure can support multiple longitudinal localized surface plasmons (LSPs) along its axis together with transverse resonance modes. Our investigations showed that the spectral position of these resonance peaks can be tuned with the length, radius, and orientation of the nanowire. Therefore, TiO2 random nanowires can contain all of these features simultaneously in which the superposition of responses for these different geometries leads to a flat perfect light absorption. The obtained results demonstrate that taking unique advantages of the ALD method, together with excellent light trapping of chemically synthesized nanowires, a perfect, bifacial, wide angle, and large scale compatible absorber can be made where an excellent performance is achieved while using less materials.
Collapse
Affiliation(s)
- Amir Ghobadi
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kang TY, Lee W, Ahn H, Shin DM, Kim CS, Oh JW, Kim D, Kim K. Plasmon-Coupled Whispering Gallery Modes on Nanodisk Arrays for Signal Enhancements. Sci Rep 2017; 7:11737. [PMID: 28916835 PMCID: PMC5601917 DOI: 10.1038/s41598-017-12053-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
Metallic nanostructures including single and double nanodisks are successfully used to enhance the localized electric field in vicinity of microcavity in whispering gallery mode (WGM) sensor. We demonstrate numerical calculations of plasmonic coupling of WGMs to single and double nanodisk arrays on a planar substrate. We then experimentally confirmed that the resonance wavelength of WGM sensor was dramatically shifted by adoption of single and double nanodisks on the surface of microcavity in the WGM sensor. Thus, our approach provides the tunable sensitivity of WGM sensor, and has a great potential to be used in numerous areas where the single biomolecule, protein-protein folding and biomolecular interactions are involved.
Collapse
Affiliation(s)
- Tae Young Kang
- Pusan National University, Department of Cogno-Mechatronics Engineering, Busan, 46241, Republic of Korea
| | - Wonju Lee
- Yonsei University, School of Electrical and Electronic Engineering, Seoul, 03722, Republic of Korea
| | - Heesang Ahn
- Pusan National University, Department of Cogno-Mechatronics Engineering, Busan, 46241, Republic of Korea
| | - Dong-Myeong Shin
- Pusan National University, Research Center for Energy Convergence Technology, Busan, 46241, Republic of Korea
| | - Chang-Seok Kim
- Pusan National University, Department of Cogno-Mechatronics Engineering, Busan, 46241, Republic of Korea.,Pusan National University, Department of Optics and Mechatronics Engineering, Busan, 46241, Republic of Korea
| | - Jin-Woo Oh
- Pusan National University, Department of Nano Energy Engineering, Busan, 46241, Republic of Korea
| | - Donghyun Kim
- Yonsei University, School of Electrical and Electronic Engineering, Seoul, 03722, Republic of Korea.
| | - Kyujung Kim
- Pusan National University, Department of Cogno-Mechatronics Engineering, Busan, 46241, Republic of Korea. .,Pusan National University, Department of Optics and Mechatronics Engineering, Busan, 46241, Republic of Korea.
| |
Collapse
|
36
|
Park JH, Kodigala A, Ndao A, Kanté B. Hybridized metamaterial platform for nano-scale sensing. OPTICS EXPRESS 2017; 25:15590-15598. [PMID: 28788981 DOI: 10.1364/oe.25.015590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 05/25/2023]
Abstract
Plasmonic/metamaterial sensors are being investigated for their high sensitivity, fast response time, and high accuracy. We propose, characterize and experimentally realize subwavelength bilayer metamaterial sensors operating in the near-infrared domain. We measure the figure-of-merit (FOM) and the bulk sensitivity (S) of the two fundamental hybridized modes and demonstrate both numerically and experimentally that the magnetic dipolar mode, degenerate with the electric quadrupolar mode, has higher sensitivity to a variation of the refractive index compared to the electric dipolar mode. In addition, the hybridized system exhibits a four fold increase in the FOM compared to a standard dipolar plasmonic system.
Collapse
|
37
|
Ren Q, Nagar J, Kang L, Bian Y, Werner P, Werner DH. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model. Sci Rep 2017; 7:2126. [PMID: 28522828 PMCID: PMC5437070 DOI: 10.1038/s41598-017-02194-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.
Collapse
Affiliation(s)
- Qiang Ren
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jogender Nagar
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lei Kang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yusheng Bian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ping Werner
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Douglas H Werner
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
38
|
Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci Rep 2017; 7:45210. [PMID: 28332629 PMCID: PMC5362893 DOI: 10.1038/srep45210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices.
Collapse
|
39
|
Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement. Sci Rep 2017; 7:40071. [PMID: 28074853 PMCID: PMC5225429 DOI: 10.1038/srep40071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 11/29/2022] Open
Abstract
Plasmonic nanocavity arrays were achieved by producing isolated silver semi-cylindrical nanoshells periodically on a continuous planar gold film. Hybridization between localized surface plasmon resonance (LSPR) in the Ag semi-cylindrical nanoshells (SCNS) and surface plasmon polaritons (SPP) in the gold film was observed as split bonding and anti-bonding resonance modes located at different spectral positions. This led to strong local field enhancement and confinement in the plano-concave nanocavites. Narrow-band optical extinction with an amplitude as high as 1.5 OD, corresponding to 97% reduction in the transmission, was achieved in the visible spectrum. The resonance spectra of this hybrid device can be extended from the visible to the near infrared by adjusting the structural parameters.
Collapse
|
40
|
Chen J, Mo ZH, Yang X, Zhou HL, Gao Q. Exploration of organic–inorganic hybrid perovskites for surface-enhanced infrared spectroscopy of small molecules. Chem Commun (Camb) 2017; 53:6949-6952. [DOI: 10.1039/c7cc02782f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic–inorganic hybrid perovskites allow the infrared absorption of small molecules to be efficiently enhanced.
Collapse
Affiliation(s)
- Jia Chen
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Zhi-Hong Mo
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
- National Key Laboratory for New Micro/Nano-Devices and System Technology
| | - Xiao Yang
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Hai-Ling Zhou
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Qin Gao
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
41
|
Lin L, Wang M, Wei X, Peng X, Xie C, Zheng Y. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes. NANO LETTERS 2016; 16:7655-7663. [PMID: 27960522 DOI: 10.1021/acs.nanolett.6b03702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.
Collapse
Affiliation(s)
- Linhan Lin
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Mingsong Wang
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Xiaoling Wei
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Yuebing Zheng
- Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
42
|
Wu D, Liu Y, Li R, Chen L, Ma R, Liu C, Ye H. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. NANOSCALE RESEARCH LETTERS 2016; 11:483. [PMID: 27807825 PMCID: PMC5093105 DOI: 10.1186/s11671-016-1705-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 05/20/2023]
Abstract
We propose and numerically investigate a novel perfect ultra-narrow band absorber based on a metal-dielectric-metal-dielectric-metal periodic structure working at near-infrared region, which consists of a dielectric layer sandwiched by a metallic nanobar array and a thin gold film over a dielectric layer supported by a metallic film. The absorption efficiency and ultra-narrow band of the absorber are about 98 % and 0.5 nm, respectively. The high absorption is contributed to localized surface plasmon resonance, which can be influenced by the structure parameters and the refractive index of dielectric layer. Importantly, the ultra-narrow band absorber shows an excellent sensing performance with a high sensitivity of 2400 nm/RIU and an ultra-high figure of merit of 4800. The FOM of refractive index sensor is significantly improved, compared with any previously reported plasmonic sensor. The influences of structure parameters on the sensing performance are also investigated, which will have a great guiding role to design high-performance refractive index sensors. The designed structure has huge potential in sensing application.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Ruifang Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Lei Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Rui Ma
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Chang Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
43
|
Wu Z, Kelp G, Yogeesh MN, Li W, McNicholas KM, Briggs A, Rajeeva BB, Akinwande D, Bank SR, Shvets G, Zheng Y. Dual-band moiré metasurface patches for multifunctional biomedical applications. NANOSCALE 2016; 8:18461-18468. [PMID: 27778012 DOI: 10.1039/c6nr06608a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There has been strong interest in developing multi-band plasmonic metasurfaces for multiple optical functions on single platforms. Herein, we developed Au moiré metasurface patches (AMMP), which leverage the tunable multi-band responses of Au moiré metasurfaces and the additional field enhancements of the metal-insulator-metal configuration to achieve dual-band plasmon resonance modes in near-infrared and mid-infrared regimes with high field enhancement. Furthermore, we demonstrate the multifunctional applications of AMMP, including surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins. With their multiple functions of high performance, in combination with cost-effective fabrication using moiré nanosphere lithography, the AMMP will enable the development of highly integrated biophotonic platforms for a wide range of applications in disease theranostics, sterilization, and the study of microbiomes.
Collapse
Affiliation(s)
- Zilong Wu
- Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Glen Kelp
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | - Wei Li
- Microelectronics Research Centre, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Kyle M McNicholas
- Microelectronics Research Centre, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Andrew Briggs
- Microelectronics Research Centre, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Bharath Bangalore Rajeeva
- Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Deji Akinwande
- Microelectronics Research Centre, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Seth R Bank
- Microelectronics Research Centre, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Gennady Shvets
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
44
|
Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1224.ch002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|