1
|
Lin SL, Nie QC, Law COK, Pham HQ, Chau HF, Lau TCK. A novel plasmid-encoded transposon-derived small RNA reveals the mechanism of sRNA-regulated bacterial persistence. mBio 2025; 16:e0381424. [PMID: 39998215 PMCID: PMC11980398 DOI: 10.1128/mbio.03814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Small regulatory RNAs (sRNAs) in bacteria are crucial for controlling various cellular functions and provide immediate response to the environmental stresses. Antibiotic persistence is a phenomenon that a small subpopulation of bacteria survives under the exposure of a lethal concentration of antibiotics, potentially leading to the development of drug resistance in bacteria. Here, we reported a novel transposon-derived sRNA called stnpA, which can modulate fosfomycin persistence of the bacteria. The stnpA sRNA located in the transposon with its own promoter is highly conserved among the prevalent multidrug resistance (MDR) plasmids in various pathogenic bacteria and expressed in response to the fosfomycin stress. It can directly bind to the ABC transporter, YadG, whereas this protein-RNA interaction modulated the export of fosfomycin and led to the enhancement of bacterial persistence. According to our knowledge, stnpA is the first identified transposon-derived sRNA, which controlled antibiotic persistence of bacteria, and our work demonstrated that nonresistance genes on MDR plasmids such as plasmid-encoded sRNA can provide additional survival advantages to the bacterial host against the antibiotics. In addition, the stnpA sRNA can be potentially utilized as the druggable target for the development of novel therapeutic strategies to overcome bacterial persistence. IMPORTANCE This study unveils a groundbreaking discovery in the realm of bacterial antibiotic persistence, highlighting the pivotal role of a newly identified small RNA (sRNA) called stnpA, which is a multidrug resistance plasmid-encoded transposon-derived sRNA that interacts directly with ABC transporter YadG to modulate the efflux of fosfomycin. Our findings elucidate a novel mechanism of small RNA-regulated fosfomycin persistence in bacteria that provides the potential pathway for the emergence of drug resistance in bacteria upon antibiotic treatment. Importantly, this study provides the first example of linking sRNA regulation to antibiotic persistence, presenting stnpA sRNA as a potential therapeutic target. This study underscores the critical role of noncoding RNAs in bacterial adaptation and offers valuable insights for developing new strategies to combat antibiotic persistence.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Carmen Oi-Kwan Law
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Ho-Fai Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
He L, Mao MQ, Zhao LM, Li Q, Ge H, Zhang JN, Zhang JL, Yan QP. sRNA113 regulates Pseudomonas plecoglossicida motility to affect immune response against infection in pearl gentian grouper. Zool Res 2025; 46:152-164. [PMID: 39846193 PMCID: PMC11890999 DOI: 10.24272/j.issn.2095-8137.2024.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025] Open
Abstract
Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. Pseudomonas plecoglossicida is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in P. plecoglossicida remain unclear. This study focused on sRNA113, previously identified as a potential regulator of the fliP gene, a key component of the lateral flagellar type III secretion system. To investigate the effects of sRNA113 on P. plecoglossicida virulence, as well as its role in regulating pathogenic processes and host immune responses, mutant strains lacking this sRNA were generated and analyzed. Deletion of sRNA113 resulted in the up-regulation of lateral flagellar type III secretion system-related genes in P. plecoglossicida, which enhanced bacterial swarming motility, biofilm formation, and chemotaxis ability in vitro. In vivo infection experiments with pearl gentian grouper revealed that sRNA113 deletion enhanced the pathogenicity of P. plecoglossicida. This heightened virulence was attributed to the up-regulation of genes associated with the lateral flagellar type III secretion system, resulting in higher bacterial loads within host tissues. This amplification of pathogenic activity intensified tissue damage, disrupted immune responses, and impaired the ability of the host to clear infection, ultimately leading to mortality. These findings underscore the critical role of sRNA113 in regulating the virulence of P. plecoglossicida and its interaction with host immune defenses. This study provides a foundation for further exploration of sRNA-mediated mechanisms in bacterial pathogenesis and host-pathogen interactions, contributing to a deeper understanding of virulence regulation and immune evasion in aquatic pathogens.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Mei-Qin Mao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen, Fujian 361000, China
| | - Jiao-Nan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian 350308, China
| | - Jiao-Lin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian 350308, China
| | - Qing-Pi Yan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China. E-mail:
| |
Collapse
|
3
|
Li Y, Cao X, Chai Y, Chen R, Zhao Y, Borriss R, Ding X, Wu X, Ye J, Hao D, He J, Wang G, Cao M, Jiang C, Han Z, Fan B. A phosphate starvation induced small RNA promotes Bacillus biofilm formation. NPJ Biofilms Microbiomes 2024; 10:115. [PMID: 39472585 PMCID: PMC11522486 DOI: 10.1038/s41522-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Currently, almost all known regulators involved in bacterial phosphorus metabolism are proteins. In this study, we identified a conserved new small regulatory RNA (sRNA), named PhoS, encoded in the 3' untranslated region (UTR) of the phoPR genes in Bacillus velezensis and B. subtilis. Expression of phoS is strongly induced upon phosphorus scarcity and stimulated by the transcription factor PhoP. Conversely, PhoS positively regulates PhoP translation by binding to the ribosome binding site (RBS) of phoP mRNA. PhoS can promote Bacillus biofilm formation through, at least in part, enhancing the expression of the matrix-related genes, such as the eps genes and the tapA-sipW-tasA operon. The positive regulation of phoP expression by PhoS contributes to the promoting effect of PhoS on biofilm formation. sRNAs regulating biofilm formation have rarely been reported in gram-positive Bacillus species. Here we highlight the significance of sRNAs involved in two important biological processes: phosphate metabolism and biofilm formation.
Collapse
Affiliation(s)
- Yulong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
- School of Agriculture, Ningxia University, Ningxia, China
| | - Xianming Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, USA
| | - Ruofu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Xiaoqin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
| | - Jian He
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Mingmin Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Chunliang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhengmin Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
4
|
Yang X, Yang J, Huang H, Yan X, Li X, Lin Z. Achieving robust synthetic tolerance in industrial E. coli through negative auto-regulation of a DsrA-Hfq module. Synth Syst Biotechnol 2024; 9:462-469. [PMID: 38634002 PMCID: PMC11021974 DOI: 10.1016/j.synbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
In industrial fermentation processes, microorganisms often encounter acid stress, which significantly impact their productivity. This study focused on the acid-resistant module composed of small RNA (sRNA) DsrA and the sRNA chaperone Hfq. Our previous study had shown that this module improved the cell growth of Escherichia coli MG1655 at low pH, but failed to obtain this desired phenotype in industrial strains. Here, we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode. We then assessed the potential of the CymR-based negative auto-regulation (NAR) circuit for industrial application, under different media, strains and pH levels. Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of E. coli MG1655. This circuit was robust and worked well in the industrial lysine-producing strain E. coli SCEcL3 at a starting pH of 6.8 and without pH control, resulting in a 250 % increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain. This study showed the practical application of NAR circuit in regulating DsrA-Hfq module, effectively and robustly improving the acid tolerance of industrial strains, which provides a new approach for breeding industrial strains with tolerance phenotype.
Collapse
Affiliation(s)
- Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jingduan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Haozheng Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- School of Biomedicine, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Isidro-Coxca MI, Ortiz-Jiménez S, Puente JL. Type 1 fimbria and P pili: regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch Microbiol 2024; 206:373. [PMID: 39127787 PMCID: PMC11316696 DOI: 10.1007/s00203-024-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.
Collapse
Affiliation(s)
- María I Isidro-Coxca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| |
Collapse
|
6
|
He L, Mao M, Zhao L, Li Q, Zhuang Z, Wang X, Huang H, Wang Q, Yan Q. A novel small non-coding RNA 562 mediates the virulence of Pseudomonas plecoglossicida by regulating the expression of fliP, a key component of flagella T3SS. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109752. [PMID: 38977112 DOI: 10.1016/j.fsi.2024.109752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Pseudomonas plecoglossicida is a vital pathogen that poses a substantial risk to aquaculture. Small RNAs (sRNAs) are non-coding regulatory molecules capable of sensing environmental changes and modulating virulence-associated signaling pathways, such as the assembly of flagella. However, the relevant researches on P. plecoglossicida are an urgent need. Here, we report a novel sRNA, sRNA562, which has potential to regulate the post-transcriptional of fliP, a key component of the lateral flagellar type III secretion system. In this study, the effects of sRNA562 on the virulence of P. plecoglossicida and its role in regulating the pathogenic process were investigated through the use of a constructed sRNA562 deletion strain. The deletion of sRNA562 resulted in an up-regulation of fliP in P. plecoglossicida, and leading to increased swarming motility and enhanced the ability of biofilm formation, adhesion and chemotaxis. Subsequent artificial infection experiment demonstrated that the deletion of sRNA562 increased the virulence of P. plecoglossicida towards hybrid grouper, as evidenced by a reduction in survival rate, elevation of tissue bacterial load, and the exacerbation of histopathological damage. Further studies have found that the deletion of sRNA562 lead to an up-regulation of fliP expression during hybrid grouper infection, thereby enhancing bacterial swarming ability and ultimately heightening pathogenicity, leading to a dysregulated host response to infection, tissue damage and eventually death. Our work revealed a sRNA that exerts negative regulation on the expression of lateral flagella in P. plecoglossicida, thereby impacting its virulence. These findings provide a new perspective on the virulence regulation mechanism of P. plecoglossicida, contributing to a more comprehensive understanding in the field of pathogenicity research.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Meiqin Mao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, Shanghai, 200000, China.
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
7
|
Li Q, Liu C, He J, Liu T, Zhang W, Xie Z, Zong J, Li Y, Sun X, Lu F. Construction and application of 3-fucosyllactose whole-cell biosensor for high-throughput screening of overproducers. BIORESOURCE TECHNOLOGY 2024; 402:130798. [PMID: 38705212 DOI: 10.1016/j.biortech.2024.130798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Biosensor-based high-throughput screening is efficient for improving industrial microorganisms. There is a severe shortage of human milk oligosaccharides (HMOs) biosensors. This study established a 3-fucosyllactose (3-FL, a kind of HMOs) whole-cell biosensor by coupling cell growth with production. To construct and optimize the biosensor, an Escherichia coli 3-FL producer was engineered by deleting the manA, yihS and manX genes, directing the mannose flux solely to 3-FL synthesis. Then, an α-L-fucosidase was introduced to hydrolyze 3-FL to fucose which was used as the only carbon source for cell growth. Using the biosensor, the 3-FL production of a screened mutant was improved by 25 % to 42.05 ± 1.28 g/L. The productivity reached 1.17 g/L/h, the highest level reported by now. The csrB mutant obtained should be a new clue for the 3-FL overproduction mechanism. In summary, this study provided a novel approach to construct HMOs biosensors for strain improvement.
Collapse
Affiliation(s)
- Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, PR China.
| | - Chuan Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jinhuai He
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Tiantian Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Wencong Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Zhenzhen Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jianfei Zong
- Shandong SynBio-Vision Technology Co., Ltd, Weifang 262500, PR China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Xue Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| |
Collapse
|
8
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Ko SC, Woo HM. CRISPR-dCas13a system for programmable small RNAs and polycistronic mRNA repression in bacteria. Nucleic Acids Res 2024; 52:492-506. [PMID: 38015471 PMCID: PMC10783499 DOI: 10.1093/nar/gkad1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Bacterial small RNAs (sRNAs) function in post-transcriptional regulatory responses to environmental changes. However, the lack of eukaryotic RNA interference-like machinery in bacteria has limited the systematic engineering of RNA repression. Here, we report the development of clustered regularly interspaced short palindromic repeats (CRISPR)-guided dead CRIPSR-associated protein 13a (dCas13a) ribonucleoprotein that utilizes programmable CRISPR RNAs (crRNAs) to repress trans-acting and cis-acting sRNA as the target, altering regulatory mechanisms and stress-related phenotypes. In addition, we implemented a modular loop engineering of the crRNA to promote modular repression of the target gene with 92% knockdown efficiency and a single base-pair mismatch specificity. With the engineered crRNAs, we achieved targetable single-gene repression in the polycistronic operon. For metabolic application, 102 crRNAs were constructed in the biofoundry and used for screening novel knockdown sRNA targets to improve lycopene (colored antioxidant) production in Escherichia coli. The CRISPR-dCas13a system will assist as a valuable systematic tool for the discovery of novel sRNAs and the fine-tuning of bacterial RNA repression in both scientific and industrial applications.
Collapse
Affiliation(s)
- Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Bloch S, Lewandowska N, Wesołowski W, Łukasiak A, Mach P, Nejman-Faleńczyk B, Węgrzyn G. Analysis of Phage Regulatory RNAs: Sequencing Library Construction from the Fraction of Small Prokaryotic RNAs Less Than 50 Nucleotides in Length. Methods Mol Biol 2024; 2741:25-34. [PMID: 38217647 DOI: 10.1007/978-1-0716-3565-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
So far, bacterial regulatory sRNAs of length less than 50 nucleotides have been poorly understood, and a low number of such molecules has been identified. The first microRNA-size functional ribonucleic acid occurring in a bacterial cell has been described only recently, and it was found to be encoded by a bacteriophage. One of the reasons for such a scarcity in this field is the lack of procedures intended for the isolation and selection of molecules of this size from bacterial cells. To meet these difficulties, we describe here the few-step procedure of isolation, purification, selection, and sequencing library preparation that is dedicated to the fraction of very small, bacterial RNA molecules.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Wojciech Wesołowski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Aleksandra Łukasiak
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Paulina Mach
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
11
|
Wang Z, Chen R, Xia F, Jiang M, Zhu D, Zhang Y, Dai J, Zhuge X. ProQ binding to small RNA RyfA promotes virulence and biofilm formation in avian pathogenic Escherichia coli. Vet Res 2023; 54:109. [PMID: 37993891 PMCID: PMC10664665 DOI: 10.1186/s13567-023-01241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a notable subpathotype of the nonhuman extraintestinal pathogenic E. coli (ExPEC). Recognized as an extraintestinal foodborne pathogen, the zoonotic potential of APEC/ExPEC allows for cross-host transmission via APEC-contaminated poultry meat and eggs. ProQ, an RNA binding protein, is evolutionarily conserved in E. coli. However, its regulatory roles in the biofilm formation and virulence of APEC/ExPEC have not been explored. In this study, proQ deletion in the APEC strain FY26 significantly compromised its biofilm-forming ability. Furthermore, animal tests and cellular infection experiments showed that ProQ depletion significantly attenuated APEC virulence, thereby diminishing its capacity for bloodstream infection and effective adherence to and persistence within host cells. Transcriptome analysis revealed a decrease in the transcription level of the small RNA (sRNA) RyfA in the mutant FY26ΔproQ, suggesting a direct interaction between the sRNA RyfA and ProQ. This interaction might indicate that sRNA RyfA is a novel ProQ-associated sRNA. Moreover, the direct binding of ProQ to the sRNA RyfA was crucial for APEC biofilm formation, pathogenicity, adhesion, and intracellular survival. In conclusion, our findings provide detailed insight into the interaction between ProQ and sRNA RyfA and deepen our understanding of the regulatory elements that dictate APEC virulence and biofilm development. Such insights are instrumental in developing strategies to counteract APEC colonization within hosts and impede APEC biofilm establishment on food surfaces.
Collapse
Affiliation(s)
- Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fufang Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongyu Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
12
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA selectively modulates sRNA-mRNA regulator outcomes. Front Mol Biosci 2023; 10:1249528. [PMID: 38116378 PMCID: PMC10729762 DOI: 10.3389/fmolb.2023.1249528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023] Open
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact directly with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcases CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Melamed S, Zhang A, Jarnik M, Mills J, Silverman A, Zhang H, Storz G. σ 28-dependent small RNA regulation of flagella biosynthesis. eLife 2023; 12:RP87151. [PMID: 37843988 PMCID: PMC10578931 DOI: 10.7554/elife.87151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Flagella are important for bacterial motility as well as for pathogenesis. Synthesis of these structures is energy intensive and, while extensive transcriptional regulation has been described, little is known about the posttranscriptional regulation. Small RNAs (sRNAs) are widespread posttranscriptional regulators, most base pairing with mRNAs to affect their stability and/or translation. Here, we describe four UTR-derived sRNAs (UhpU, MotR, FliX and FlgO) whose expression is controlled by the flagella sigma factor σ28 (fliA) in Escherichia coli. Interestingly, the four sRNAs have varied effects on flagellin protein levels, flagella number and cell motility. UhpU, corresponding to the 3´ UTR of a metabolic gene, likely has hundreds of targets including a transcriptional regulator at the top flagella regulatory cascade connecting metabolism and flagella synthesis. Unlike most sRNAs, MotR and FliX base pair within the coding sequences of target mRNAs and act on ribosomal protein mRNAs connecting ribosome production and flagella synthesis. The study shows how sRNA-mediated regulation can overlay a complex network enabling nuanced control of flagella synthesis.
Collapse
Affiliation(s)
- Sahar Melamed
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Joshua Mills
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Aviezer Silverman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Hongen Zhang
- Bioinformatics and Scientific Computing Core, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
14
|
Zhu W, Xi L, Qiao J, Du D, Wang Y, Morigen. Involvement of OxyR and Dps in the repression of replication initiation by DsrA small RNA in Escherichia coli. Gene 2023; 882:147659. [PMID: 37482259 DOI: 10.1016/j.gene.2023.147659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Regulation of the cell cycle process is an effective measure to ensure the stability and fidelity of genetic material during the reproduction of bacteria under different stresses. The small RNA DsrA helps bacteria adapt to environments by binding to multiple targets, but its association with the cell cycle remains unclear. Detection by flow cytometry, we first found that the knockout of dsrA promoted replication initiation, and corresponding overexpression of DsrA inhibited replication initiation in Escherichia coli. The absence of the chaperone protein Hfq, the DNA replication negative regulator protein Dps, or the transcription factor OxyR, was found to cause DsrA to no longer inhibit replication initiation. Excess DsrA promotes expression of the oxyR and dps gene, whereas β-galactosidase activity assay showed that deleting oxyR limited the enhancement of dps promoter transcriptional activity by DsrA. OxyR is a known positive regulator of Dps. Our data suggests that the effect of DsrA on replication initiation requires Hfq and that the upregulation of Dps expression by OxyR in response to DsrA levels may be a potential regulatory pathway for the negative regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingjun Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
15
|
Shenkutie AM, Gebrelibanos D, Yao M, Bedada Hundie G, Chow FWN, Leung PHM. Impairment of novel non-coding small RNA00203 inhibits biofilm formation and reduces biofilm-specific antibiotic resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2023; 62:106889. [PMID: 37315907 DOI: 10.1016/j.ijantimicag.2023.106889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Small RNAs (sRNAs) are post-transcriptional regulators of many biological processes in bacteria, including biofilm formation and antibiotic resistance. The mechanisms by which sRNA regulates the biofilm-specific antibiotic resistance in Acinetobacter baumannii have not been reported to date. This study aimed to investigate the influence of sRNA00203 (53 nucleotides) on biofilm formation, antibiotic susceptibility, and expression of genes associated with biofilm formation and antibiotic resistance. The results showed that deletion of the sRNA00203-encoding gene decreased the biomass of biofilm by 85%. Deletion of the sRNA00203-encoding gene also reduced the minimum biofilm inhibitory concentrations for imipenem and ciprofloxacin 1024- and 128-fold, respectively. Knocking out of sRNA00203 significantly downregulated genes involved in biofilm matrix synthesis (pgaB), efflux pump production (novel00738), lipopolysaccharide biosynthesis (novel00626), preprotein translocase subunit (secA) and the CRP transcriptional regulator. Overall, the suppression of sRNA00203 in an A. baumannii ST1894 strain impaired biofilm formation and sensitized the biofilm cells to imipenem and ciprofloxacin. As sRNA00203 was found to be conserved in A. baumannii, a therapeutic strategy targeting sRNA00203 may be a potential solution for the treatment of biofilm-associated infections caused by A. baumannii. To the best of the authors' knowledge, this is the first study to show the impact of sRNA00203 on biofilm formation and biofilm-specific antibiotic resistance in A. baumannii.
Collapse
Affiliation(s)
- Abebe Mekuria Shenkutie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Daniel Gebrelibanos
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mianzhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gadissa Bedada Hundie
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Franklin W N Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
16
|
Muche S, El-Fenej J, Mihaita A, Mrozek Z, Cleary S, Critelli B, Marino M, Yu W, Amos B, Hunter T, Riga M, Buerkert T, Bhatt S. The two sRNAs OmrA and OmrB indirectly repress transcription from the LEE1 promoter of enteropathogenic Escherichia coli. Folia Microbiol (Praha) 2023; 68:415-430. [PMID: 36547806 DOI: 10.1007/s12223-022-01025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic bacterium that predominantly infects infants in developing countries. EPEC forms attaching and effacing (A/E) lesions on the apical surface of the small intestine, leading to diarrhea. The locus of enterocyte effacement (LEE) is both necessary and sufficient for A/E lesion morphogenesis by EPEC. Gene expression from this virulence determinant is controlled by an elaborate regulatory web that extends beyond protein-based transcriptional regulators and includes small regulatory RNA (sRNA) that exert their effects posttranscriptionally. To date, only 4 Hfq-dependent sRNAs-MgrR, RyhB, McaS, and Spot42-have been identified that affect the LEE of EPEC by diverse mechanisms and elicit varying regulatory outcomes. In this study, we demonstrate that the paralogous Hfq-dependent sRNAs OmrA and OmrB globally silence the LEE to diminish the ability of EPEC to form A/E lesions. Interestingly, OmrA and OmrB do not appear to directly target a LEE-encoded gene; rather, they repress transcription from the LEE1 promoter indirectly, by means of an as-yet-unidentified transcriptional factor that binds within 200 base pairs upstream of the transcription start site to reduce the expression of the LEE master regulator Ler, which, in turn, leads to reduced morphogenesis of A/E lesions. Additionally, OmrA and OmrB also repress motility in EPEC by targeting the 5' UTR of the flagellar master regulator, flhD.
Collapse
Affiliation(s)
- Sarah Muche
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Jihad El-Fenej
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
- Center for Immunity and Inflammation and Department of Pathology, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Alexa Mihaita
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Zoe Mrozek
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Sean Cleary
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Brian Critelli
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Mary Marino
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Wenlan Yu
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Brianna Amos
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Tressa Hunter
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Michael Riga
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Thomas Buerkert
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Shantanu Bhatt
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA.
| |
Collapse
|
17
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
18
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA Shows Selective Regulation of sRNA-mRNA Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534774. [PMID: 37034808 PMCID: PMC10081199 DOI: 10.1101/2023.03.29.534774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcase CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
19
|
Chang Y, Sun W, Murchie AIH, Chen D. Genome-wide identification of Kanamycin B binding RNA in Escherichia coli. BMC Genomics 2023; 24:120. [PMID: 36927548 PMCID: PMC10018874 DOI: 10.1186/s12864-023-09234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.
Collapse
Affiliation(s)
- Yaowen Chang
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
He X, Ding H, Gao Z, Zhang X, Wu R, Li K. Variations in the motility and biofilm formation abilities of Escherichia coli O157:H7 during noodle processing. Food Res Int 2023; 168:112670. [PMID: 37120241 DOI: 10.1016/j.foodres.2023.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Motility and biofilm formation help to protect bacteria from host immune responses and facilitate tolerance of environmental stimuli to improve their adaptability. However, few reports have investigated the adaptability of bacteria that live in food substrates undergoing food processing-induced stress. In this study, variations in the surface morphology, bacterial count, motility, and biofilm formation abilities of Escherichia coli O157:H7 NCTC12900 were investigated during noodle processing, including the kneading, squeezing, resting, and sheeting phases. The results showed that bacterial surface morphology, count, and motility were impaired in the squeezing phase, whereas biofilm biomass continuously increased across all processing phases. Twenty-one genes and sRNAs were measured using RT-qPCR to reveal the mechanisms underlying these changes. Of these, the genes adrA, csrA, flgM, flhD, fliM, ydaM, and the sRNA McaS were significantly upregulated, whereas the genes fliA, fliG, and the sRNAs CsrC, DsrA, GcvB, and OxyS were evidently repressed. According to the correlation matrix results based on the reference gene adrA, we found that csrA, GcvB, McaS, and OxyS were the most relevant genes and sRNAs for biofilm formation and motility. For each of them, their overexpressions was found to inhibit bacterial motility and biofilm formation to varying degrees during noodle processing. Among these, 12900/pcsrA had the highest inhibitory potential against motility, yielding a minimum of 11.2 mm motility diameter in the resting phase. Furthermore, 12900/pOxyS showed the most significant inhibitory effect against biofilm formation, yielding a minimum biofilm formation value of 5% of that exhibited the wild strain in the sheeting phase. Therefore, we prospect to find an effective and feasible novel approach to weaken bacterial survival during food processing by regulating the genes or sRNAs related to motility and biofilm formation.
Collapse
|
21
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
22
|
Effects of Sub-Minimum Inhibitory Concentrations of Imipenem and Colistin on Expression of Biofilm-Specific Antibiotic Resistance and Virulence Genes in Acinetobacter baumannii Sequence Type 1894. Int J Mol Sci 2022; 23:ijms232012705. [PMID: 36293559 PMCID: PMC9603859 DOI: 10.3390/ijms232012705] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotics at suboptimal doses promote biofilm formation and the development of antibiotic resistance. The underlying molecular mechanisms, however, were not investigated. Here, we report the effects of sub-minimum inhibitory concentrations (sub-MICs) of imipenem and colistin on genes associated with biofilm formation and biofilm-specific antibiotic resistance in a multidrug-tolerant clinical strain of Acinetobacter baumannii Sequence Type (ST) 1894. Comparative transcriptome analysis was performed in untreated biofilm and biofilm treated with sub-MIC doses of imipenem and colistin. RNA sequencing data showed that 78 and 285 genes were differentially expressed in imipenem and colistin-treated biofilm cells, respectively. Among the differentially expressed genes (DEGs), 48 and 197 genes were upregulated exclusively in imipenem and colistin-treated biofilm cells, respectively. The upregulated genes included those encoding matrix synthesis (pgaB), multidrug efflux pump (novel00738), fimbrial proteins, and homoserine lactone synthase (AbaI). Upregulation of biofilm-associated genes might enhance biofilm formation when treated with sub-MICs of antibiotics. The downregulated genes include those encoding DNA gyrase (novel00171), 30S ribosomal protein S20 (novel00584), and ribosome releasing factor (RRF) were downregulated when the biofilm cells were treated with imipenem and colistin. Downregulation of these genes affects protein synthesis, which in turn slows down cell metabolism and makes biofilm cells more tolerant to antibiotics. In this investigation, we also found that 5 of 138 small RNAs (sRNAs) were differentially expressed in biofilm regardless of antibiotic treatment or not. Of these, sRNA00203 showed the highest expression levels in biofilm. sRNAs regulate gene expression and are associated with biofilm formation, which may in turn affect the expression of biofilm-specific antibiotic resistance. In summary, when biofilm cells were exposed to sub-MIC doses of colistin and imipenem, coordinated gene responses result in increased biofilm production, multidrug efflux pump expression, and the slowdown of metabolism, which leads to drug tolerance in biofilm. Targeting antibiotic-induced or repressed biofilm-specific genes represents a new strategy for the development of innovative and effective treatments for biofilm-associated infections caused by A. baumannii.
Collapse
|
23
|
Hitomi K, Weng J, Ying BW. Contribution of the genomic and nutritional differentiation to the spatial distribution of bacterial colonies. Front Microbiol 2022; 13:948657. [PMID: 36081803 PMCID: PMC9448356 DOI: 10.3389/fmicb.2022.948657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Colony growth is a common phenomenon of structured populations dispersed in nature; nevertheless, studies on the spatial distribution of colonies are largely insufficient. Here, we performed a systematic survey to address the questions of whether and how the spatial distribution of colonies was influenced by the genome and environment. Six Escherichia coli strains carrying either the wild-type or reduced genomes and eight media of varied nutritional richness were used to evaluate the genomic and environmental impacts, respectively. The genome size and nutritional variation contributed to the mean size and total area but not the variation and shape of size distribution of the colonies formed within the identical space and of equivalent spatial density. The spatial analysis by means of the Voronoi diagram found that the Voronoi correlation remained nearly constant in common, in comparison to the Voronoi response decreasing in correlation to genome reduction and nutritional enrichment. Growth analysis at the single colony level revealed positive correlations of the relative growth rate to both the maximal colony size and the Voronoi area, regardless of the genomic and nutritional variety. This result indicated fast growth for the large space assigned and supported homeostasis in the Voronoi correlation. Taken together, the spatial distribution of colonies might benefit efficient clonal growth. Although the mechanisms remain unclear, the findings provide quantitative insights into the genomic and environmental contributions to the growth and distribution of spatially or geographically isolated populations.
Collapse
|
24
|
Wang W, Lin X, Yang H, Huang X, Pan L, Wu S, Yang C, Zhang L, Li Y. Anti-quorum sensing evaluation of methyleugenol, the principal bioactive component, from the Melaleuca bracteata leaf oil. Front Microbiol 2022; 13:970520. [PMID: 36118239 PMCID: PMC9477228 DOI: 10.3389/fmicb.2022.970520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication in bacteria that couples gene expression through the accumulation of signaling molecules, which finally induce the production of several virulence factors and modulate bacterial behaviors. Plants have evolved an array of quorum sensing inhibitors (QSIs) to inhibit the pathogens, of which aromatic compounds are widely recognized. The essential oil of Melaleuca bracteata was found to exhibit anti-quorum sensing activity, and its principal bioactive component, methyleugenol (ME), had been isolated in our previous study. Here, ME interfered effectively with the QS-regulated processes of toxin secretion in Chomobacterium violaceum ATCC31532, resulting in strong inhibition of QS genes, cviR, cviI, vioA-E, hmsHNR, lasA-B, pilE1-3, and hcnABC, leading to impaired virulence, including violacein production, biofilm biomass, and swarming motility. The accumulation of the signal molecule (N-hexanoyl-DL-homoserine lactone, C6-HSL) in C. violaceum declined upon treatment with ME, suggesting an inhibition effect on the C6-HSL production, and the ME was also capable of degrading the C6-HSL in vitro assay. Molecular docking technique and the consumption change of exogenous C6-HSL in C. violaceum CV026 revealed the anti-QS mechanism of ME consisted of inhibition of C6-HSL production, potentially via interaction with CviR and/or CviI protein. Collectively, the isolated ME, the principal active components of M. bracteata EO, exhibited a wide range of inhibition processes targeting C. violaceum QS system, which supports the potential anti-pathogenic use of M. bracteata EO and ME for treatment of pathogen contamination caused by bacterial pathogens.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojie Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaoyuan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liaoyuan Zhang,
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Yongyu Li,
| |
Collapse
|
25
|
Synthetic Genetic Interactions Reveal a Dense and Cryptic Regulatory Network of Small Noncoding RNAs in Escherichia coli. mBio 2022; 13:e0122522. [PMID: 35920556 PMCID: PMC9426594 DOI: 10.1128/mbio.01225-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth.
Collapse
|
26
|
Biofilm production: A strategic mechanism for survival of microbes under stress conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Zhu Y, Fan Y, Cao X, Lu R, Chu S, Ding A. Regulation of Carbapenemase Gene Conjugation in Escherichia coli Clinical Isolates. Microb Drug Resist 2022; 28:551-558. [PMID: 35319308 DOI: 10.1089/mdr.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The purpose of this study is to raise awareness of the hazards of carbapenemase epidemics and provide theoretical support for preventing the spread of carbapenemase-producing organisms. Methods: A total of 893 non-duplicate E. coil strains were recruited from three major local hospitals. The carbapenemase genotype of each imipenem-resistant strain was analyzed. Molecular typing and homology analysis of the main carbapenemase-producing strains reveal the transmission mode of resistance genes. Through the conjugation experiment, the potential spreading risk of carbapenemase genes was analyzed. Extended-spectrum beta-lactamase genes and replicon detection of the conjugant carrying plasmid were performed. The unannotated Escherichia coli bacterial small non-coding RNAs (sRNAs) interacting with sdiA were predicted through a bioinformatics tool. The sRNAs overexpression and knockout strains were constructed, and the effect of sRNA on conjugation was analyzed. Results: A total of 8 carbapenemase-producing strains were detected (0.90%, 8/893). The main carbapenemase genotype was blaKPC -2 (7 strains). Multilocus sequence typing indicated that 7 E. coli isolates belonged to ST-10, ST-101, ST-131, ST-405, ST-410, and ST-1193, ST-2562, respectively. Homologous cluster analysis revealed that the sequence types among the 7 E. coli were high diversity. The blaKPC -2 genes were successfully transferred from these isolates to EC600 by conjugation. All transconjugant cells exhibited significantly reduced susceptibility to the imipenem. IncFII was the most common conjugative plasmid type (85.7%, 6/7). Bioinformatics predicted the interaction between RydB and sdiA. Further experiments found that the interaction between RydB and sdiA improved the bacterial conjugation rate between MG1655 and EC600. The regulation effect of RydB on E. coli conjugation was not affected by the replicon type and/or harboring resistance coding genotype in conjugative plasmids. Conclusion: Our findings emphasized the epidemiological characteristics of carbapenemase-resistant E. coli. A functional phenotype of the new sRNA RydB was identified, and the regulation effect of RydB on E. coli conjugation was improved.
Collapse
Affiliation(s)
- Yihua Zhu
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yuping Fan
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xinjian Cao
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Renfei Lu
- Clinical Laboratory, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Shaopeng Chu
- Clinical Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu, P.R. China
| | - Aimin Ding
- Department of Nursing, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
28
|
Lin WY, Lee YJ, Yu PH, Tsai YL, She PY, Li TS, Liaw SJ. The QseEF Two-Component System-GlmY Small RNA Regulatory Pathway Controls Swarming in Uropathogenic Proteus mirabilis. Int J Mol Sci 2022; 23:ijms23010487. [PMID: 35008912 PMCID: PMC8745638 DOI: 10.3390/ijms23010487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial sensing of environmental signals through the two-component system (TCS) plays a key role in modulating virulence. In the search for the host hormone-sensing TCS, we identified a conserved qseEGF locus following glmY, a small RNA (sRNA) gene in uropathogenic Proteus mirabilis. Genes of glmY-qseE-qseG-qseF constitute an operon, and QseF binding sites were found in the glmY promoter region. Deletion of glmY or qseF resulted in reduced swarming motility and swarming-related phenotypes relative to the wild-type and the respective complemented strains. The qseF mutant had decreased glmYqseEGF promoter activity. Both glmY and qseF mutants exhibited decreased flhDC promoter activity and mRNA level, while increased rcsB mRNA level was observed in both mutants. Prediction by TargetRNA2 revealed cheA as the target of GlmY. Then, construction of the translational fusions containing various lengths of cheA 5′UTR for reporter assay and site-directed mutagenesis were performed to investigate the cheA-GlmY interaction in cheA activation. Notably, loss of glmY reduced the cheA mRNA level, and urea could inhibit swarming in a QseF-dependent manner. Altogether, this is the first report elucidating the underlying mechanisms for modulation of swarming motility by a QseEF-regulated sRNA GlmY, involving expression of cheA, rcsB and flhDC in uropathogenic P. mirabilis.
Collapse
Affiliation(s)
- Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Ping-Hung Yu
- Department of Nursing, National Taichung University of Science and Technology, Taichung City 404348, Taiwan;
| | - Yi-Lin Tsai
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Pin-Yi She
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Tzung-Shian Li
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: ; Tel.: +886-02-23123456 (ext. 6911)
| |
Collapse
|
29
|
Goldberger O, Livny J, Bhattacharyya R, Amster-Choder O. Wisdom of the crowds: A suggested polygenic plan for small-RNA-mediated regulation in bacteria. iScience 2021; 24:103096. [PMID: 34622151 PMCID: PMC8479692 DOI: 10.1016/j.isci.2021.103096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
The omnigenic/polygenic theory, which states that complex traits are not shaped by single/few genes, but by situation-specific large networks, offers an explanation for a major enigma in microbiology: deletion of specific small RNAs (sRNAs) playing key roles in various aspects of bacterial physiology, including virulence and antibiotic resistance, results in surprisingly subtle phenotypes. A recent study uncovered polar accumulation of most sRNAs upon osmotic stress, the majority not known to be involved in the applied stress. Here we show that cells deleted for a handful of pole-enriched sRNAs exhibit fitness defect in several stress conditions, as opposed to single, double, or triple sRNA-knockouts, implying that regulation by sRNA relies on sets of genes. Moreover, analysis of RNA-seq data of Escherichia coli and Salmonella typhimurium exposed to antibiotics and/or infection-relevant conditions reveals the involvement of multiple sRNAs in all cases, in line with the existence of a polygenic plan for sRNA-mediated regulation.
Collapse
Affiliation(s)
- Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Roby Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
30
|
Kharadi RR, Schachterle JK, Yuan X, Castiblanco LF, Peng J, Slack SM, Zeng Q, Sundin GW. Genetic Dissection of the Erwinia amylovora Disease Cycle. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:191-212. [PMID: 33945696 DOI: 10.1146/annurev-phyto-020620-095540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Suzanne M Slack
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
31
|
Mihailovic MK, Ekdahl AM, Chen A, Leistra AN, Li B, González Martínez J, Law M, Ejindu C, Massé É, Freddolino PL, Contreras LM. Uncovering Transcriptional Regulators and Targets of sRNAs Using an Integrative Data-Mining Approach: H-NS-Regulated RseX as a Case Study. Front Cell Infect Microbiol 2021; 11:696533. [PMID: 34327153 PMCID: PMC8313858 DOI: 10.3389/fcimb.2021.696533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play a vital role in pathogenesis by enabling rapid, efficient networks of gene attenuation during infection. In recent decades, there has been a surge in the number of proposed and biochemically-confirmed sRNAs in both Gram-positive and Gram-negative pathogens. However, limited homology, network complexity, and condition specificity of sRNA has stunted complete characterization of the activity and regulation of these RNA regulators. To streamline the discovery of the expression of sRNAs, and their post-transcriptional activities, we propose an integrative in vivo data-mining approach that couples DNA protein occupancy, RNA-seq, and RNA accessibility data with motif identification and target prediction algorithms. We benchmark the approach against a subset of well-characterized E. coli sRNAs for which a degree of in vivo transcriptional regulation and post-transcriptional activity has been previously reported, finding support for known regulation in a large proportion of this sRNA set. We showcase the abilities of our method to expand understanding of sRNA RseX, a known envelope stress-linked sRNA for which a cellular role has been elusive due to a lack of native expression detection. Using the presented approach, we identify a small set of putative RseX regulators and targets for experimental investigation. These findings have allowed us to confirm native RseX expression under conditions that eliminate H-NS repression as well as uncover a post-transcriptional role of RseX in fimbrial regulation. Beyond RseX, we uncover 163 putative regulatory DNA-binding protein sites, corresponding to regulation of 62 sRNAs, that could lead to new understanding of sRNA transcription regulation. For 32 sRNAs, we also propose a subset of top targets filtered by engagement of regions that exhibit binding site accessibility behavior in vivo. We broadly anticipate that the proposed approach will be useful for sRNA-reliant network characterization in bacteria. Such investigations under pathogenesis-relevant environmental conditions will enable us to deduce complex rapid-regulation schemes that support infection.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Bridget Li
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Javier González Martínez
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew Law
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Cindy Ejindu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, Universitéde Sherbrooke, RNA Group, Sherbrooke, QC, Canada
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
32
|
Ponath F, Tawk C, Zhu Y, Barquist L, Faber F, Vogel J. RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nat Microbiol 2021; 6:1007-1020. [PMID: 34239075 DOI: 10.1038/s41564-021-00927-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany. .,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany. .,Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
33
|
Bessaiah H, Pokharel P, Loucif H, Kulbay M, Sasseville C, Habouria H, Houle S, Bernier J, Massé É, Van Grevenynghe J, Dozois CM. The RyfA small RNA regulates oxidative and osmotic stress responses and virulence in uropathogenic Escherichia coli. PLoS Pathog 2021; 17:e1009617. [PMID: 34043736 PMCID: PMC8205139 DOI: 10.1371/journal.ppat.1009617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/15/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a common bacterial infectious disease in humans, and strains of uropathogenic Escherichia coli (UPEC) are the most frequent cause of UTIs. During infection, UPEC must cope with a variety of stressful conditions in the urinary tract. Here, we demonstrate that the small RNA (sRNA) RyfA of UPEC strains is required for resistance to oxidative and osmotic stresses. Transcriptomic analysis of the ryfA mutant showed changes in expression of genes associated with general stress responses, metabolism, biofilm formation and genes coding for cell surface proteins. Inactivation of ryfA in UPEC strain CFT073 decreased urinary tract colonization in mice and the ryfA mutant also had reduced production of type 1 and P fimbriae (pili), adhesins which are known to be important for UTI. Furthermore, loss of ryfA also reduced UPEC survival in human macrophages. Thus, ryfA plays a key regulatory role in UPEC adaptation to stress, which contributes to UTI and survival in macrophages.
Collapse
Affiliation(s)
- Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Pravil Pokharel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Hamza Loucif
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Charles Sasseville
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Sébastien Houle
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Éric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
34
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
35
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
36
|
Vichi J, Salazar E, Jacinto VJ, Rodriguez LO, Grande R, Dantán-González E, Morett E, Hernández-Mendoza A. High-throughput transcriptome sequencing and comparative analysis of Escherichia coli and Schizosaccharomyces pombe in respiratory and fermentative growth. PLoS One 2021; 16:e0248513. [PMID: 33730068 PMCID: PMC7968713 DOI: 10.1371/journal.pone.0248513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
In spite of increased complexity in eukaryotes compared to prokaryotes, several basic metabolic and regulatory processes are conserved. Here we explored analogies in the eubacteria Escherichia coli and the unicellular fission yeast Schizosaccharomyces pombe transcriptomes under two carbon sources: 2% glucose; or a mix of 2% glycerol and 0.2% sodium acetate using the same growth media and growth phase. Overall, twelve RNA-seq libraries were constructed. A total of 593 and 860 genes were detected as differentially expressed for E. coli and S. pombe, respectively, with a log2 of the Fold Change ≥ 1 and False Discovery Rate ≤ 0.05. In aerobic glycolysis, most of the expressed genes were associated with cell proliferation in both organisms, including amino acid metabolism and glycolysis. In contrast in glycerol/acetate condition, genes related to flagellar assembly and membrane proteins were differentially expressed such as the general transcription factors fliA, flhD, flhC, and flagellum assembly genes were detected in E. coli, whereas in S. pombe genes for hexose transporters, integral membrane proteins, galactose metabolism, and ncRNAs related to cellular stress were overexpressed. In general, our study shows that a conserved "foraging behavior" response is observed in these eukaryotic and eubacterial organisms in gluconeogenic carbon sources.
Collapse
Affiliation(s)
- Joivier Vichi
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Emmanuel Salazar
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Verónica Jiménez Jacinto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Leticia Olvera Rodriguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ricardo Grande
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Dantán-González
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Enrique Morett
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
37
|
Ranjith K, Sharma S, Shivaji S. Microbes of the human eye: Microbiome, antimicrobial resistance and biofilm formation. Exp Eye Res 2021; 205:108476. [PMID: 33549582 DOI: 10.1016/j.exer.2021.108476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The review focuses on the bacteria associated with the human eye using the dual approach of detecting cultivable bacteria and the total microbiome using next generation sequencing. The purpose of this review was to highlight the connection between antimicrobial resistance and biofilm formation in ocular bacteria. METHODS Pubmed was used as the source to catalogue culturable bacteria and ocular microbiomes associated with the normal eyes and those with ocular diseases, to ascertain the emergence of anti-microbial resistance with special reference to biofilm formation. RESULTS This review highlights the genetic strategies used by microorganisms to evade the lethal effects of anti-microbial agents by tracing the connections between candidate genes and biofilm formation. CONCLUSION The eye has its own microbiome which needs to be extensively studied under different physiological conditions; data on eye microbiomes of people from different ethnicities, geographical regions etc. are also needed to understand how these microbiomes affect ocular health.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| |
Collapse
|
38
|
Luo Y, Yang Q, Zhang D, Yan W. Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms. J Microbiol Biotechnol 2021; 31:1-7. [PMID: 33323672 PMCID: PMC9706009 DOI: 10.4014/jmb.2010.10021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Qianqian Yang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Dan Zhang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Wei Yan
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P.R. China,Corresponding author Phone/Fax: +86-571-5600-7510 E-mail:
| |
Collapse
|
39
|
Sy BM, Tree JJ. Small RNA Regulation of Virulence in Pathogenic Escherichia coli. Front Cell Infect Microbiol 2021; 10:622202. [PMID: 33585289 PMCID: PMC7873438 DOI: 10.3389/fcimb.2020.622202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Enteric and extraintestinal pathotypes of Escherichia coli utilize a wide range of virulence factors to colonize niches within the human body. During infection, virulence factors such as adhesins, secretions systems, or toxins require precise regulation and coordination to ensure appropriate expression. Additionally, the bacteria navigate rapidly changing environments with fluctuations in pH, temperature, and nutrient levels. Enteric pathogens utilize sophisticated, interleaved systems of transcriptional and post-transcriptional regulation to sense and respond to these changes and modulate virulence gene expression. Regulatory small RNAs and RNA-binding proteins play critical roles in the post-transcriptional regulation of virulence. In this review we discuss how the mosaic genomes of Escherichia coli pathotypes utilize small RNA regulation to adapt to their niche and become successful human pathogens.
Collapse
Affiliation(s)
- Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Jin X, Marshall JS. Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS One 2020; 15:e0243280. [PMID: 33290393 PMCID: PMC7723297 DOI: 10.1371/journal.pone.0243280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria, as well as some Gram-positive bacteria, possess hair-like appendages known as fimbriae, which play an important role in adhesion of the bacteria to surfaces or to other bacteria. Unlike the sex pili or flagellum, the fimbriae are quite numerous, with of order 1000 fimbriae appendages per bacterial cell. In this paper, a recently developed hybrid model for bacterial biofilms is used to examine the role of fimbriae tension force on the mechanics of bacterial biofilms. Each bacterial cell is represented in this model by a spherocylindrical particle, which interact with each other through collision, adhesion, lubrication force, and fimbrial force. The bacterial cells absorb water and nutrients and produce extracellular polymeric substance (EPS). The flow of water and EPS, and nutrient diffusion within these substances, is computed using a continuum model that accounts for important effects such as osmotic pressure gradient, drag force on the bacterial cells, and viscous shear. The fimbrial force is modeled using an outer spherocylinder capsule around each cell, which can transmit tensile forces to neighboring cells with which the fimbriae capsule collides. We find that the biofilm structure during the growth process is dominated by a balance between outward drag force on the cells due to the EPS flow away from the bacterial colony and the inward tensile fimbrial force acting on chains of cells connected by adhesive fimbriae appendages. The fimbrial force also introduces a large rotational motion of the cells and disrupts cell alignment caused by viscous torque imposed by the EPS flow. The current paper characterizes the competing effects of EPS drag and fimbrial force using a series of computations with different values of the ratio of EPS to bacterial cell production rate and different numbers of fimbriae per cell.
Collapse
Affiliation(s)
- Xing Jin
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Jeffrey S. Marshall
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
41
|
Nguyen-Vo TP, Ko S, Ryu H, Kim JR, Kim D, Park S. Systems evaluation reveals novel transporter YohJK renders 3-hydroxypropionate tolerance in Escherichia coli. Sci Rep 2020; 10:19064. [PMID: 33149261 PMCID: PMC7642389 DOI: 10.1038/s41598-020-76120-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, we have reported that 3-hydroxypropionate (3-HP) tolerance in Escherichia coli W is improved by deletion of yieP, a less-studied transcription factor. Here, through systems analyses along with physiological and functional studies, we suggest that the yieP deletion improves 3-HP tolerance by upregulation of yohJK, encoding putative 3-HP transporter(s). The tolerance improvement by yieP deletion was highly specific to 3-HP, among various C2-C4 organic acids. Mapping of YieP binding sites (ChIP-exo) coupled with transcriptomic profiling (RNA-seq) advocated seven potential genes/operons for further functional analysis. Among them, the yohJK operon, encoding for novel transmembrane proteins, was the most responsible for the improved 3-HP tolerance; deletion of yohJK reduced 3-HP tolerance regardless of yieP deletion, and their subsequent complementation fully restored the tolerance in both the wild-type and yieP deletion mutant. When determined by 3-HP-responsive biosensor, a drastic reduction of intracellular 3-HP was observed upon yieP deletion or yohJK overexpression, suggesting that yohJK encodes for novel 3-HP exporter(s).
Collapse
Affiliation(s)
- Thuan Phu Nguyen-Vo
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seyoung Ko
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Huichang Ryu
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
42
|
Hör J, Di Giorgio S, Gerovac M, Venturini E, Förstner KU, Vogel J. Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium Escherichia coli. Nucleic Acids Res 2020; 48:9301-9319. [PMID: 32813020 PMCID: PMC7498339 DOI: 10.1093/nar/gkaa676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Elisa Venturini
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany.,TH Köln, Faculty of Information Science and Communication Studies, D-50678 Cologne, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
43
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
44
|
Durica-Mitic S, Göpel Y, Amman F, Görke B. Adaptor protein RapZ activates endoribonuclease RNase E by protein-protein interaction to cleave a small regulatory RNA. RNA (NEW YORK, N.Y.) 2020; 26:1198-1215. [PMID: 32424019 PMCID: PMC7430671 DOI: 10.1261/rna.074047.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In Escherichia coli, endoribonuclease RNase E initiates degradation of many RNAs and represents a hub for post-transcriptional regulation. The tetrameric adaptor protein RapZ targets the small regulatory RNA GlmZ to degradation by RNase E. RapZ binds GlmZ through a domain located at the carboxyl terminus and interacts with RNase E, promoting GlmZ cleavage in the base-pairing region. When necessary, cleavage of GlmZ is counteracted by the homologous small RNA GlmY, which sequesters RapZ through molecular mimicry. In the current study, we addressed the molecular mechanism employed by RapZ. We show that RapZ mutants impaired in RNA-binding but proficient in binding RNase E are able to stimulate GlmZ cleavage in vivo and in vitro when provided at increased concentrations. In contrast, a truncated RapZ variant retaining RNA-binding activity but incapable of contacting RNase E lacks this activity. In agreement, we find that tetrameric RapZ binds the likewise tetrameric RNase E through direct interaction with its large globular domain within the catalytic amino terminus, independent of RNA. Although RapZ stimulates cleavage of at least one non-cognate RNA by RNase E in vitro, its activity is restricted to GlmZ in vivo as revealed by RNA sequencing, suggesting that certain features within the RNA substrate are also required for cleavage. In conclusion, RapZ boosts RNase E activity through interaction with its catalytic domain, which represents a novel mechanism of RNase E activation. In contrast, RNA-binding has a recruiting role, increasing the likelihood that productive RapZ/GlmZ/RNase E complexes form.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Fabian Amman
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Theoretical Biochemistry, University of Vienna, 1090 Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
45
|
Transcriptional Profiling of the Probiotic Escherichia coli Nissle 1917 Strain under Simulated Microgravity. Int J Mol Sci 2020; 21:ijms21082666. [PMID: 32290466 PMCID: PMC7215827 DOI: 10.3390/ijms21082666] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term space missions affect the gut microbiome of astronauts, especially the viability of some pathogens. Probiotics may be an effective solution for the management of gut microbiomes, but there is a lack of studies regarding the physiology of probiotics in microgravity. Here, we investigated the effects of microgravity on the probiotic Escherichia coli Nissle 1917 (EcN) by comparing transcriptomic data during exponential and stationary growth phases under simulated microgravity and normal gravity. Microgravity conditions affected several physiological features of EcN, including its growth profile, biofilm formation, stress responses, metal ion transport/utilization, and response to carbon starvation. We found that some changes, such as decreased adhesion ability and acid resistance, may be disadvantageous to EcN relative to gut pathogens under microgravity, indicating the need to develop probiotics optimized for space flight.
Collapse
|
46
|
Madikonda AK, Shaikh A, Khanra S, Yakkala H, Yellaboina S, Lin-Chao S, Siddavattam D. Metabolic remodeling in Escherichia coli MG1655. A prophage e14-encoded small RNA, co293, post-transcriptionally regulates transcription factors HcaR and FadR. FEBS J 2020; 287:4767-4782. [PMID: 32061118 DOI: 10.1111/febs.15247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
Abstract
In previous studies, we have shown the existence of metabolic remodeling in glucose-grown Escherichia coli MG1655 cells expressing the esterase Orf306 from the opd island of Sphingobium fuliginis. We now show that Orf306-dependent metabolic remodeling is due to regulation of a novel small RNA (sRNA). Endogenous propionate, produced due to the esterase/lipase activity of Orf306, repressed expression of a novel E. coli sRNA, co293. This sRNA post-transcriptionally regulates expression of the transcription factors HcaR and FadR either by inhibiting translation or by destabilizing their transcripts. Hence, repression of co293 expression elevates the levels of HcaR and FadR with consequent activation of alternative carbon catabolic pathways. HcaR activates the hca and MHP operons leading to upregulation of the phenyl propionate and hydroxy phenyl propionate (HPP) degradation pathways. Similarly, FadR stimulates the expression of the transcription factor IclR which negatively regulates the glyoxylate bypass pathway genes, aceBAK.
Collapse
Affiliation(s)
- Ashok Kumar Madikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Akbarpasha Shaikh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sonali Khanra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Harshita Yakkala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sailu Yellaboina
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
47
|
Dobrzanski T, Pobre V, Moreno LF, Barbosa HCDS, Monteiro RA, de Oliveira Pedrosa F, de Souza EM, Arraiano CM, Steffens MBR. In silico prediction and expression profile analysis of small non-coding RNAs in Herbaspirillum seropedicae SmR1. BMC Genomics 2020; 21:134. [PMID: 32039705 PMCID: PMC7011215 DOI: 10.1186/s12864-019-6402-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Herbaspirillum seropedicae is a diazotrophic bacterium from the β-proteobacteria class that colonizes endophytically important gramineous species, promotes their growth through phytohormone-dependent stimulation and can express nif genes and fix nitrogen inside plant tissues. Due to these properties this bacterium has great potential as a commercial inoculant for agriculture. The H. seropedicae SmR1 genome is completely sequenced and annotated but despite the availability of diverse structural and functional analysis of this genome, studies involving small non-coding RNAs (sRNAs) has not yet been done. We have conducted computational prediction and RNA-seq analysis to select and confirm the expression of sRNA genes in the H. seropedicae SmR1 genome, in the presence of two nitrogen independent sources and in presence of naringenin, a flavonoid secreted by some plants. RESULTS This approach resulted in a set of 117 sRNAs distributed in riboswitch, cis-encoded and trans-encoded categories and among them 20 have Rfam homologs. The housekeeping sRNAs tmRNA, ssrS and 4.5S were found and we observed that a large number of sRNAs are more expressed in the nitrate condition rather than the control condition and in the presence of naringenin. Some sRNAs expression were confirmed in vitro and this work contributes to better understand the post transcriptional regulation in this bacterium. CONCLUSIONS H. seropedicae SmR1 express sRNAs in the presence of two nitrogen sources and/or in the presence of naringenin. The functions of most of these sRNAs remains unknown but their existence in this bacterium confirms the evidence that sRNAs are involved in many different cellular activities to adapt to nutritional and environmental changes.
Collapse
Affiliation(s)
- Tatiane Dobrzanski
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Leandro Ferreira Moreno
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Helba Cirino de Souza Barbosa
- Graduate Program in Bioinformatics, Universidade Federal do Paraná (UFPR), Rua Alcides Vieira Arcoverde, 1225, Curitiba, 81520-260, Brazil
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil.,Graduate Program in Bioinformatics, Universidade Federal do Paraná (UFPR), Rua Alcides Vieira Arcoverde, 1225, Curitiba, 81520-260, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Berenice Reynaud Steffens
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil.
| |
Collapse
|
48
|
Kim W, Lee Y. Mechanism for coordinate regulation of rpoS by sRNA-sRNA interaction in Escherichia coli. RNA Biol 2019; 17:176-187. [PMID: 31552789 DOI: 10.1080/15476286.2019.1672514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RpoS is a key regulator of general stress responses in Escherichia coli. Its expression is post-transcriptionally up-regulated by the small RNAs (sRNAs), ArcZ, DsrA and RprA, through sRNA-rpoS mRNA interactions. Although overexpression of the sRNA, CyaR, was reported to down-regulate rpoS expression, how CyaR regulates rpoS has not been determined. Here, we report that CyaR represses rpoS expression by base-pairing with a region next to the ArcZ binding site in the 5' UTR of rpoS mRNA and that CyaR expression itself is down-regulated by ArcZ through sRNA-sRNA interaction. The short form of ArcZ, but not the full-length form, can base-pair with CyaR. This ArcZ-CyaR interaction triggers degradation of CyaR by RNase E, alleviating the CyaR-mediated rpoS repression. These results suggest that ArcZ not only participates in rpoS translation as an activator, but also acts as a regulator of the reciprocally acting CyaR, maximizing its rpoS-activating effect.
Collapse
|
49
|
Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, Pardini B, Naccarati A, Cordero F. Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples. mSystems 2019; 4:e00289-19. [PMID: 31530647 PMCID: PMC6749105 DOI: 10.1128/msystems.00289-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Dysbiotic configurations of the human gut microbiota have been linked to colorectal cancer (CRC). Human small noncoding RNAs are also implicated in CRC, and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis, but their role has been less extensively explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens from patients with CRC or with adenomas and from healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We observed considerable overlap and a correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. We identified a combined predictive signature composed of 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC samples separately from healthy and adenoma samples (area under the curve [AUC] = 0.87). In the present study, we report evidence that host-microbiome dysbiosis in CRC can also be observed by examination of altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more-accurate tools for diagnostic purposes.IMPORTANCE The characteristics of microbial small RNA transcription are largely unknown, while it is of primary importance for a better identification of molecules with functional activities in the gut niche under both healthy and disease conditions. By performing combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool samples from healthy individuals and from patients with colorectal carcinoma or adenoma. With the integrative analyses of metagenomic and sRNA-Seq data, we identified a human and microbial small RNA signature which can be used to improve diagnosis of the disease. Our analysis of human and gut microbiome small RNA expression is relevant to generation of the first hypotheses about the potential molecular interactions occurring in the gut of CRC patients, and it can be the basis for further mechanistic studies and clinical tests.
Collapse
Affiliation(s)
- Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
| | - Gaetano Gallo
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | | | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | | | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Imperial College, London, United Kingdom
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Francesca Cordero
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Computer Science, University of Turin, Turin, Italy
| |
Collapse
|
50
|
Chuang SK, Vrla GD, Fröhlich KS, Gitai Z. Surface association sensitizes Pseudomonas aeruginosa to quorum sensing. Nat Commun 2019; 10:4118. [PMID: 31511506 PMCID: PMC6739362 DOI: 10.1038/s41467-019-12153-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
In the pathogen Pseudomonas aeruginosa, LasR is a quorum sensing (QS) master regulator that senses the concentration of secreted autoinducers as a proxy for bacterial cell density. Counterintuitively, previous studies showed that saturating amounts of the LasR ligand, 3OC12-HSL, fail to induce the full LasR regulon in low-density liquid cultures. Here we demonstrate that surface association, which is necessary for many of the same group behaviors as QS, promotes stronger QS responses. We show that lasR is upregulated upon surface association, and that surface-associated bacteria induce LasR targets more strongly in response to autoinducer than planktonic cultures. This increased sensitivity may be due to surface-dependent lasR induction initiating a positive feedback loop through the small RNA, Lrs1. The increased sensitivity of surface-associated cells to QS is affected by the type IV pilus (TFP) retraction motors and the minor pilins. The coupling of physical surface responses and chemical QS responses could enable these bacteria to trigger community behaviors more robustly when they are more beneficial.
Collapse
Affiliation(s)
- Sara K Chuang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Geoffrey D Vrla
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Kathrin S Fröhlich
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152, Martinsried, Germany
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA.
| |
Collapse
|