1
|
Zhao J, Dong Y, Shi S, Yu H, Tan L. Salivary apoptotic microvesicles as biomarkers for prognostic non-healing oral ulcers and oral cancer: a cross-sectional study. Sci Rep 2025; 15:9297. [PMID: 40102607 PMCID: PMC11920502 DOI: 10.1038/s41598-025-93075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Microvesicles (MVs) are membrane vesicles secreted by cells and are present in the saliva of healthy individuals. It has various functions and has been reported to be a biomarker for malignant tumors. The changes in saliva levels of MVs associated with disease(s) is unclear. This study aimed to determine the proportion of salivary apoptotic MVs and their association with oral ulcer(s) in patients with non-healing oral ulcer(s) and reported oral cancer. Saliva (5 mL) was collected from patients with non-healing oral ulcer(s) and reported oral cancer (at the time of saliva collection, the participant have an oral ulcer(s) in the oral cavity and have an oral cancer lesion; n = 73) and healthy volunteers with oral ulcer(s) (n = 62). A standard differential centrifugation protocol was used for the purification of MVs. Dynamic light scattering and transmission electron microscopy were used to characterize MVs. Flow cytometry was used to quantify salivary apoptotic MVs. Immunocytochemistry was performed according to a standard protocol. None of patients with oral cancer has smoking and drinking habit. The majority of saliva samples derived from patients with non-healing oral ulcer(s) and reported oral cancer were more positive for the fluorescent dye carboxyfluorescein succinimidyl ester than those of healthy volunteers with oral ulcer(s). Salivary fluid obtained from patients had membrane-limited vesicles that were round and/or slightly elongated in shape, with diameters of 100-1,000 nm. The number of salivary apoptotic MVs was higher in patients with non-healing oral ulcer(s) than in those derived from healthy volunteers with oral ulcer(s) (p < 0.001). There was an association between salivary apoptotic MVs in patients with non-healing oral ulcer(s) and the degree or severity of oral ulcers (p < 0.001). Levels of salivary apoptotic MVs are elevated in patients with non-healing oral ulcer(s) and confirmed oral cancer. Elevated levels of salivary apoptotic MVs are associated with clinicopathological data of patients with oral cancer. Evidence level: IV. Technical efficacy: stage 3.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Stomatology, the Affiliated Hospital of JiangNan University, Wuxi, 214122, Jiangsu, China
| | - Yu Dong
- Department of Stomatology, the Affiliated Hospital of JiangNan University, Wuxi, 214122, Jiangsu, China
| | - Shuya Shi
- Department of Stomatology, the Affiliated Hospital of JiangNan University, Wuxi, 214122, Jiangsu, China
| | - Hongqiang Yu
- Department of Stomatology, the Affiliated Hospital of JiangNan University, Wuxi, 214122, Jiangsu, China
| | - Luanjun Tan
- Department of Stomatology, Shanghai East Hospital Affiliated to Tongji University, No. 150 Jimo Road, Pudong New Area, Shanghai, 200120, China.
| |
Collapse
|
2
|
Shao L, Wu Y, Cao J, Zhong F, Yang X, Xing C. Activation of M2 macrophage autophagy by rapamycin increases the radiosensitivity of colorectal cancer xenografts. J Cancer Res Ther 2024; 20:695-705. [PMID: 38687942 DOI: 10.4103/jcrt.jcrt_215_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.
Collapse
Affiliation(s)
- Lening Shao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongyou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Fengyun Zhong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Chen P, Liu B, Wei B, Yu S. The clinicopathological features and treatments of odontogenic keratocysts. Am J Cancer Res 2022; 12:3479-3485. [PMID: 35968329 PMCID: PMC9360231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023] Open
Abstract
An odontogenic keratocyst (OKC) is a benign but aggressive intraosseous tumor derived from the remains of the original tooth germ or dental lamina. It has a marked ability to recur and become cancerous. However, patients with early-stage OKC often have no symptoms and manifestations. The common clinical manifestation is swelling. Hence, it is critical to precisely diagnose the disease, to use differential diagnosis in combination with auxiliary examination methods, and to select the most appropriate treatment option to reduce the loss of bone tissue and the related damage to patients. In recent years, with the advancement in understanding the molecular basis of this disease and the development of early detection and targeted therapy, the diagnosis and the prognosis of OKC have been improved. The aim of this study was to provide an overview on the clinical features, diagnosis, and treatment of OKC. The molecular and genetic basis of this disease and the characteristics of malignant transformation of OKC were also discussed. Finally, we presented patient cases from our clinical practice to provide some advice on the diagnosis and treatment of OKC.
Collapse
Affiliation(s)
- Peng Chen
- Department of Stomatology, The First Medical Center of PLA General HospitalBeijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical CenterBeijing, China
| | - Bo Wei
- Department of Stomatology, The First Medical Center of PLA General HospitalBeijing, China
| | - Shujuan Yu
- Department of Stomatology, 960th Hospital of PLAJinan, China
| |
Collapse
|
4
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
6
|
Liu Y, Ji X, Kang N, Zhou J, Liang X, Li J, Han T, Zhao C, Yang T. Tumor necrosis factor α inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer. Cell Death Dis 2020; 11:993. [PMID: 33214550 PMCID: PMC7678839 DOI: 10.1038/s41419-020-03161-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Bevacizumab in neoadjuvant therapy provides a new hope of improved survival for patients with triple-negative breast cancer (TNBC) by targeting vascular endothelial growth factor in combination with chemotherapy, but curative effect is limited by bevacizumab’s continuous use while mechanisms remain incompletely understood. More and more researches reported that tumor-associated macrophages mediate resistance to chemotherapy and radiotherapy in various tumors. Here we developed a TNBC model resistant to bevacizumab under bevacizumab continuous administration. It was found that proportion of a specific subset of tumor-associated macrophages characterized as M2b (CD11b+ CD86high IL10high) increased and responsible for acquired resistance to bevacizumab. Then, we showed that RAW264.7 macrophages could be polarized to M2b subtype on simultaneous exposure to bevacizumab and TLR4 ligands as occurs in the context of continuous bevacizumab treatment. Concordantly, in TLR4-deleted C57BL/10ScNJNju (TLR4lps–del) mut/mut mice with bevacizumab treatment model, it was verified that the M2b macrophage could be induced by Fc gamma receptor-TLR4 cross-talk. In MDA-MB-231-resistant tumor-bearing mice, the content of TNFα in serum kept going up consistent with CCL1, a chemokine of M2b macrophage. In vitro neutralizing tumor necrosis factor α (TNFα) could inhibit the tumor progression caused by M2b culture medium and tumor IDO1 expression. Therefore, we thought that TNFα is a key tumor-promoting effector molecule secreted by M2b macrophage. Accordingly, the curative effect of bevacizumab was proved to be significantly improved by neutralizing TNFα with anti-TNFα nanobody. This study is expected to provide theoretical and clinical evidence elucidating the drug resistance in patients receiving bevacizumab.
Collapse
Affiliation(s)
- Yu Liu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xuemei Ji
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Nannan Kang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Junfei Zhou
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue Liang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianzhen Han
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Chen Zhao
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianwu Yang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
7
|
Cheng G, Gao J, Wang L, Ding Y, Wu Q, Wang Q, Xiao J, Wang S. The TGF-β1/COX-2-dependant pathway serves a key role in the generation of OKC-induced M2-polarized macrophage-like cells and angiogenesis. Oncol Lett 2020; 20:39. [PMID: 32788934 PMCID: PMC7416411 DOI: 10.3892/ol.2020.11900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022] Open
Abstract
An odontogenic keratocyst (OKC) is a common oral cyst arising from the odontogenic epithelium, which has the characteristics of a tumor. Previous studies have demonstrated that M2-polarized macrophages and angiogenesis have important roles in the progression of OKCs. As transforming growth factor (TGF)-β1 is important in growth and developmental processes, and early studies have indicated that TGF-β1 is upregulated in OKCs, the present study aimed to investigate the expression levels of TGF-β1 as a first step. Flow cytometric analysis suggested that TGF-β1 induced M2-polarization of macrophages in a dose-dependent manner. Expression levels of cyclooxygenase (COX)-1 and −2 were measured after treatment of M2 macrophages with TGF-β1 and OKC homogenate supernatant. COX-2 expression was influenced by TGF-β1 in a concentration-dependent manner and in OKC induction. In addition, inhibition of COX-2 resulted in the induction of M2-polarization of macrophages via TGF-β1 and OKC disruption. Because the extracellular matrix (ECM) is altered in individuals with chronic diseases, the present study analyzed the expression of matrix metalloproteinase (MMP)-9, which is able to degrade the ECM. The present study observed a decrease in MMP-9 activity following treatment with TGF-β1 and OKC homogenate supernatant. Additionally, the present study analyzed tube formation caused by OKC with or without a COX-2 inhibitor. The results of the present study suggested that angiogenesis increased following treatment with OKC homogenate supernatant but decreased after treatment with a COX-2 inhibitor. These findings indicated that the TGF-β1/COX-2 pathway may have an important role in the progression of OKC.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jinxing Gao
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Lianfei Wang
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Department of Stomatology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yude Ding
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qian Wu
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Quanbing Wang
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jialing Xiao
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
8
|
Yun JA, Kim J, Baek YY, Park W, Park M, Kim S, Kim T, Choi S, Jeoung D, Lee H, Won MH, Kim JY, Ha KS, Kwon YG, Kim YM. N-Terminal Modification of the Tetrapeptide Arg-Leu-Tyr-Glu, a Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) Antagonist, Improves Antitumor Activity by Increasing its Stability against Serum Peptidases. Mol Pharmacol 2019; 96:692-701. [PMID: 31594790 DOI: 10.1124/mol.119.117234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/03/2019] [Indexed: 02/14/2025] Open
Abstract
The tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a vascular endothelial growth factor (VEGF) receptor-2 antagonist, has been used previously either alone or in combination with chemotherapeutic drugs for treating colorectal cancer in a mouse model. We analyzed the half-life of the peptide and found that because of degradation by aminopeptidases B and N, it had a short half-life of 1.2 hours in the serum. Therefore, to increase the stability and potency of the peptide, we designed the modified peptide, N-terminally acetylated RLYE (Ac-RLYE), which had a strongly stabilized half-life of 8.8 hours in serum compared with the original parent peptide. The IC50 value of Ac-RLYE for VEGF-A-induced endothelial cell migration decreased to approximately 37.1 pM from 89.1 pM for the parent peptide. Using a mouse xenograft tumor model, we demonstrated that Ac-RLYE was more potent than RLYE in inhibiting tumor angiogenesis and growth, improving vascular integrity and normalization through enhanced endothelial cell junctions and pericyte coverage of the tumor vasculature, and impeding the infiltration of macrophages into tumor and their polarization to the M2 phenotype. Furthermore, combined treatment of Ac-RLYE and irinotecan exhibited synergistic effects on M1-like macrophage activation and apoptosis and growth inhibition of tumor cells. These findings provide evidence that the N-terminal acetylation augments the therapeutic effect of RLYE in solid tumors via inhibition of tumor angiogenesis, improvement of tumor vessel integrity and normalization, and enhancement of the livery and efficacy of the coadministered chemotherapeutic drugs. SIGNIFICANCE STATEMENT: The results of this study demonstrate that the N-terminal acetylation of the tetrapeptide RLYE (Ac-RLYE), a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor, significantly improves its serum stability, antiangiogenic activity, and vascular normalizing potency, resulting in enhanced therapeutic effect on solid tumors. Furthermore, the combined treatment of Ac-RLYE with the chemotherapeutic drug, irinotecan, synergistically enhanced its antitumor efficacy by improving the perfusion and delivery of the drug into the tumors and stimulating the conversion of the tumor-associated macrophages to an immunostimulatory M1-like antitumor phenotype.
Collapse
Affiliation(s)
- Jung-A Yun
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Joohwan Kim
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Yi-Yong Baek
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Wonjin Park
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Minsik Park
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Suji Kim
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Taesam Kim
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Seunghwan Choi
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Dooil Jeoung
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Hansoo Lee
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Moo-Ho Won
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Ji-Yoon Kim
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Kwon-Soo Ha
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Young-Guen Kwon
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| | - Young-Myeong Kim
- Departments of Molecular and Cellular Biochemistry (J.-A.Y., J.K., Y.-Y.B., W.P., M.P., S.K., T.K., S.C., K.-S.H., Y.-M.K.) and Neurobiology, School of Medicine (M.-H.W.), Departments of Biochemistry, College of Natural Sciences (D.J.) and Life Sciences, College of Natural Sciences (H.L.), and Kangwon Institute of Inclusive Technology (J.K., Y.-M.K.), Kangwon National University, Chuncheon, Gangwon-do, and Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul (J.-Y.K.), and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Y.-G.K.), Korea
| |
Collapse
|
9
|
Zhong WQ, Li ZZ, Jiang H, Zou YP, Wang HT, Cai Y, Zhao Y, Zhao JH. Elevated ATF4 Expression in Odontogenic Keratocysts Epithelia: Potential Involvement in Tissue Hypoxia and Stromal M2 Macrophage Infiltration. J Histochem Cytochem 2019; 67:801-812. [PMID: 31424999 DOI: 10.1369/0022155419871550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the expression of the activating transcription factor 4 (ATF4) in odontogenic keratocysts (OKC), its association with hypoxia and M2-polarized macrophages infiltration, and its potential relationships with angiogenesis in OKC. The expression of ATF4, hypoxia-inducible factor 1α (HIF-1α), macrophage colony-stimulating factor (M-CSF), and receptor activator of nuclear factor κ-B ligand (RANKL) in OKC samples and normal oral mucosa (OM) was detected by immunohistochemistry. Meanwhile, microvessel density (MVD) was measured using antibody against CD31. M2-polarized macrophages were identified using double-staining for CD68+ and CD163+. The correlations of ATF4 with HIF-1α, M-CSF, and M2-polarized macrophages infiltration were determined by Spearman's rank correlation test and hierarchical clustering. Human immortalized oral epithelial cells (HIOECs) were used in in vitro experiments. Our data showed that the expression of HIF-1α, ATF4, and M-CSF was significantly upregulated in the epithelium of OKC when compared with the OM. The expression of ATF4 was positively correlated with that of HIF-1α, M-CSF, MVD, and M2-polarized macrophages infiltration. Elevated expression of ATF4 in the epithelial lining of OKC may facilitate the M2 macrophages infiltration in response to hypoxia, leading to the development of OKC.
Collapse
Affiliation(s)
- Wen-Qun Zhong
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zheng Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan-Ping Zou
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hai-Tao Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji-Hong Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Abu El-Asrar AM, Ahmad A, Allegaert E, Siddiquei MM, Gikandi PW, De Hertogh G, Opdenakker G. Interleukin-11 Overexpression and M2 Macrophage Density are Associated with Angiogenic Activity in Proliferative Diabetic Retinopathy. Ocul Immunol Inflamm 2019; 28:575-588. [DOI: 10.1080/09273948.2019.1616772] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | | | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Zhong WQ, Ren JG, Xiong XP, Man QW, Zhang W, Gao L, Li C, Liu B, Sun ZJ, Jia J, Zhang WF, Zhao YF, Chen G. Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma. J Cell Mol Med 2019; 23:4054-4062. [PMID: 30907490 PMCID: PMC6533497 DOI: 10.1111/jcmm.14291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Microvesicles (MVs), which are cell-derived membrane vesicles present in body fluids, are closely associated with the development of malignant tumours. Saliva, one of the most versatile body fluids, is an important source of MVs. However, the association between salivary MVs (SMVs) and oral squamous cell carcinoma (OSCC), which is directly immersed in the salivary milieu, remains unclear. SMVs from 65 patients with OSCC, 21 patients with oral ulcer (OU), and 42 healthy donors were purified, quantified and analysed for their correlations with the clinicopathologic features and prognosis of OSCC patients. The results showed that the level of SMVs was significantly elevated in patients with OSCC compared to healthy donors and OU patients. Meanwhile, the level of SMVs showed close correlations with the lymph node status, and the clinical stage of OSCC patients. Additionally, the ratio of apoptotic to non-apoptotic SMVs was significantly decreased in OSCC patients with higher pathological grade. Consistently, poorer overall survival was observed in patients with lower ratio of apoptotic to non-apoptotic SMVs. In conclusion, the elevated level of SMVs is associated with clinicopathologic features and decreased survival in patients with OSCC, suggesting that SMVs are a potential biomarker and/or regulator of the malignant progression of OSCC.
Collapse
Affiliation(s)
- Wen-Qun Zhong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xue-Peng Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Li
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Serum and Ectopic Endometrium from Women with Endometriosis Modulate Macrophage M1/M2 Polarization via the Smad2/Smad3 Pathway. J Immunol Res 2018; 2018:6285813. [PMID: 30276219 PMCID: PMC6157144 DOI: 10.1155/2018/6285813] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022] Open
Abstract
Objective This study investigated the alterations in macrophage polarization in patients with endometriosis as well as the underlying molecular mechanisms. Methods Peritoneal washings, serum samples, and endometrial tissues were collected from endometriosis patients and control subjects. Endometrial stromal cells (ESCs) were isolated from endometrial tissue, and conditioned medium was prepared by treating ESCs with or without various concentrations of interleukin- (IL-) 6, estrogen, or progestin. The frequencies of CD86+ and CD163+ cells and expression levels of these markers as well as the cytokines IL-12 and IL-10 were measured in THP-1- (human monocytic leukemia cell) derived macrophages. Results There was a decrease in the percentage of CD86+ macrophages in the peritoneal wash solution of patients with endometriosis. Ectopic endometrial homogenates could promote M1 to M2 macrophage polarization in response to lipopolysaccharide (LPS), as evidenced by the increased percentage of CD163+ macrophages and increased IL-10 expression as well as a decreased percentage of CD86+ cells and lower IL-12 expression. In contrast, addition of serum from women with endometriosis to THP-1 cells resulted in the polarization of macrophages towards both M1 and M2 phenotypes. Upregulation of Smad2/Smad3 in macrophages upon exposure to eutopic and ectopic endometrial homogenates as well as serum of women with endometriosis was observed, and blockage of Smad2/Smad3 with their inhibitor SB431542 could reverse the macrophage polarization from M1 to M2. Conditioned medium induced by IL-6, but neither estrogen nor progestin, could facilitate M2 polarization. Neutralization of IL-6 diminished macrophage M2 polarization in endometriosis. Conclusion This study provides detailed evidence supporting alterations in M1 to M2 macrophage polarization that may contribute to the initiation as well as progression of endometriosis.
Collapse
|
13
|
Yehya AHS, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid AMSA, Oon CE. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E8. [PMID: 30344239 PMCID: PMC6037250 DOI: 10.3390/medicina54010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Deregulated angiogenesis has been identified as a key contributor in a number of pathological conditions including cancer. It is a complex process, which involves highly regulated interaction of multiple signalling molecules. The pro-angiogenic signalling molecule, vascular endothelial growth factor (VEGF) and its cognate receptor 2 (VEGFR-2), which is often highly expressed in majority of human cancers, plays a central role in tumour angiogenesis. Owing to the importance of tumour vasculature in carcinogenesis, tumour blood vessels have emerged as an excellent therapeutic target. The anti-angiogenic therapies have been shown to arrest growth of solid tumours through multiple mechanisms, halting the expansion of tumour vasculature and transient normalization of tumour vasculature which help in the improvement of blood flow resulting in more uniform delivery of cytotoxic agents to the core of tumour mass. This also helps in reduction of hypoxia and interstitial pressure leading to reduced chemotherapy resistance and more uniform delivery of cytotoxic agents at the targeted site. Thus, complimentary combination of different agents that target multiple molecules in the angiogenic cascade may optimize inhibition of angiogenesis and improve clinical benefit in the cancer patients. This review provides an update on the current trend in exploitation of angiogenesis pathways as a strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Ashwaq Hamid Salem Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Muhammad Asif
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Sven Hans Petersen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117543, Singapore.
| | - Ayappa V Subramaniam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Koji Kono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117543, Singapore.
- Department of Surgery, National University of Singapore, Singapore 117543, Singapore.
- School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Amin Malik Shah Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 0200, Australia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
14
|
Kobori T, Hamasaki S, Kitaura A, Yamazaki Y, Nishinaka T, Niwa A, Nakao S, Wake H, Mori S, Yoshino T, Nishibori M, Takahashi H. Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis. Front Immunol 2018; 9:334. [PMID: 29559970 PMCID: PMC5845536 DOI: 10.3389/fimmu.2018.00334] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
M2 macrophage (Mφ) promotes pathologic angiogenesis through a release of pro-angiogenic mediators or the direct cell–cell interaction with endothelium in the micromilieu of several chronic inflammatory diseases, including rheumatoid arthritis and cancer, where interleukin (IL)-18 also contributes to excessive angiogenesis. However, the detailed mechanism remains unclear. The aim of this study is to investigate the mechanism by which M2 Mφs in the micromilieu containing IL-18 induce excessive angiogenesis in the in vitro experimental model using mouse Mφ-like cell line, RAW264.7 cells, and mouse endothelial cell line, b.End5 cells. We discovered that IL-18 acts synergistically with IL-10 to amplify the production of Mφ-derived mediators like osteopontin (OPN) and thrombin, yielding thrombin-cleaved form of OPN generation, which acts through integrins α4/α9, thereby augmenting M2 polarization of Mφ with characteristics of increasing surface CD163 expression in association with morphological alteration. Furthermore, the results of visualizing temporal behavior and morphological alteration of Mφs during angiogenesis demonstrated that M2-like Mφs induced excessive angiogenesis through the direct cell–cell interaction with endothelial cells, possibly mediated by CD163.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yui Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuko Niwa
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|