1
|
Rytkönen E, Rouvinen J, Jänis J. Unlocking lignin valorisation: Oxyfunctionalization of lignin dimer model compounds by unspecific peroxygenases. Enzyme Microb Technol 2025; 189:110661. [PMID: 40393080 DOI: 10.1016/j.enzmictec.2025.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Lignin is an abundantly available biopolymer composed of three structural units, linked by a complex network of bonds, including a high proportion of β-O-4 ether linkages. As a renewable carbon source, it can be depolymerised into a variety of small aromatic compounds such as monophenols. Enzymatic bioprocessing offers a promising alternative to traditional chemical lignin degradation strategies, potentially producing value-added compounds, such as monoaromatics. Unspecific peroxygenases (UPOs) are promising enzymes for lignin bioprocessing due to their ability to catalyse aromatic oxidation and demethylation reactions, which are critical for lignin valorisation. In this study, thirteen different UPOs were evaluated for their oxidation potential with two lignin dimer model compounds, guaiacylglycerol-β-guaiacyl ether and veratrylglycerol-β-guaiacyl ether. Both compounds were successfully processed, yielding a wide range of products, e.g., via Cα-oxidation, demethylation, and bond cleavage reactions. Notably, the cleavages frequently occurred at the Cβ-O ether bond, a major linkage between the lignin monomers, being beneficial for lignin degradation and subsequent valorisation. Some of the identified products, such as vanillin, are of interest either as valuable end-products or as precursors for further conversion into specialty chemicals.
Collapse
Affiliation(s)
- Essi Rytkönen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, P.O. Box 111, Joensuu Fl-80101, Finland
| | - Juha Rouvinen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, P.O. Box 111, Joensuu Fl-80101, Finland
| | - Janne Jänis
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, P.O. Box 111, Joensuu Fl-80101, Finland.
| |
Collapse
|
2
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Kumagawa E, Katsumata M, Nishimura H, Watanabe T, Ishii S, Ohta Y. The etherase system of Novosphingobium sp. MBES04 functions as a sensor of lignin fragments through phenylpropanone production to induce specific transcriptional responses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13210. [PMID: 37950419 PMCID: PMC10866074 DOI: 10.1111/1758-2229.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the β-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a β-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.
Collapse
Affiliation(s)
- Eri Kumagawa
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| | - Hiroshi Nishimura
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Takashi Watanabe
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - Shun'ichi Ishii
- Institute for Extra‐cutting‐edge Science and Technology Avant‐garde Research (X‐star)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Yukari Ohta
- Gunma University Center for Food Science and Wellness, Gunma UniversityMaebashiGunmaJapan
| |
Collapse
|
4
|
Kumagawa E, Katsumata M, Ohta Y. Catalytic and molecular properties of alkaliphilic and thermotolerant β-etherase from Altererythrobacter sp. B11. Biosci Biotechnol Biochem 2023; 87:1183-1192. [PMID: 37403406 DOI: 10.1093/bbb/zbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Phenylpropanone monomers, including guaiacyl hydroxypropanone, are important precursors for the synthesis of various chemicals. The monomers are obtained in a three-step cascade reaction catalyzed by a group of enzymes in the β-etherase system that cleaves the β-O-4 bond, the major bond in lignin. In this study, one of the β-etherase of the glutathione-S-transferase superfamily, AbLigF2, was discovered in genus Altererythrobacter, and the recombinant etherase was characterized. The enzyme showed maximal activity at 45 °C, maintained 30% of its activity after 2 h at 50 °C, and was the most thermostable among the previously reported enzymes. Moreover, N13, S14, and S115, located near the thiol group of glutathione, had a significant effect on the maximum reaction rate of enzyme activity. This study suggests that AbLigF2 has the potential to serve as a thermostable enzyme for lignin utilization and provides insights into its catalytic mechanism.
Collapse
Affiliation(s)
- Eri Kumagawa
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, Gunma, Japan
| | - Yukari Ohta
- Gunma University Center for Food Science and Wellness, Gunma, Japan
| |
Collapse
|
5
|
Oya S, Tonegawa S, Nakagawa H, Habe H, Furuya T. Isolation and characterization of microorganisms capable of cleaving the ether bond of 2-phenoxyacetophenone. Sci Rep 2022; 12:2874. [PMID: 35190591 PMCID: PMC8861056 DOI: 10.1038/s41598-022-06816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The β-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond-cleaving microorganisms could still exist in nature. In this study, we searched for microorganisms that transform 2-phenoxyacetophenone (2-PAP), a model compound for the β-O-4 linkage in lignin, by monitoring ether bond cleavage. We first isolated microorganisms that grew on medium including humic acid (soil-derived organic compound) as a carbon source. The isolated microorganisms were subsequently subjected to colorimetric assay for 2-PAP ether bond-cleaving activity; cells of the isolated strains were incubated with 2-PAP, and strains producing phenol via ether bond cleavage were selected using phenol-sensitive Gibbs reagent. This screening procedure enabled the isolation of various 2-PAP-transforming microorganisms, including 7 bacteria (genera: Acinetobacter, Cupriavidus, Nocardioides, or Streptomyces) and 1 fungus (genus: Penicillium). To our knowledge, these are the first microorganisms demonstrated to cleave the ether bond of 2-PAP. One Gram-negative bacterium, Acinetobacter sp. TUS-SO1, was characterized in detail. HPLC and GC-MS analyses revealed that strain TUS-SO1 oxidatively and selectively cleaves the ether bond of 2-PAP to produce phenol and benzoate. These results indicate that the transformation mechanism differs from that involved in reductive β-etherase, which has been well studied. Furthermore, strain TUS-SO1 efficiently transformed 2-PAP; glucose-grown TUS-SO1 cells converted 1 mM 2-PAP within only 12 h. These microorganisms might play important roles in the degradation of lignin-related compounds in nature.
Collapse
Affiliation(s)
- Saki Oya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoshi Tonegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hirari Nakagawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
6
|
Wilmoth JL, Schaefer JK, Schlesinger DR, Roth SW, Hatcher PG, Shoemaker JK, Zhang X. The role of oxygen in stimulating methane production in wetlands. GLOBAL CHANGE BIOLOGY 2021; 27:5831-5847. [PMID: 34409684 PMCID: PMC9291790 DOI: 10.1111/gcb.15831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Methane (CH4 ), a potent greenhouse gas, is the second most important greenhouse gas contributor to climate change after carbon dioxide (CO2 ). The biological emissions of CH4 from wetlands are a major uncertainty in CH4 budgets. Microbial methanogenesis by Archaea is an anaerobic process accounting for most biological CH4 production in nature, yet recent observations indicate that large emissions can originate from oxygenated or frequently oxygenated wetland soil layers. To determine how oxygen (O2 ) can stimulate CH4 emissions, we used incubations of Sphagnum peat to demonstrate that the temporary exposure of peat to O2 can increase CH4 yields up to 2000-fold during subsequent anoxic conditions relative to peat without O2 exposure. Geochemical (including ion cyclotron resonance mass spectrometry, X-ray absorbance spectroscopy) and microbiome (16S rDNA amplicons, metagenomics) analyses of peat showed that higher CH4 yields of redox-oscillated peat were due to functional shifts in the peat microbiome arising during redox oscillation that enhanced peat carbon (C) degradation. Novosphingobium species with O2 -dependent aromatic oxygenase genes increased greatly in relative abundance during the oxygenation period in redox-oscillated peat compared to anoxic controls. Acidobacteria species were particularly important for anaerobic processing of peat C, including in the production of methanogenic substrates H2 and CO2 . Higher CO2 production during the anoxic phase of redox-oscillated peat stimulated hydrogenotrophic CH4 production by Methanobacterium species. The persistence of reduced iron (Fe(II)) during prolonged oxygenation in redox-oscillated peat may further enhance C degradation through abiotic mechanisms (e.g., Fenton reactions). The results indicate that specific functional shifts in the peat microbiome underlie O2 enhancement of CH4 production in acidic, Sphagnum-rich wetland soils. They also imply that understanding microbial dynamics spanning temporal and spatial redox transitions in peatlands is critical for constraining CH4 budgets; predicting feedbacks between climate change, hydrologic variability, and wetland CH4 emissions; and guiding wetland C management strategies.
Collapse
Affiliation(s)
- Jared L. Wilmoth
- High Meadows Environmental InstitutePrinceton UniversityPrincetonNJUSA
| | - Jeffra K. Schaefer
- Department of Environmental SciencesRutgers UniversityNew BrunswickNJUSA
| | | | - Spencer W. Roth
- Department of Environmental SciencesRutgers UniversityNew BrunswickNJUSA
| | | | - Julie K. Shoemaker
- Department of Chemistry and BiochemistryOld Dominion UniversityNorfolkVAUSA
| | - Xinning Zhang
- High Meadows Environmental InstitutePrinceton UniversityPrincetonNJUSA
- Department of GeosciencesPrinceton UniversityPrincetonNJUSA
| |
Collapse
|
7
|
Xie M, Zhang S, Xu L, Wu Z, Yuan J, Chen X. Comparison of the Intestinal Microbiota During the Different Growth Stages of Red Swamp Crayfish ( Procambarus clarkii). Front Microbiol 2021; 12:696281. [PMID: 34589066 PMCID: PMC8473915 DOI: 10.3389/fmicb.2021.696281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the effect of the growth stage of Procambarus clarkii on their intestinal microbiota. Intestinal samples of five different growth stages of P. clarkii (first instar, second instar, third instar, juvenile, and adult) from laboratory culture were analyzed through the Illumina MiSeq high-throughput sequencing platform to determine the intestinal microbiome of crayfish. The alpha diversity decreased along with the growth of the crayfish, with the relative abundance of the microbiota changing among stages; crayfish at closer development stages had a more comparable intestinal microbiota composition. A comparative analysis by principal component analysis and principal coordinate analysis showed that there were significant differences in the intestinal microbiota of crayfish among the different growth stages, except for the first two stages of larval crayfish, and the intestinal microbiota showed a consistent progression pattern from the larval stage to the juvenile stage. Some microbiota showed stage specificity, which might be the characteristic microbiota of different stages of growth. According to FAPROTAX functional clustering analysis, the three stages of larvae were clustered together, while the juvenile and adult stages were clustered separately according to the growth stage, indicating that, in the early stages of larval development, the function of the intestinal flora was similar; as the body grew and developed, the composition and function of the intestinal microbiota also changed.
Collapse
Affiliation(s)
- Mengqi Xie
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Shiyu Zhang
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Lili Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
8
|
Ohta Y, Katsumata M, Kurosawa K, Takaki Y, Nishimura H, Watanabe T, Kasuya KI. Degradation of ester linkages in rice straw components by Sphingobium species recovered from the sea bottom using a non-secretory tannase-family α/β hydrolase. Environ Microbiol 2021; 23:4151-4167. [PMID: 33939871 DOI: 10.1111/1462-2920.15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
Microbial decomposition of allochthonous plant components imported into the aquatic environment is one of the vital steps of the carbon cycle on earth. To expand the knowledge of the biodegradation of complex plant materials in aquatic environments, we recovered a sunken wood from the bottom of Otsuchi Bay, situated in northeastern Japan in 2012. We isolated Sphingobium with high ferulic acid esterase activity. The strain, designated as OW59, grew on various aromatic compounds and sugars, occurring naturally in terrestrial plants. A genomic study of the strain suggested its role in degrading hemicelluloses. We identified a gene encoding a non-secretory tannase-family α/β hydrolase, which exhibited ferulic acid esterase activity. This enzyme shares the consensus catalytic triad (Ser-His-Asp) within the tannase family block X in the ESTHER database. The molecules, which had the same calculated elemental compositions, were produced consistently in both the enzymatic and microbial degradation of rice straw crude extracts. The non-secretory tannase-family α/β hydrolase activity may confer an important phenotypic feature on the strain to accelerate plant biomass degradation. Our study provides insights into the underlying biodegradation process of terrestrial plant polymers in aquatic environments.
Collapse
Affiliation(s)
- Yukari Ohta
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan
| | - Kanako Kurosawa
- Super-cutting-edge Grand and Advanced Research Program, JAMSTEC, 2-15, Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research Program, JAMSTEC, 2-15, Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Nishimura
- Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Watanabe
- Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Ken-Ichi Kasuya
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan.,Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
9
|
Georgiadou DN, Avramidis P, Ioannou E, Hatzinikolaou DG. Microbial bioprospecting for lignocellulose degradation at a unique Greek environment. Heliyon 2021; 7:e07122. [PMID: 34141913 PMCID: PMC8187967 DOI: 10.1016/j.heliyon.2021.e07122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/24/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial systems have gained wide attention for depolymerization of lignocellulosic biomass, due to their high functional diversity and adaptability. To achieve the full microbial exploitation of lignocellulosic residues and the cost-effective production of bioproducts within a biorefinery, multiple metabolic pathways and enzymes of various specificities are required. In this work, highly diverse aerobic, mesophilic bacteria enriched from Keri Lake, a pristine marsh of increased biomass degradation and natural underground oil leaks, were explored for their metabolic versatility and enzymatic potential towards lignocellulosic substrates. A high number of Pseudomonas species, obtained from enrichment cultures where organosolv lignin served as the sole carbon and energy source, were able to assimilate a range of lignin-associated aromatic compounds. Comparatively more complex bacterial consortia, including members of Actinobacteria, Proteobacteria, Bacilli, Sphingobacteria, and Flavobacteria, were also enriched from cultures with xylan or carboxymethyl cellulose as sole carbon sources. Numerous individual isolates could target diverse structural lignocellulose polysaccharides by expressing hydrolytic activities on crystalline or amorphous cellulose and xylan. Specific isolates showed increased potential for growth in lignin hydrolysates prepared from alkali pretreated agricultural wastes. The results suggest that Keri isolates represent a pool of effective lignocellulose degraders with significant potential for industrial applications in a lignocellulose biorefinery.
Collapse
Affiliation(s)
- Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece
| | - Pavlos Avramidis
- Laboratory of Sedimentology, Department of Geology, University of Patras, 26504, Rio-Patra, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece
- Corresponding author.
| |
Collapse
|
10
|
Invertebrate and Microbial Response to Hyporheic Restoration of an Urban Stream. WATER 2021. [DOI: 10.3390/w13040481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All cities face complex challenges managing urban stormwater while also protecting urban water bodies. Green stormwater infrastructure and process-based restoration offer alternative strategies that prioritize watershed connectivity. We report on a new urban floodplain restoration technique being tested in the City of Seattle, USA: an engineered hyporheic zone. The hyporheic zone has long been an overlooked component in floodplain restoration. Yet this subsurface area offers enormous potential for stormwater amelioration and is a critical component of healthy streams. From 2014 to 2017, we measured hyporheic temperature, nutrients, and microbial and invertebrate communities at three paired stream reaches with and without hyporheic restoration. At two of the three pairs, water temperature was significantly lower at the restored reach, while dissolved organic carbon and microbial metabolism were higher. Hyporheic invertebrate density and taxa richness were significantly higher across all three restored reaches. These are some of the first quantified responses of hyporheic biological communities to restoration. Our results complement earlier reports of enhanced hydrologic and chemical functioning of the engineered hyporheic zone. Together, this research demonstrates that incorporation of hyporheic design elements in floodplain restoration can enhance temperature moderation, habitat diversity, contaminant filtration, and the biological health of urban streams.
Collapse
|
11
|
Roles of two glutathione S-transferases in the final step of the β-aryl ether cleavage pathway in Sphingobium sp. strain SYK-6. Sci Rep 2020; 10:20614. [PMID: 33244017 PMCID: PMC7691349 DOI: 10.1038/s41598-020-77462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Sphingobium sp. strain SYK-6 is an alphaproteobacterial degrader of lignin-derived aromatic compounds, which can degrade all the stereoisomers of β-aryl ether-type compounds. SYK-6 cells convert four stereoisomers of guaiacylglycerol-β-guaiacyl ether (GGE) into two enantiomers of α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV) through GGE α-carbon atom oxidation by stereoselective Cα-dehydrogenases encoded by ligD, ligL, and ligN. The ether linkages of the resulting MPHPV enantiomers are cleaved by stereoselective glutathione (GSH) S-transferases (GSTs) encoded by ligF, ligE, and ligP, generating (βR/βS)-α-glutathionyl-β-hydroxypropiovanillone (GS-HPV) and guaiacol. To date, it has been shown that the gene products of ligG and SLG_04120 (ligQ), both encoding GST, catalyze GSH removal from (βR/βS)-GS-HPV, forming achiral β-hydroxypropiovanillone. In this study, we verified the enzyme properties of LigG and LigQ and elucidated their roles in β-aryl ether catabolism. Purified LigG showed an approximately 300-fold higher specific activity for (βR)-GS-HPV than that for (βS)-GS-HPV, whereas purified LigQ showed an approximately six-fold higher specific activity for (βS)-GS-HPV than that for (βR)-GS-HPV. Analyses of mutants of ligG, ligQ, and both genes revealed that SYK-6 converted (βR)-GS-HPV using both LigG and LigQ, whereas only LigQ was involved in converting (βS)-GS-HPV. Furthermore, the disruption of both ligG and ligQ was observed to lead to the loss of the capability of SYK-6 to convert MPHPV. This suggests that GSH removal from GS-HPV catalyzed by LigG and LigQ, is essential for cellular GSH recycling during β-aryl ether catabolism.
Collapse
|
12
|
Tramontina R, Brenelli LB, Sodré V, Franco Cairo JP, Travália BM, Egawa VY, Goldbeck R, Squina FM. Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World J Microbiol Biotechnol 2020; 36:166. [PMID: 33000321 DOI: 10.1007/s11274-020-02942-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023]
Abstract
The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recommended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strategies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed as perspectives in the field.
Collapse
Affiliation(s)
- Robson Tramontina
- Programa de Pós-Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- School of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lívia Beatriz Brenelli
- Interdisciplinary Center of Energy Planning (NIPE), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Victoria Sodré
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
- Programa de Pós-Graduação em Biologia Funcional e Molecular (BFM), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Paulo Franco Cairo
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | | | - Viviane Yoshimi Egawa
- School of Agriculture, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rosana Goldbeck
- School of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
13
|
Kanomata K. Depolymerization Strategies for Lignin Valorization toward Valuable Aromatic Compounds. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Granja-Travez RS, Persinoti GF, Squina FM, Bugg TDH. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl Microbiol Biotechnol 2020; 104:3305-3320. [PMID: 32088760 DOI: 10.1007/s00253-019-10318-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central β-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the β-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.
Collapse
Affiliation(s)
- Rommel Santiago Granja-Travez
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
| | | | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
15
|
Database Mining for Novel Bacterial β-Etherases, Glutathione-Dependent Lignin-Degrading Enzymes. Appl Environ Microbiol 2020; 86:AEM.02026-19. [PMID: 31676477 DOI: 10.1128/aem.02026-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022] Open
Abstract
Lignin is the most abundant aromatic polymer in nature and a promising renewable source for the provision of aromatic platform chemicals and biofuels. β-Etherases are enzymes with a promising potential for application in lignin depolymerization due to their selectivity in the cleavage of β-O-4 aryl ether bonds. However, only a very limited number of these enzymes have been described and characterized so far. Using peptide pattern recognition (PPR) as well as phylogenetic analyses, 96 putatively novel β-etherases have been identified, some even originating from bacteria outside the order Sphingomonadales A set of 13 diverse enzymes was selected for biochemical characterization, and β-etherase activity was confirmed for all of them. Some enzymes displayed up to 3-fold higher activity than previously known β-etherases. Moreover, conserved sequence motifs specific for either LigE- or LigF-type enzymes were deduced from multiple-sequence alignments and the PPR-derived peptides. In combination with structural information available for the β-etherases LigE and LigF, insight into the potential structural and/or functional role of conserved residues within these sequence motifs is provided. Phylogenetic analyses further suggest the presence of additional bacterial enzymes with potential β-etherase activity outside the classical LigE- and LigF-type enzymes as well as the recently described heterodimeric β-etherases.IMPORTANCE The use of biomass as a renewable source and replacement for crude oil for the provision of chemicals and fuels is of major importance for current and future societies. Lignin, the most abundant aromatic polymer in nature, holds promise as a renewable starting material for the generation of required aromatic structures. However, a controlled and selective lignin depolymerization to yield desired aromatic structures is a very challenging task. In this regard, bacterial β-etherases are especially interesting, as they are able to cleave the most abundant bond type in lignin with high selectivity. With this study, we significantly expanded the toolbox of available β-etherases for application in lignin depolymerization and discovered more active as well as diverse enzymes than previously known. Moreover, the identification of further β-etherases by sequence database mining in the future will be facilitated considerably through our deduced etherase-specific sequence motifs.
Collapse
|
16
|
Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 2020; 55:26-33. [PMID: 31918394 DOI: 10.1016/j.cbpa.2019.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.
Collapse
|
17
|
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101498] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Complete Genome Sequence of Serratia quinivorans Strain 124R, a Facultative Anaerobe Isolated on Organosolv Lignin as a Sole Carbon Source. Microbiol Resour Announc 2019; 8:8/18/e00409-19. [PMID: 31048387 PMCID: PMC6498242 DOI: 10.1128/mra.00409-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications. The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.
Collapse
|
19
|
Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 2019; 56:179-186. [DOI: 10.1016/j.copbio.2018.11.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
|
20
|
Husarcikova J, Schallmey A. Whole-cell cascade for the preparation of enantiopure β-O-4 aryl ether compounds with glutathione recycling. J Biotechnol 2019; 293:1-7. [PMID: 30703467 DOI: 10.1016/j.jbiotec.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Bacterial β-etherases and glutathione lyases are glutathione-dependent enzymes that catalyze the selective cleavage of β-O-4 aryl ether bonds found in lignin. Their glutathione (GSH) dependence is regarded as major limitation for their application in the production of aromatics from lignin polymer and oligomers, as stoichiometric glutathione amounts are required. Thus, recycling of the GSH cofactor by a NAD(P)H-dependent glutathione reductase was proposed previously. Herein, the use of a whole-cell catalyst was studied for efficient β-O-4 aryl ether bond cleavage with intracellular GSH supply and recycling. After optimization of the whole-cell catalyst as well as reaction conditions, up to 5 mM lignin model substrate 2,6-methoxyphenoxy-α-veratrylglycerone (2,6-MP-VG) were efficiently converted into 2,6-methoxyphenol (2,6-MP) and veratryl glycerone (VG) without addition of external GSH. Unexpectedly, no glucose supply was required for glutathione recycling within the cells up to this substrate concentration. To demonstrate the applicability of this whole-cell approach, a whole-cell cascade combining a stereoselective β-etherase (either LigE from Sphingobium sp. SYK-6 or LigF-NA from Novosphingobium aromaticivorans) and a glutathione lyase (LigG-TD from Thiobacillus denitrificans) was employed in the kinetic resolution of racemic 2,6-MP-VG. This way, enantiopure (S)- and (R)-2,6-MP-VG were obtained on semi-preparative scale without the need for external GSH supply.
Collapse
Affiliation(s)
- Jana Husarcikova
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
21
|
Kontur WS, Olmsted CN, Yusko LM, Niles AV, Walters KA, Beebe ET, Vander Meulen KA, Karlen SD, Gall DL, Noguera DR, Donohue TJ. A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β( R)-aryl ether bond reveals the diversity of bacterial β-etherases. J Biol Chem 2018; 294:1877-1890. [PMID: 30541921 PMCID: PMC6369299 DOI: 10.1074/jbc.ra118.006548] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/07/2018] [Indexed: 11/12/2022] Open
Abstract
Lignin is a heterogeneous polymer of aromatic subunits that is a major component of lignocellulosic plant biomass. Understanding how microorganisms deconstruct lignin is important for understanding the global carbon cycle and could aid in developing systems for processing plant biomass into valuable commodities. Sphingomonad bacteria use stereospecific glutathione S-transferases (GSTs) called β-etherases to cleave the β-aryl ether (β-O-4) bond, the most common bond between aromatic subunits in lignin. Previously characterized bacterial β-etherases are homodimers that fall into two distinct GST subclasses: LigE homologues, which cleave the β(R) stereoisomer of the bond, and LigF homologues, which cleave the β(S) stereoisomer. Here, we report on a heterodimeric β-etherase (BaeAB) from the sphingomonad Novosphingobium aromaticivorans that stereospecifically cleaves the β(R)-aryl ether bond of the di-aromatic compound β-(2-methoxyphenoxy)-γ-hydroxypropiovanillone (MPHPV). BaeAB's subunits are phylogenetically distinct from each other and from other β-etherases, although they are evolutionarily related to LigF, despite the fact that BaeAB and LigF cleave different β-aryl ether bond stereoisomers. We identify amino acid residues in BaeAB's BaeA subunit important for substrate binding and catalysis, including an asparagine that is proposed to activate the GSH cofactor. We also show that BaeAB homologues from other sphingomonads can cleave β(R)-MPHPV and that they may be as common in bacteria as LigE homologues. Our results suggest that the ability to cleave the β-aryl ether bond arose independently at least twice in GSTs and that BaeAB homologues may be important for cleaving the β(R)-aryl ether bonds of lignin-derived oligomers in nature.
Collapse
Affiliation(s)
- Wayne S Kontur
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Charles N Olmsted
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Larissa M Yusko
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Alyssa V Niles
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Kevin A Walters
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Emily T Beebe
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,the Departments of Biochemistry
| | - Kirk A Vander Meulen
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,the Departments of Biochemistry
| | - Steven D Karlen
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,the Departments of Biochemistry
| | - Daniel L Gall
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and
| | - Daniel R Noguera
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center, and.,Civil and Environmental Engineering, and
| | - Timothy J Donohue
- From the Wisconsin Energy Institute, .,the Department of Energy Great Lakes Bioenergy Research Center, and.,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
22
|
Theoharaki C, Chronopoulou E, Vlachakis D, Ataya FS, Giannopoulos P, Maurikou S, Skopelitou K, Papageorgiou AC, Labrou NE. Delineation of the functional and structural properties of the glutathione transferase family from the plant pathogen Erwinia carotovora. Funct Integr Genomics 2018; 19:1-12. [PMID: 29938342 DOI: 10.1007/s10142-018-0618-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/09/2023]
Abstract
Erwinia carotovora, a widespread plant pathogen that causes soft rot disease in many plants, is considered a major threat in agriculture. Bacterial glutathione transferases (GSTs) play important roles in a variety of metabolic pathways and processes, such as the biodegradation of xenobiotics, protection against abiotic stress, and resistance against antimicrobial drugs. The GST family of canonical soluble enzymes from Erwinia carotovora subsp. atroseptica strain SCRI1043 (EcaGSTs) was investigated. Genome analysis showed the presence of six putative canonical cytoplasmic EcaGSTs, which were revealed by phylogenetic analysis to belong to the well-characterized GST classes beta, nu, phi, and zeta. The analysis also revealed the presence of two isoenzymes that were phylogenetically close to the omega class of GSTs, but formed a distinct class. The EcaGSTs were cloned and expressed in Escherichia coli, and their catalytic activity toward different electrophilic substrates was elucidated. The EcaGSTs catalyzed different types of reactions, although all enzymes were particularly active in reactions involving electrophile substitution. Gene and protein expression profiling conducted under normal culture conditions as well as in the presence of the herbicide alachlor and the xenobiotic 1-chloro-2,4-dinitrobenzene (CDNB) showed that the isoenzyme EcaGST1, belonging to the omega-like class, was specifically induced at both the protein and mRNA levels. EcaGST1 presumably participates in counteracting the xenobiotic toxicity and/or abiotic stress conditions, and may therefore represent a novel molecular target in the development of new chemical treatments to control soft rot diseases.
Collapse
Affiliation(s)
- Christina Theoharaki
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Molecular Biology Department, Genetic Engineering Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Panagiotis Giannopoulos
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Sofia Maurikou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Katholiki Skopelitou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece
| | - Anastassios C Papageorgiou
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521, Turku, Finland
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 118 55, Athens, Greece.
| |
Collapse
|
23
|
Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives. Appl Microbiol Biotechnol 2018; 102:5391-5401. [PMID: 29728724 DOI: 10.1007/s00253-018-9040-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/05/2023]
Abstract
Lignin is the major aromatic biopolymer in nature, and it is considered a valuable feedstock for the future supply of aromatics. Hence, its valorisation in biorefineries is of high importance, and various chemical and enzymatic approaches for lignin depolymerisation have been reported. Among the enzymes known to act on lignin, β-etherases offer the possibility for a selective cleavage of the β-O-4 aryl ether bonds present in lignin. These enzymes, together with glutathione lyases, catalyse a reductive, glutathione-dependent ether bond cleavage displaying high stereospecificity. β-Etherases and glutathione lyases both belong to the superfamily of glutathione transferases, and several structures have been solved recently. Additionally, different approaches for their application in lignin valorisation have been reported in the last years. This review gives an overview on the current knowledge on β-etherases and glutathione lyases, their biochemical and structural features, and critically discusses their potential for application in biorefineries.
Collapse
|
24
|
Complete Genome Sequence of Sphingobium sp. Strain YG1, a Lignin Model Dimer-Metabolizing Bacterium Isolated from Sediment in Kagoshima Bay, Japan. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00267-18. [PMID: 29700143 PMCID: PMC5920171 DOI: 10.1128/genomea.00267-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingobium sp. strain YG1 is a lignin model dimer-metabolizing bacterium newly isolated from sediment in Kagoshima, Japan, at a depth of 102 m. Here, we report the complete genome nucleotide sequence of strain YG1.
Collapse
|
25
|
Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin. Appl Environ Microbiol 2018; 84:AEM.02670-17. [PMID: 29374031 DOI: 10.1128/aem.02670-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Sphingobium sp. strain SYK-6 converts four stereoisomers of arylglycerol-β-guaiacyl ether into achiral β-hydroxypropiovanillone (HPV) via three stereospecific reaction steps. Here, we determined the HPV catabolic pathway and characterized the HPV catabolic genes involved in the first two steps of the pathway. In SYK-6 cells, HPV was oxidized to vanilloyl acetic acid (VAA) via vanilloyl acetaldehyde (VAL). The resulting VAA was further converted into vanillate through the activation of VAA by coenzyme A. A syringyl-type HPV analog, β-hydroxypropiosyringone (HPS), was also catabolized via the same pathway. SLG_12830 (hpvZ), which belongs to the glucose-methanol-choline oxidoreductase family, was isolated as the HPV-converting enzyme gene. An hpvZ mutant completely lost the ability to convert HPV and HPS, indicating that hpvZ is essential for the conversion of both the substrates. HpvZ produced in Escherichia coli oxidized both HPV and HPS and other 3-phenyl-1-propanol derivatives. HpvZ localized to both the cytoplasm and membrane of SYK-6 and used ubiquinone derivatives as electron acceptors. Thirteen gene products of the 23 aldehyde dehydrogenase (ALDH) genes in SYK-6 were able to oxidize VAL into VAA. Mutant analyses suggested that multiple ALDH genes, including SLG_20400, contribute to the conversion of VAL. We examined whether the genes encoding feruloyl-CoA synthetase (ferA) and feruloyl-CoA hydratase/lyase (ferB and ferB2) are involved in the conversion of VAA. Only FerA exhibited activity toward VAA; however, disruption of ferA did not affect VAA conversion. These results indicate that another enzyme system is involved in VAA conversion.IMPORTANCE Cleavage of the β-aryl ether linkage is the most essential process in lignin biodegradation. Although the bacterial β-aryl ether cleavage pathway and catabolic genes have been well documented, there have been no reports regarding the catabolism of HPV or HPS, the products of cleavage of β-aryl ether compounds. HPV and HPS have also been found to be obtained from lignin by chemoselective catalytic oxidation by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone/tert-butyl nitrite/O2, followed by cleavage of the β-aryl ether with zinc. Therefore, value-added chemicals are expected to be produced from these compounds. In this study, we determined the SYK-6 catabolic pathways for HPV and HPS and identified the catabolic genes involved in the first two steps of the pathways. Since SYK-6 catabolizes HPV through 2-pyrone-4,6-dicarboxylate, which is a building block for functional polymers, characterization of HPV catabolism is important not only for understanding the bacterial lignin catabolic system but also for lignin utilization.
Collapse
|
26
|
Kontur WS, Bingman CA, Olmsted CN, Wassarman DR, Ulbrich A, Gall DL, Smith RW, Yusko LM, Fox BG, Noguera DR, Coon JJ, Donohue TJ. Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin. J Biol Chem 2018; 293:4955-4968. [PMID: 29449375 PMCID: PMC5892560 DOI: 10.1074/jbc.ra117.001268] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
As a major component of plant cell walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can break the β-aryl ether bond connecting most phenylpropanoid units of the lignin heteropolymer. Here, we tested three sphingomonads predicted to be capable of breaking the β-aryl ether bond of the dimeric aromatic compound guaiacylglycerol-β-guaiacyl ether (GGE) and found that Novosphingobium aromaticivorans metabolizes GGE at one of the fastest rates thus far reported. After the ether bond of racemic GGE is broken by replacement with a thioether bond involving glutathione, the glutathione moiety must be removed from the resulting two stereoisomers of the phenylpropanoid conjugate β-glutathionyl-γ-hydroxypropiovanillone (GS-HPV). We found that the Nu-class glutathione S-transferase NaGSTNu is the only enzyme needed to remove glutathione from both (R)- and (S)-GS-HPV in N. aromaticivorans We solved the crystal structure of NaGSTNu and used molecular modeling to propose a mechanism for the glutathione lyase (deglutathionylation) reaction in which an enzyme-stabilized glutathione thiolate attacks the thioether bond of GS-HPV, and the reaction proceeds through an enzyme-stabilized enolate intermediate. Three residues implicated in the proposed mechanism (Thr51, Tyr166, and Tyr224) were found to be critical for the lyase reaction. We also found that Nu-class GSTs from Sphingobium sp. SYK-6 (which can also break the β-aryl ether bond) and Escherichia coli (which cannot break the β-aryl ether bond) can also cleave (R)- and (S)-GS-HPV, suggesting that glutathione lyase activity may be common throughout this widespread but largely uncharacterized class of glutathione S-transferases.
Collapse
Affiliation(s)
- Wayne S Kontur
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center
| | - Craig A Bingman
- the Department of Energy Great Lakes Bioenergy Research Center.,the Departments of Biochemistry
| | - Charles N Olmsted
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center
| | - Douglas R Wassarman
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center
| | | | - Daniel L Gall
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center
| | - Robert W Smith
- the Department of Energy Great Lakes Bioenergy Research Center.,the Departments of Biochemistry
| | | | - Brian G Fox
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center.,the Departments of Biochemistry
| | - Daniel R Noguera
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center.,Civil and Environmental Engineering
| | - Joshua J Coon
- From the Wisconsin Energy Institute.,the Department of Energy Great Lakes Bioenergy Research Center.,Chemistry.,the Genome Center of Wisconsin, and.,Biomolecular Chemistry, and
| | - Timothy J Donohue
- From the Wisconsin Energy Institute, .,the Department of Energy Great Lakes Bioenergy Research Center.,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
27
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
28
|
|
29
|
Wang W, Zhang C, Sun X, Su S, Li Q, Linhardt RJ. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes. World J Microbiol Biotechnol 2017; 33:125. [DOI: 10.1007/s11274-017-2286-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
|
30
|
Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium. mSystems 2017; 2:mSystems00020-17. [PMID: 28567447 PMCID: PMC5443232 DOI: 10.1128/msystems.00020-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022] Open
Abstract
This study highlights the significant role of the genetic repertoire of a microorganism in the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits for Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium. Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species. IMPORTANCE This study highlights the significant role of a microorganism’s genetic repertoire in structuring the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits in Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium.
Collapse
|
31
|
Ohta Y, Hasegawa R, Kurosawa K, Maeda AH, Koizumi T, Nishimura H, Okada H, Qu C, Saito K, Watanabe T, Hatada Y. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin. CHEMSUSCHEM 2017; 10:425-433. [PMID: 27878983 PMCID: PMC5299523 DOI: 10.1002/cssc.201601235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/31/2016] [Indexed: 05/04/2023]
Abstract
Enzymatic catalysis is an ecofriendly strategy for the production of high-value low-molecular-weight aromatic compounds from lignin. Although well-definable aromatic monomers have been obtained from synthetic lignin-model dimers, enzymatic-selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β-O-4-cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate-binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio-based industries, we chemically generate value-added GHP derivatives for bio-based polymers. Together with these chemical conversions for the valorization of lignin-derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in "white biotechnology" for sustainable biorefineries.
Collapse
Affiliation(s)
- Yukari Ohta
- Research and Development Center for Marine BiosciencesJapan Agency for Marine-Earth Science and Technology, JAMSTEC2-15 NatsushimaYokosukaKanagawa237-0061Japan
| | - Ryoichi Hasegawa
- Research and Development Center for Marine BiosciencesJapan Agency for Marine-Earth Science and Technology, JAMSTEC2-15 NatsushimaYokosukaKanagawa237-0061Japan
| | - Kanako Kurosawa
- Research and Development Center for Marine BiosciencesJapan Agency for Marine-Earth Science and Technology, JAMSTEC2-15 NatsushimaYokosukaKanagawa237-0061Japan
| | - Allyn H. Maeda
- Research and Development Center for Marine BiosciencesJapan Agency for Marine-Earth Science and Technology, JAMSTEC2-15 NatsushimaYokosukaKanagawa237-0061Japan
| | - Toshio Koizumi
- Department of Applied ChemistryNational Defense Academy1-10-20 HashirimizuYokosukaKanagawa239-8686Japan
| | - Hiroshi Nishimura
- Research Institute for Sustainable Humanosphere, RISHKyoto UniversityGokasho, UjiKyoto611-0011Japan
| | - Hitomi Okada
- Research Institute for Sustainable Humanosphere, RISHKyoto UniversityGokasho, UjiKyoto611-0011Japan
| | - Chen Qu
- Research Institute for Sustainable Humanosphere, RISHKyoto UniversityGokasho, UjiKyoto611-0011Japan
| | - Kaori Saito
- Research Institute for Sustainable Humanosphere, RISHKyoto UniversityGokasho, UjiKyoto611-0011Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, RISHKyoto UniversityGokasho, UjiKyoto611-0011Japan
| | - Yuji Hatada
- Department of Life Sciences and Green ChemistrySaitama Institute of Technology1690 FusaijiFukayaSaitama369-0293Japan
| |
Collapse
|
32
|
Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China. Sci Rep 2017; 7:40610. [PMID: 28094345 PMCID: PMC5240147 DOI: 10.1038/srep40610] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought.
Collapse
|
33
|
De Santi C, Willassen NP, Williamson A. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome. PLoS One 2016; 11:e0159345. [PMID: 27433797 PMCID: PMC4951047 DOI: 10.1371/journal.pone.0159345] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.
Collapse
Affiliation(s)
- Concetta De Santi
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Adele Williamson
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT—The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|