1
|
Li S, Chen X, Wu Y, Sun Y. Genomic Signatures of Environmental Adaptation in Castanopsis hainanensis (Fagaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:1128. [PMID: 40219196 PMCID: PMC11991105 DOI: 10.3390/plants14071128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
As an endemic Castanopsis species on Hainan Island, Castanopsis hainanensis Merr. is uniquely adapted to tropical climatic conditions and occupies a relatively narrow habitat range. Given its long generation times, limited dispersal capacity, and ecological and economic importance, understanding the genomic processes shaping this dominant tree species is critical for conservation. Its adaptation to specialized habitats and distinct geographical distribution provide valuable insights into biodiversity challenges in island ecosystems. This study employs genome-wide single-nucleotide polymorphism (SNP) markers to investigate genetic structure, population dynamics, and adaptive variation. Analyses revealed weak genetic divergence among populations, suggesting high gene flow. Demographic reconstruction indicated a historical population bottleneck, consistent with MaxEnt modeling projections of future range contraction under climate change. Selective sweep and genotype-environment association (GEA) analyses identified SNPs strongly correlated with environmental variables, particularly moisture and temperature. Using these SNPs, we quantified the risk of non-adaptedness (RONA) across climate scenarios, pinpointing regions at heightened vulnerability. Gene Ontology (GO) enrichment highlighted the key genes involved in plant growth and stress adaptation. By integrating genomic and environmental data, this study establishes a framework for deciphering adaptive mechanisms of C. hainanensis and offers actionable insights for informed conservation strategies to mitigate climate-driven biodiversity loss.
Collapse
Affiliation(s)
| | | | | | - Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (X.C.); (Y.W.)
| |
Collapse
|
2
|
Zhu H, Liu J, Gao M, Yue C, Li H. Population genetic assessment of Viburnum japonicum in China using ddRAD-seq. Front Genet 2023; 14:1150437. [PMID: 37323682 PMCID: PMC10267392 DOI: 10.3389/fgene.2023.1150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Viburnum japonicum is a rare plant species and endemic to the coastal region of Eastern Asia with extremely small populations. Within mainland China, this species can be only found in narrow habitats of the northeast coastal islands of Zhejiang Province. However, there are scarce conservation genetic studies on V. japonicum, which has limited the effective conservation and management of this rare species. Here, 51 individuals in four natural populations covering the Chinese geographic range of the species were sampled to assess the genetic diversity and population structure. A total of 445,060 high-quality single nucleotide polymorphisms (SNPs) were identified using double digest restriction-site associated sequencing (ddRAD-seq). The overall average values of observed heterozygosity (Ho), expected heterozygosity (He), and average nucleotide diversity (π), were 0.2207, 0.2595, and 0.2741, respectively. The DFS-2 population exhibited the highest level of genetic diversity among all the populations. Genetic differentiation between populations was moderate (F ST = 0.1425), and there was selfing between populations (F IS = 0.1390, S = 24.52%). Of the total genetic variation, 52.9% was found among populations through AMOVA analysis. The Mantel test (r = 0.982, p = 0.030) combined with analyses of the Maximum Likelihood (ML) phylogenetic tree, ADMIXTURE, and principal component analysis (PCA), revealed that populations of V. japonicum were genetically segregated and significantly correlated with their geographical distribution. Our study demonstrated that V. japonicum maintained a medium level of genetic diversity and differentiation with a strong population structure, and the results were mainly affected by its island distribution pattern and self-crossing characteristics. These results provide insights into the genetic diversity and population history of V. japonicum, critical information for conserving and sustainably developing its genetic resources.
Collapse
Affiliation(s)
| | | | | | | | - Hepeng Li
- *Correspondence: Meirong Gao, ; Hepeng Li,
| |
Collapse
|
3
|
Zhao W, Wang X, Li L, Li J, Yin H, Zhao Y, Chen X. Evaluation of environmental factors affecting the genetic diversity, genetic structure, and the potential distribution of Rhododendron aureum Georgi under changing climate. Ecol Evol 2021; 11:12294-12306. [PMID: 34594500 PMCID: PMC8462154 DOI: 10.1002/ece3.7803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding genetic variation and structure, adaptive genetic variation, and its relationship with environmental factors is of great significance to understand how plants adapt to climate change and design effective conservation and management strategies. The objective of this study was to (I) investigate the genetic diversity and structure by AFLP markers in 36 populations of R. aureum from northeast China, (Ⅱ) reveal the relative contribution of geographical and environmental impacts on the distribution and genetic differentiation of R. aureum, (Ⅲ) identify outlier loci under selection and evaluate the association between outlier loci and environmental factors, and (Ⅳ) exactly calculate the development trend of population of R. aureum, as it is confronted with severe climate change and to provide information for designing effective conservation and management strategies. We found high genetic variation (I = 0.584) and differentiation among populations (ΦST = 0.703) and moderate levels of genetic diversity within populations of R. aureum. A significant relationship between genetic distance and environmental distance was identified, which suggested that the differentiation of different populations was caused by environmental factors. Using BayeScan and Dfdist, 42 outlier loci are identified and most of the outlier loci are associated with climate or relief factors, suggesting that these loci are linked to genes that are involved in the adaptability of R. aureum to the environment. Species distribution models (SDMs) showed that climate warming will cause a significant reduction in suitable areas for R. aureum, especially under the RCP 85 scenario. Our results help to understand the potential response of R. aureum to climatic changes and provide new perspectives for R. aureum resource management and conservation strategies.
Collapse
Affiliation(s)
- Wei Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and CultivationJilin UniversityChangchunChina
- School of Life ScienceJilin UniversityChangchunChina
| | - Xiaolong Wang
- Medical Technology DepartmentQiqihar Medical UniversityQiqiharChina
| | - Lin Li
- Medical Technology DepartmentQiqihar Medical UniversityQiqiharChina
| | - Jiangnan Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and CultivationJilin UniversityChangchunChina
- School of Life ScienceJilin UniversityChangchunChina
| | - Hang Yin
- Jilin Provincial Joint Key Laboratory of Changbai Mountain Biocoenosis and BiodiversityAntuChina
- Academy of Sciences of Changbai MountainChangbaishanChina
| | - Ying Zhao
- Jilin Provincial Joint Key Laboratory of Changbai Mountain Biocoenosis and BiodiversityAntuChina
- Academy of Sciences of Changbai MountainChangbaishanChina
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and CultivationJilin UniversityChangchunChina
- School of Life ScienceJilin UniversityChangchunChina
| |
Collapse
|
4
|
Wu Z, Xu X, Zhang J, Wiegleb G, Hou H. Influence of environmental factors on the genetic variation of the aquatic macrophyte Ranunculus subrigidus on the Qinghai-Tibetan Plateau. BMC Evol Biol 2019; 19:228. [PMID: 31856717 PMCID: PMC6921560 DOI: 10.1186/s12862-019-1559-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Due to the environmental heterogeneity along elevation gradients, alpine ecosystems are ideal study objects for investigating how ecological variables shape the genetic patterns of natural species. The highest region in the world, the Qinghai-Tibetan Plateau, is a hotspot for the studies of evolutionary processes in plants. Many large rivers spring from the plateau, providing abundant habitats for aquatic and amphibious organisms. In the present study, we examined the genetic diversity of 13 Ranunculus subrigidus populations distributed throughout the plateau in order to elucidate the relative contribution of geographic distance and environmental dissimilarity to the spatial genetic pattern. RESULTS A relatively low level of genetic diversity within populations was found. No spatial genetic structure was suggested by the analyses of molecular variance, Bayesian clustering analysis and Mantel tests. Partial Mantel tests and multiple matrix regression analysis showed a significant influence of the environment on the genetic divergence of the species. Both climatic and water quality variables contribute to the habitat heterogeneity of R. subrigidus populations. CONCLUSIONS Our results suggest that historical processes involving long-distance dispersal and local adaptation may account for the genetic patterns of R. subrigidus and current environmental factors play an important role in the genetic differentiation and local adaptation of aquatic plants in alpine landscapes.
Collapse
Affiliation(s)
- Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China
| | - Xinwei Xu
- College of Life Science, Wuhan University, Wuhan, China
| | - Juan Zhang
- College of Life Science, Wuhan University, Wuhan, China
| | - Gerhard Wiegleb
- Department of Ecology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Hongwei Hou
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China.
| |
Collapse
|
5
|
García-Girón J, García P, Fernández-Aláez M, Bécares E, Fernández-Aláez C. Bridging population genetics and the metacommunity perspective to unravel the biogeographic processes shaping genetic differentiation of Myriophyllum alterniflorum DC. Sci Rep 2019; 9:18097. [PMID: 31792324 PMCID: PMC6889409 DOI: 10.1038/s41598-019-54725-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/19/2019] [Indexed: 11/08/2022] Open
Abstract
The degree to which dispersal limitation interacts with environmental filtering has intrigued metacommunity ecologists and molecular biogeographers since the beginning of both research disciplines. Since genetic methods are superior to coarse proxies of dispersal, understanding how environmental and geographic factors influence population genetic structure is becoming a fundamental issue for population genetics and also one of the most challenging avenues for metacommunity ecology. In this study of the aquatic macrophyte Myriophyllum alterniflorum DC., we explored the spatial genetic variation of eleven populations from the Iberian Plateau by means of microsatellite loci, and examined if the results obtained through genetic methods match modern perspectives of metacommunity theory. To do this, we applied a combination of robust statistical routines including network analysis, causal modelling and multiple matrix regression with randomization. Our findings revealed that macrophyte populations clustered into genetic groups that mirrored their geographic distributions. Importantly, we found a significant correlation between genetic variation and geographic distance at the regional scale. By using effective (genetic) dispersal estimates, our results are broadly in line with recent findings from metacommunity theory and re-emphasize the need to go beyond the historically predominant paradigm of understanding environmental heterogeneity as the main force driving macrophyte diversity patterns.
Collapse
Affiliation(s)
- Jorge García-Girón
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain.
| | - Pedro García
- Department of Molecular Biology, Universidad de León, Campus de Vegazana, León, Spain
| | - Margarita Fernández-Aláez
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain
| | - Eloy Bécares
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain
| | - Camino Fernández-Aláez
- Group for Limnology and Environmental Biotechnology, Area of Ecology, Universidad de León, Campus de Vegazana, León, Spain
| |
Collapse
|
6
|
In silico identification of long non-coding RNA based simple sequence repeat markers and their application in diversity analysis in rice. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Environmental factors influencing mucilage accumulation of the endangered Brasenia schreberi in China. Sci Rep 2018; 8:17955. [PMID: 30560901 PMCID: PMC6298988 DOI: 10.1038/s41598-018-36448-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Brasenia schreberi J. F. Gmel. (Cabombaceae), a perennial freshwater macrophyte characterized by a thick mucilage on all underwater organs and especially young buds, has been widely cultivated as an aquatic vegetable in China for many years but is now listed as an endangered species due to anthropogenic impacts and habitat loss. Recent studies have demonstrated that different B. schreberi populations in China have low levels of genetic diversity but significantly different mucilage contents (MucC). Considering the importance of mucilage on both economic and ecological aspects, we examined mucilage-environment relationships in three B. schreberi cultivation sites. The results indicated that water permanganate index (CODMn), total N (TNw), electrical conductivity (ECw), dissolved oxygen (DOw), sediment organic carbon (SOC) and total N (TNs) were significant factors, which explained 82.2% of the variation in mucilage accumulation. The MucC and mucilage thickness (MucT) as well as single bud weight (SBW) of B. schreberi showed negative relationships with CODMn, TNw and ECw but positive relationships with SOC and TNs. Besides, high temperature may have a negative impact on mucilage accumulation of the species. Our study demonstrated that the mucilage accumulation of B. schreberi required good water quality and nutrient-enriched sediments, suggesting that habitat conservation, especially the quality of water, is important for maintaining B. schreberi populations.
Collapse
|
8
|
Gentili R, Solari A, Diekmann M, Duprè C, Monti GS, Armiraglio S, Assini S, Citterio S. Genetic differentiation, local adaptation and phenotypic plasticity in fragmented populations of a rare forest herb. PeerJ 2018; 6:e4929. [PMID: 29915689 PMCID: PMC6004105 DOI: 10.7717/peerj.4929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/04/2022] Open
Abstract
Background Due to habitat loss and fragmentation, numerous forest species are subject to severe population decline. Investigating variation in genetic diversity, phenotypic plasticity and local adaptation should be a prerequisite for implementing conservation actions. This study aimed to explore these aspects in ten fragmented populations of Physospermum cornubiense in view of translocation measures across its Italian range. Methods For each population we collected environmental data on landscape (habitat size, quality and fragmentation) and local conditions (slope, presence of alien species, incidence of the herbivorous insect Metcalfa pruinosa and soil parameters). We measured vegetative and reproductive traits in the field and analysed the genetic population structure using ISSR markers (STRUCTURE and AMOVA). We then estimated the neutral (FST) and quantitative (PST) genetic differentiation of populations. Results The populations exhibited moderate phenotypic variation. Population size (range: 16–655 individuals), number of flowering adults (range: 3–420 individuals) and inflorescence size (range: 5.0–8.4 cm) were positively related to Mg soil content. Populations’ gene diversity was moderate (Nei-H = 0.071–0.1316); STRUCTURE analysis identified five different clusters and three main geographic groups: upper, lower, and Apennine/Western Po plain. Fragmentation did not have an influence on the local adaptation of populations, which for all measured traits showed PST < FST, indicating convergent selection. Discussion The variation of phenotypic traits across sites was attributed to plastic response rather than local adaptation. Plant translocation from suitable source populations to endangered ones should particularly take into account provenance according to identified genetic clusters and specific soil factors.
Collapse
Affiliation(s)
- Rodolfo Gentili
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | - Aldo Solari
- Department of Economics, Management and Statistics, University of Milan-Bicocca, Milan, Italy
| | | | - Cecilia Duprè
- Institute of Ecology, University of Bremen, Bremen, Germany
| | - Gianna Serafina Monti
- Department of Economics, Management and Statistics, University of Milan-Bicocca, Milan, Italy
| | | | - Silvia Assini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Sandra Citterio
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
9
|
The Tanggula Mountains enhance population divergence in Carex moorcroftii: a dominant sedge on the Qinghai-Tibetan Plateau. Sci Rep 2018; 8:2741. [PMID: 29426823 PMCID: PMC5807306 DOI: 10.1038/s41598-018-21129-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/30/2018] [Indexed: 11/08/2022] Open
Abstract
High-altitude mountains are often geographic barriers to gene flow and play important roles in shaping population divergence. The central Qinghai-Tibetan Plateau (QTP) stands the location of the Tanggula Mountains (TM). We use the TM as a case, using Carex moorcroftii, a dominant species on the QTP to test the effects of geographic barriers on plant population divergence. We sampled 18 C. moorcroftii populations along a north-south transect crossing the TM to investigate the correlations of genetic variation and morphological traits with climate variables. The results showed this species holds high genetic diversity (He = 0.58) and the surveyed populations can be genetically clustered into two groups: populations from the north face of TM, and the other from the south. Gene flow between populations within groups is higher than those between groups. The traits, number and mass of seeds, mass of root and infructescence significantly varied among populations. Mantel-tests detected a weak but significantly positive correlation between genetic and geographic (R2 = 0.107, p = 0.032) and climatic distance (R2 = 0.162, p = 0.005), indicating both isolation by distance and isolation by environment. These findings together suggest high-altitude mountains of TM interrupt habitat continuity, result in distinct climatic conditions on both sides, increasing population divergence of plant species.
Collapse
|
10
|
Morente-López J, García C, Lara-Romero C, García-Fernández A, Draper D, Iriondo JM. Geography and Environment Shape Landscape Genetics of Mediterranean Alpine Species Silene ciliata Poiret. (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:1698. [PMID: 30538712 PMCID: PMC6277476 DOI: 10.3389/fpls.2018.01698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/31/2018] [Indexed: 05/22/2023]
Abstract
The study of the drivers that shape spatial genetic structure across heterogeneous landscapes is one of the main approaches used to understand population dynamics and responses in changing environments. While the Isolation-by-Distance model (IBD) assumes that genetic differentiation increases among populations with geographical distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers and other landscape features that impede gene flow. On the other hand, the Isolation-by-Environment model (IBE) explains genetic differentiation through environmental differences between populations. Although spatial genetic studies have increased significantly in recent years, plants from alpine ecosystems are highly underrepresented, even though they are great suitable systems to disentangle the role of the different factors that structure genetic variation across environmental gradients. Here, we studied the spatial genetic structure of the Mediterranean alpine specialist Silene ciliata across its southernmost distribution limit. We sampled three populations across an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over three mountain ranges aligned across an E-W axis in the central part of the Iberian Peninsula. We genotyped 20 individuals per population based on eight microsatellite markers and used different landscape genetic tools to infer the role of topographic and environmental factors in shaping observed patterns along the altitudinal gradient. We found a significant genetic structure among the studied Silene ciliata populations which was related to the orography and E-W configuration of the mountain ranges. IBD pattern arose as the main factor shaping population genetic differentiation. Geographical barriers between mountain ranges also affected the spatial genetic structure (IBR pattern). Although environmental variables had a significant effect on population genetic diversity parameters, no IBE pattern was found on genetic structure. Our study reveals that IBD was the driver that best explained the genetic structure, whereas environmental factors also played a role in determining genetic diversity values of this dominant plant of Mediterranean alpine environments.
Collapse
Affiliation(s)
- Javier Morente-López
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- *Correspondence: Javier Morente-López, José María Iriondo,
| | - Cristina García
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Plant Biology Group, CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Porto, Portugal
| | - Carlos Lara-Romero
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA), Consejo Superior de Investigaciones Científicas (CSIC), Esporles, Spain
| | - Alfredo García-Fernández
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - David Draper
- Natural History and Systematics Research Group, cE3c, Centro de Ecologia, Evolução e Alterações Ambientais, Universidade de Lisboa, Lisbon, Portugal
- UBC Botanical Garden and Centre for Plant Research, Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- *Correspondence: Javier Morente-López, José María Iriondo,
| |
Collapse
|
11
|
Moody ML, Palomino N, Weyl PSR, Coetzee JA, Newman RM, Harms NE, Liu X, Thum RA. Unraveling the biogeographic origins of the Eurasian watermilfoil (Myriophyllum spicatum) invasion in North America. AMERICAN JOURNAL OF BOTANY 2016; 103:709-718. [PMID: 27033316 DOI: 10.3732/ajb.1500476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Using phylogeographic analyses to determine the geographic origins of biological invaders is important for identifying environmental adaptations and genetic composition in their native range as well as biocontrol agents among indigenous herbivores. Eurasian watermilfoil (Myriophyllum spicatum) and its hybrid with northern watermilfoil (M. sibiricum) are found throughout the contiguous United States and southern Canada, forming one of the most economically costly aquatic plant invasions in North America, yet the geographic origin of the invasion remains unknown. The objectives of our study included determining the geographic origin of Eurasian watermilfoil in North America as well as the maternal lineage of the hybrids. METHODS DNA sequence data from a cpDNA intron and the nrDNA ITS region were compiled for accessions from 110 populations of Eurasian watermilfoil and hybrids from North America and the native range (including Europe, Asia, and Africa). Datasets were analyzed using statistical parsimony and Bayesian phylogenetics to assess the geographic origin of the invasion. KEY RESULTS The two Eurasian watermilfoil cpDNA haplotypes in North America are also found from China and Korea, but not elsewhere in the native range. These haplotypes did not overlap and were limited in native geographic range. The ovule parent for hybrids can come from either parental lineage, and multiple haplotypes from both parental species were found. CONCLUSIONS The geographic origin of this prolific aquatic plant invasion of North America is in Asia. This provides critical information to better understand the invasion pathway and inform management into the future.
Collapse
Affiliation(s)
- Michael L Moody
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Nayell Palomino
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Philip S R Weyl
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Julie A Coetzee
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Raymond M Newman
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Nathan E Harms
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, Mississippi, USA
| | - Xing Liu
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ryan A Thum
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
12
|
He SL, Wang YS, Li DZ, Yi TS. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc). Sci Rep 2016; 6:22795. [PMID: 26952904 PMCID: PMC4782138 DOI: 10.1038/srep22795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes.
Collapse
Affiliation(s)
- Shui-Lian He
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yun-Sheng Wang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Environmental and life Science, Kaili University, Kaili, 650201, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ting-Shuang Yi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|