1
|
Zeng Y, Fu BM. Angiogenesis and Microvascular Permeability. Cold Spring Harb Perspect Med 2025; 15:a041163. [PMID: 38692737 PMCID: PMC11694756 DOI: 10.1101/cshperspect.a041163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Angiogenesis, the formation of new blood microvessels, is a necessary physiological process for tissue generation and repair. Sufficient blood supply to the tissue is dependent on microvascular density, while the material exchange between the circulating blood and the surrounding tissue is controlled by microvascular permeability. We thus begin this article by reviewing the key signaling factors, particularly vascular endothelial growth factor (VEGF), which regulates both angiogenesis and microvascular permeability. We then review the role of angiogenesis in tissue growth (bone regeneration) and wound healing. Finally, we review angiogenesis as a pathological process in tumorigenesis, intraplaque hemorrhage, cerebral microhemorrhage, pulmonary fibrosis, and hepatic fibrosis. Since the glycocalyx is important for both angiogenesis and microvascular permeability, we highlight the role of the glycocalyx in regulating the interaction between tumor cells and endothelial cells (ECs) and VEGF-containing exosome release and uptake by tumor-associated ECs, all of which contribute to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
2
|
Carlantoni C, Liekfeld LMH, Hemkemeyer SA, Schreier D, Saygi C, Kurelic R, Cardarelli S, Kalucka J, Schulte C, Beerens M, Mailer RK, Schäffer TE, Naro F, Pellegrini M, Nikolaev VO, Renné T, Frye M. The phosphodiesterase 2A controls lymphatic junctional maturation via cGMP-dependent notch signaling. Dev Cell 2024; 59:308-325.e11. [PMID: 38159569 DOI: 10.1016/j.devcel.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered. In the absence of PDE2A, human lymphatic endothelial cells fail to induce mature junctions and cell cycle arrest, whereas cGMP levels, but not cAMP levels, are increased. Loss of PDE2A-mediated cGMP hydrolysis leads to the activation of p38 signaling and downregulation of NOTCH signaling. However, DLL4-induced NOTCH activation restores junctional maturation and contact inhibition in PDE2A-deficient human lymphatic endothelial cells. In postnatal mouse mesenteries, PDE2A is specifically enriched in collecting lymphatic valves, and loss of Pde2a results in the formation of abnormal valves. Our data demonstrate that PDE2A selectively finetunes a crosstalk of cGMP, p38, and NOTCH signaling during lymphatic vessel maturation.
Collapse
Affiliation(s)
- Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Leon M H Liekfeld
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sandra A Hemkemeyer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Silvia Cardarelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Schulte
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany; Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Fabio Naro
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Pellegrini
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus A. Buzzati Traverso, Monterotondo Scalo, Rome 00015, Italy
| | - Viacheslav O Nikolaev
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany.
| |
Collapse
|
3
|
Li Y, Shteyman DB, Hachem Z, Ulay AA, Fan J, Fu BM. Heparan Sulfate Modulation Affects Breast Cancer Cell Adhesion and Transmigration across In Vitro Blood-Brain Barrier. Cells 2024; 13:190. [PMID: 38275815 PMCID: PMC10813861 DOI: 10.3390/cells13020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The disruption of endothelial heparan sulfate (HS) is an early event in tumor cell metastasis across vascular barriers, and the reinforcement of endothelial HS reduces tumor cell adhesion to endothelium. Our recent study showed that while vascular endothelial growth factor (VEGF) greatly reduces HS at an in vitro blood-brain barrier (BBB) formed by human cerebral microvascular endothelial cells (hCMECs), it significantly enhances HS on a breast cancer cell, MDA-MB-231 (MB231). Here, we tested that this differential effect of VEGF on the HS favors MB231 adhesion and transmigration. We also tested if agents that enhance endothelial HS may affect the HS of MB231 and reduce its adhesion and transmigration. To test these hypotheses, we generated an in vitro BBB by culturing hCMECs on either a glass-bottom dish or a Transwell filter. We first quantified the HS of the BBB and MB231 after treatment with VEGF and endothelial HS-enhancing agents and then quantified the adhesion and transmigration of MB231 across the BBB after pretreatment with these agents. Our results demonstrated that the reduced/enhanced BBB HS and enhanced/reduced MB231 HS increase/decrease MB231 adhesion to and transmigration across the BBB. Our findings suggest a therapeutic intervention by targeting the HS-mediated breast cancer brain metastasis.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| | - David B. Shteyman
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| | - Zeina Hachem
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (Z.H.); (J.F.)
| | - Afaf A. Ulay
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| | - Jie Fan
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (Z.H.); (J.F.)
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| |
Collapse
|
4
|
Li Y, Sun Z, Zhu H, Sun Y, Shteyman DB, Markx S, Leong KW, Xu B, Fu BM. Inhibition of Abl Kinase by Imatinib Can Rescue the Compromised Barrier Function of 22q11.2DS Patient-iPSC-Derived Blood-Brain Barriers. Cells 2023; 12:422. [PMID: 36766762 PMCID: PMC9913366 DOI: 10.3390/cells12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
We have previously established that the integrity of the induced blood-brain barrier (iBBB) formed by brain microvascular endothelial cells derived from the iPSC of 22q11.2 DS (22q11.2 Deletion Syndrome, also called DiGeorge Syndrome) patients is compromised. We tested the possibility that the haploinsufficiency of CRKL, a gene within the 22q11.2 DS deletion region, contributes to the deficit. The CRKL is a major substrate of the Abl tyrosine kinase, and the Abl/CRKL signaling pathway is critical for endothelial barrier functions. Imatinib, an FDA-approved drug, inhibits Abl kinase and has been used to treat various disorders involving vascular leakages. To test if imatinib can restore the compromised iBBB, we treated the patient's iBBB with imatinib. After treatment, both trans-endothelial electrical resistance and solute permeability returned to comparable levels of the control iBBB. Correspondingly, changes in tight junctions and endothelial glycocalyx of the iBBB were also restored. Western blotting showed that imatinib increased the level of active forms of the CRKL protein. A transcriptome study revealed that imatinib up-regulated genes in the signaling pathways responsible for the protein modification process and down-regulated those for cell cycling. The KEGG pathway analysis further suggested that imatinib improved the gene expression of the CRKL signaling pathway and tight junctions, which agrees with our expectations and the observations at protein levels. Our results indicate that the 22q11.2DS iBBB is at least partially caused by the haploinsufficiency of CRKL, which can be rescued by imatinib via its effects on the Abl/CRKL signaling pathway. Our findings uncover a novel disease mechanism associated with 22q11.2DS.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | - Zhixiong Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Huixiang Zhu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Yan Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - David B. Shteyman
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
5
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
6
|
Ebben A, Dabagh M. Mechanotransduction in Endothelial Cells in Vicinity of Cancer Cells. Cell Mol Bioeng 2022; 15:313-330. [DOI: 10.1007/s12195-022-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
|
7
|
Xia Y, Li Y, Fu BM. Differential effects of vascular endothelial growth factor on glycocalyx of endothelial and tumor cells and potential targets for tumor metastasis. APL Bioeng 2022; 6:016101. [PMID: 35071967 PMCID: PMC8769769 DOI: 10.1063/5.0064381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
On the surface of every mammalian cell, there is a matrix-like glycocalyx (GCX) consisting of proteoglycans and glycosaminoglycans (GAGs). Disruption of endothelial cell (EC) GCX by a vascular endothelial growth factor (VEGF, VEGF-A165), a tumor secretion, was found to be an early event in tumor cell (TC) metastasis across vascular barriers. However, how the TC secretion VEGF affects its own GCX is unknown. To investigate the VEGF effect on TC GCX and to elucidate the ultrastructural organization of EC and TC GCX and their alteration by VEGF, we employed super-resolution stochastic optical reconstruction microscopy to observe the spatio-chemical organizations of the heparan sulfate (HS) and hyaluronic acid (HA), two representative GAGs of GCX, on human cerebral microvascular endothelial cells (hCMEC) and malignant breast cancer cells MDA-MB-231 (MB231). We found that HS and HA have distinct organizations on hCMEC and MB231. Only HS of hCMEC is perpendicular to the cell surface, while HA of hCMEC as well as HS and HA of MB231 all lie in the same plane as the cell surface where they appear to weave into a 2D network covering the cell. We also found that VEGF significantly reduces the length and coverage of HS on hCMEC but does not change the thickness and coverage of HA on hCMEC. On the contrary, VEGF significantly enhances the coverage of HS and HA on MB231 although it does not alter the thickness. The differential effects of VEGF on the GCX of TC and that of EC may favor TC adhesion and transmigration across EC barriers for their metastasis.
Collapse
Affiliation(s)
- Yifan Xia
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
8
|
Xia Y, Li Y, Khalid W, Bikson M, Fu BM. Direct Current Stimulation Disrupts Endothelial Glycocalyx and Tight Junctions of the Blood-Brain Barrier in vitro. Front Cell Dev Biol 2021; 9:731028. [PMID: 34650977 PMCID: PMC8505730 DOI: 10.3389/fcell.2021.731028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive physical therapy to treat many psychiatric disorders and to enhance memory and cognition in healthy individuals. Our recent studies showed that tDCS with the proper dosage and duration can transiently enhance the permeability (P) of the blood-brain barrier (BBB) in rat brain to various sized solutes. Based on the in vivo permeability data, a transport model for the paracellular pathway of the BBB also predicted that tDCS can transiently disrupt the endothelial glycocalyx (EG) and the tight junction between endothelial cells. To confirm these predictions and to investigate the structural mechanisms by which tDCS modulates P of the BBB, we directly quantified the EG and tight junctions of in vitro BBB models after DCS treatment. Human cerebral microvascular endothelial cells (hCMECs) and mouse brain microvascular endothelial cells (bEnd3) were cultured on the Transwell filter with 3 μm pores to generate in vitro BBBs. After confluence, 0.1–1 mA/cm2 DCS was applied for 5 and 10 min. TEER and P to dextran-70k of the in vitro BBB were measured, HS (heparan sulfate) and hyaluronic acid (HA) of EG was immuno-stained and quantified, as well as the tight junction ZO-1. We found disrupted EG and ZO-1 when P to dextran-70k was increased and TEER was decreased by the DCS. To further investigate the cellular signaling mechanism of DCS on the BBB permeability, we pretreated the in vitro BBB with a nitric oxide synthase (NOS) inhibitor, L-NMMA. L-NMMA diminished the effect of DCS on the BBB permeability by protecting the EG and reinforcing tight junctions. These in vitro results conform to the in vivo observations and confirm the model prediction that DCS can disrupt the EG and tight junction of the BBB. Nevertheless, the in vivo effects of DCS are transient which backup its safety in the clinical application. In conclusion, our current study directly elucidates the structural and signaling mechanisms by which DCS modulates the BBB permeability.
Collapse
Affiliation(s)
- Yifan Xia
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Wasem Khalid
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| |
Collapse
|
9
|
Li Y, Xia Y, Zhu H, Luu E, Huang G, Sun Y, Sun K, Markx S, Leong KW, Xu B, Fu BM. Investigation of Neurodevelopmental Deficits of 22 q11.2 Deletion Syndrome with a Patient-iPSC-Derived Blood-Brain Barrier Model. Cells 2021; 10:cells10102576. [PMID: 34685556 PMCID: PMC8534009 DOI: 10.3390/cells10102576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) is important in the normal functioning of the central nervous system. An altered BBB has been described in various neuropsychiatric disorders, including schizophrenia. However, the cellular and molecular mechanisms of such alterations remain unclear. Here, we investigate if BBB integrity is compromised in 22q11.2 deletion syndrome (also called DiGeorge syndrome), which is one of the validated genetic risk factors for schizophrenia. We utilized a set of human brain microvascular endothelial cells (HBMECs) derived from the induced pluripotent stem cell (iPSC) lines of patients with 22q11.2-deletion-syndrome-associated schizophrenia. We found that the solute permeability of the BBB formed from patient HBMECs increases by ~1.3–1.4-fold, while the trans-endothelial electrical resistance decreases to ~62% of the control values. Correspondingly, tight junction proteins and the endothelial glycocalyx that determine the integrity of the BBB are significantly disrupted. A transcriptome study also suggests that the transcriptional network related to the cell–cell junctions in the compromised BBB is substantially altered. An enrichment analysis further suggests that the genes within the altered gene expression network also contribute to neurodevelopmental disorders. Our findings suggest that neurovascular coupling can be targeted in developing novel therapeutical strategies for the treatment of 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Yifan Xia
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Huixiang Zhu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Eric Luu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Guangyao Huang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Yan Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Kevin Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
- Correspondence: (B.X.); (B.M.F.); Tel.: +1-212-650-7531 (B.M.F.)
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
- Correspondence: (B.X.); (B.M.F.); Tel.: +1-212-650-7531 (B.M.F.)
| |
Collapse
|
10
|
Gerardi G, Cavia-Saiz M, Rivero-Pérez MD, González-SanJosé ML, Muñiz P. The protective effects of wine pomace products on the vascular endothelial barrier function. Food Funct 2021; 11:7878-7891. [PMID: 32812564 DOI: 10.1039/d0fo01199a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial dysfunction is associated with cardiovascular diseases and involves a chronic inflammatory process that together with oxidative stress increases the permeability of the vascular endothelium. The aim of this study was to evaluate the role of red and white wine pomace products (rWPPs and wWPPs) in the maintenance of endothelial integrity in hyperglycemia of EA.hy926 endothelial cells. EA.hy926 endothelial cells exposed to hyperglycemia were treated with the in vitro digested fractions of rWPPs and wWPPs. A Real Time Cellular Analysis (RTCA) system was used to evaluate the endothelial monolayer integrity after INF-γ stimulation of pre-treated endothelial cells with the digested fractions. The changes in cell viability, NO, ROS and NOX4 were recorded and actin cytoskeleton and E-cadherin junctions were evaluated by immunofluorescence. All digested fractions prevent the hyperglycemic actions in the cell viability and NO/ROS balance. The inflammatory mediator INF-γ and hyperglycemia caused a decrease in RTCA adhesion of the EA.hy926 endothelial cell monolayer. Pre-treatment with all digested fractions enhanced the EA.hy926 endothelial monolayer integrity and maintained actin cytoskeleton and E-cadherin junctions. These in vitro studies elucidate that the anti-hyperglycemic and anti-inflammatory actions of wine pomace products involve a decrease in ROS production and the stabilization of junction proteins via modulation of VE-cadherin and actin cytoskeleton suggesting a potential prevention of endothelial damage by these natural products.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - María D Rivero-Pérez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - María L González-SanJosé
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| |
Collapse
|
11
|
Dabagh M, Gounley J, Randles A. Localization of Rolling and Firm-Adhesive Interactions Between Circulating Tumor Cells and the Microvasculature Wall. Cell Mol Bioeng 2020; 13:141-154. [PMID: 32175027 PMCID: PMC7048902 DOI: 10.1007/s12195-020-00610-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The adhesion of tumor cells to vessel wall is a critical stage in cancer metastasis. Firm adhesion of cancer cells is usually followed by their extravasation through the endothelium. Despite previous studies identifying the influential parameters in the adhesive behavior of the cancer cell to a planer substrate, less is known about the interactions between the cancer cell and microvasculature wall and whether these interactions exhibit organ specificity. The objective of our study is to characterize sizes of microvasculature where a deformable circulating cell (DCC) would firmly adhere or roll over the wall, as well as to identify parameters that facilitate such firm adherence and underlying mechanisms driving adhesive interactions. METHODS A three-dimensional model of DCCs is applied to simulate the fluid-structure interaction between the DCC and surrounding fluid. A dynamic adhesion model, where an adhesion molecule is modeled as a spring, is employed to represent the stochastic receptor-ligand interactions using kinetic rate expressions. RESULTS Our results reveal that both the cell deformability and low shear rate of flow promote the firm adhesion of DCC in small vessels ( < 10 μ m ). Our findings suggest that ligand-receptor bonds of PSGL-1-P-selectin may lead to firm adherence of DCC in smaller vessels and rolling-adhesion of DCC in larger ones where cell velocity drops to facilitate the activation of integrin-ICAM-1 bonds. CONCLUSIONS Our study provides a framework to predict accurately where different DCC-types are likely to adhere firmly in microvasculature and to establish the criteria predisposing cancer cells to such firm adhesion.
Collapse
Affiliation(s)
- Mahsa Dabagh
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - John Gounley
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
12
|
Zeng Y, Yao X, Liu X, He X, Li L, Liu X, Yan Z, Wu J, Fu BM. Anti-angiogenesis triggers exosomes release from endothelial cells to promote tumor vasculogenesis. J Extracell Vesicles 2019; 8:1629865. [PMID: 31258881 PMCID: PMC6586113 DOI: 10.1080/20013078.2019.1629865] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 02/05/2023] Open
Abstract
Although anti-angiogenic therapies (AATs) have some effects against multiple malignancies, they are limited by subsequent tumor vasculogenesis and progression. To investigate the mechanisms by which tumor vasculogenesis and progression following AATs, we transfected microRNA (miR)-9 into human umbilical vein endothelial cells (HUVECs) to mimic the tumor-associated endothelial cells in hepatocellular carcinoma and simulated the AATs in vitro and in vivo. We found that administration of the angiogenesis inhibitor vandetanib completely abolished miR-9-induced angiogenesis and promoted autophagy in HUVECs, but induced the release of vascular endothelial growth factor (VEGF)-enriched exosomes. These VEGF-enriched exosomes significantly promoted the formation of endothelial vessels and vasculogenic mimicry in hepatocellular carcinoma and its progression in mice. Anti-autophagic therapy is proposed to improve the efficacy of AATs. However, similar effects by AATs were observed with the application of anti-autophagy by 3-methyladenine. Our results revealed that tumor vasculogenesis and progression after AATs and anti-autophagic therapies were due to the cross-talk between endothelial and tumor cells via VEGF-enriched exosomes.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Radiation Therapy Center, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center, Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiping Yan
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiang Wu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| |
Collapse
|
13
|
Perrot CY, Sawada J, Komatsu M. Prolonged activation of cAMP signaling leads to endothelial barrier disruption via transcriptional repression of RRAS. FASEB J 2018; 32:fj201700818RRR. [PMID: 29775418 PMCID: PMC6181640 DOI: 10.1096/fj.201700818rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
Abstract
The increase in cAMP levels in endothelial cells triggers cellular signaling to alter vascular permeability. It is generally considered that cAMP signaling stabilizes the endothelial barrier function and reduces permeability. However, previous studies have only examined the permeability shortly after cAMP elevation and thus have only investigated acute responses. Because cAMP is a key regulator of gene expression, elevated cAMP may have a delayed but profound impact on the endothelial permeability by altering the expression of the genes that are vital for the vessel wall stability. The small guanosine triphosphate hydrolase Ras-related protein (R-Ras) stabilizes VE-cadherin clustering and enhances endothelial barrier function, thereby stabilizing the integrity of blood vessel wall. Here we show that cAMP controls endothelial permeability through RRAS gene regulation. The prolonged cAMP elevation transcriptionally repressed RRAS in endothelial cells via a cAMP response element-binding protein (CREB) 3-dependent mechanism and significantly disrupted the adherens junction. These effects resulted in a marked increase of endothelial permeability that was reversed by R-Ras transduction. Furthermore, cAMP elevation in the endothelium by prostaglandin E2 or phosphodiesterase type 4 inhibition caused plasma leakage from intact microvessels in mouse skin. Our study demonstrated that, contrary to the widely accepted notion, cAMP elevation in endothelial cells ultimately increases vascular permeability, and the cAMP-dependent RRAS repression critically contributes to this effect.-Perrot, C. Y., Sawada, J., Komatsu, M. Prolonged activation of cyclic AMP signaling leads to endothelial barrier disruption via transcriptional repression of RRAS.
Collapse
Affiliation(s)
- Carole Y. Perrot
- Cancer Center and Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA
| | - Junko Sawada
- Cancer Center and Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA
| | - Masanobu Komatsu
- Cancer Center and Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA
| |
Collapse
|
14
|
Fu BM. Transport Across the Blood-Brain Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:235-259. [PMID: 30315549 DOI: 10.1007/978-3-319-96445-4_13] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the microenvironment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-borne neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This chapter summarized the unique structures of the BBB; described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB and the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents, and drug carriers; and presented recently developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Recent findings for modulation of the BBB permeability by chemical and physical stimuli were described. Finally, drug delivery strategies through specific trans-BBB routes were discussed.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| |
Collapse
|
15
|
Abstract
Tumor cell metastasis through blood circulation is a complex process and is one of the great challenges in cancer research as metastatic spread is responsible for ∼90% of cancer-related mortality. Tumor cell intravasation into, arrest and adhesion at, and extravasation from the microvessel walls are critical steps in metastatic spread. Understanding these steps may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent endothelial cells is the principal pathway for water and solute transport through the microvessel wall in health. Recently, this cleft has been found to be the location for tumor cell adhesion and extravasation. The blood-flow-induced hydrodynamic factors such as shear rates and stresses, shear rate and stress gradients, as well as vorticities, especially at the branches and turns of microvasculatures, also play important roles in tumor cell arrest and adhesion. This chapter therefore reports the current advances from in vivo animal studies and in vitro culture cell studies to demonstrate how the endothelial integrity or microvascular permeability, hydrodynamic factors, microvascular geometry, cell adhesion molecules, and surrounding extracellular matrix affect critical steps of tumor metastasis in the microcirculation.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| |
Collapse
|
16
|
Kevane B, Egan K, Allen S, Maguire P, Neary E, Lennon Á, Ní Áinle F. Endothelial barrier protective properties of low molecular weight heparin: A novel potential tool in the prevention of cancer metastasis? Res Pract Thromb Haemost 2017; 1:23-32. [PMID: 30046671 PMCID: PMC5974908 DOI: 10.1002/rth2.12011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND One of the key events in the progression of cancer metastasis is the trans-endothelial migration of circulating tumor cells. Moreover, inhibition of tumor-induced vascular permeability has been shown to inhibit metastasis in vivo. Low molecular weight heparin (LMWH) appears to confer a survival benefit in cancer but the underlying mechanisms are poorly understood. OBJECTIVE To characterise LMWH-mediated endothelial barrier protection and to explore strategies to limit the LMWH-associated haemorrhagic risk in this setting. METHODS Endothelial barrier function was assessed using in vitro assays of endothelial permeability and tumor cell trans-endothelial migration. Thrombin-mediated activation of PAR-1 signalling was assessed by flow cytometry and western blotting. LMWH anticoagulant activity was assessed by calibrated automated thrombography and plasma anti-factor Xa activity assay. RESULTS LMWH tinzaparin enhanced endothelial barrier function and reduced tumor cell trans-endothelial migration (73.9±5.7% of baseline; P<.05). Tinzaparin-mediated attenuation of thrombin-induced permeability was not mediated through an inhibition of thrombin proteolytic activity. In addition, fractions of LMWH with diminished anticoagulant activity retained endothelial barrier protective properties and a marked synergistic effect on barrier function was observed using combinations of sub-anticoagulant concentrations of tinzaparin with simvastatin (which exhibits endothelial barrier protective properties in vitro), with almost complete protection against agonist-induced endothelial barrier permeability achieved (7.9±0.2% of baseline; P<.05). CONCLUSION Collectively, these results suggest that LMWH supports endothelial barrier function in a manner which does not appear to be dependent on its anticoagulant activity. If replicated in vivo, these findings could represent a novel therapeutic approach to the suppression of metastasis.
Collapse
Affiliation(s)
- Barry Kevane
- School of Medicine & Medical ScienceUniversity College Dublin (UCD)DublinIreland
- SPHERE Research GroupUCD Conway InstituteDublinIreland
- Department of HaematologyRotunda HospitalDublinIreland
- Department of HaematologyMater Misericordiae University HospitalDublinIreland
| | - Karl Egan
- School of Medicine & Medical ScienceUniversity College Dublin (UCD)DublinIreland
- SPHERE Research GroupUCD Conway InstituteDublinIreland
| | - Seamus Allen
- School of Medicine & Medical ScienceUniversity College Dublin (UCD)DublinIreland
- SPHERE Research GroupUCD Conway InstituteDublinIreland
| | - Patricia Maguire
- SPHERE Research GroupUCD Conway InstituteDublinIreland
- Department of Biomolecular and Biomedical SciencesUCDDublinIreland
| | - Elaine Neary
- Department of NeonatologyRotunda HospitalDublinIreland
| | - Áine Lennon
- Department of HaematologyMater Misericordiae University HospitalDublinIreland
| | - Fionnuala Ní Áinle
- School of Medicine & Medical ScienceUniversity College Dublin (UCD)DublinIreland
- SPHERE Research GroupUCD Conway InstituteDublinIreland
- Department of HaematologyRotunda HospitalDublinIreland
- Department of HaematologyMater Misericordiae University HospitalDublinIreland
| |
Collapse
|
17
|
Xiao LL, Liu Y, Chen S, Fu BM. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol 2016; 16:597-610. [PMID: 27738841 DOI: 10.1007/s10237-016-0839-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
Adhesion of circulating tumor cells (CTCs) to the microvessel wall largely depends on the blood hydrodynamic conditions, one of which is the blood viscosity. Since blood is a non-Newtonian fluid, whose viscosity increases with hematocrit, in the microvessels at low shear rate. In this study, the effects of hematocrit, vessel size, flow rate and red blood cell (RBC) aggregation on adhesion of a CTC in the microvessels were numerically investigated using dissipative particle dynamics. The membrane of cells was represented by a spring-based network connected by elastic springs to characterize its deformation. RBC aggregation was modeled by a Morse potential function based on depletion-mediated assumption, and the adhesion of the CTC to the vessel wall was achieved by the interactions between receptors and ligands at the CTC and those at the endothelial cells forming the vessel wall. The results demonstrated that in the microvessel of [Formula: see text] diameter, the CTC has an increasing probability of adhesion with the hematocrit due to a growing wall-directed force, resulting in a larger number of receptor-ligand bonds formed on the cell surface. However, with the increase in microvessel size, an enhanced lift force at higher hematocrit detaches the initial adherent CTC quickly. If the microvessel is comparable to the CTC in diameter, CTC adhesion is independent of Hct. In addition, the velocity of CTC is larger than the average blood flow velocity in smaller microvessels and the relative velocity of CTC decreases with the increase in microvessel size. An increased blood flow resistance in the presence of CTC was also found. Moreover, it was found that the large deformation induced by high flow rate and the presence of aggregation promote the adhesion of CTC.
Collapse
Affiliation(s)
- L L Xiao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China.,Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Y Liu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - S Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China.
| | - B M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| |
Collapse
|
18
|
Zhang L, Zeng M, Fu BM. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol 2016; 310:H1735-47. [PMID: 27059076 DOI: 10.1152/ajpheart.00109.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) at different concentrations may promote or inhibit tumor growth and metastasis under various conditions. To test the hypothesis that tumor cells prefer to adhere to the locations with a higher endothelial NO production in intact microvessels under physiological flows and to further test that inhibiting NO production decreases tumor cell adhesion, we used intravital fluorescence microscopy to measure NO production and tumor cell adhesion in postcapillary venules of rat mesentery under normal and reduced flow conditions, and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, N(G)-monomethyl-l-arginine (l-NMMA). Rats (SD, 250-300 g) were anesthetized. A midline incision (∼2 inch) was made in the abdominal wall, and the mesentery was taken out from the abdominal cavity and spread over a coverslip for the measurement. An individual postcapillary venule (35-50 μm) was first loaded with 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent indictor for NO. Then the DAF-2 intensity was measured for 30 min under a normal or reduced flow velocity, with and without perfusion with MDA-MB-231 breast cancer cells, and in the presence of l-NMMA. We found that tumor cells prefer to adhere to the microvessel locations with a higher NO production such as curved portions. Inhibition of eNOS by l-NMMA attenuated the flow-induced NO production and reduced tumor cell adhesion. We also found that l-NMMA treatment for ∼40 min reduced microvessel permeability to albumin. Our results suggest that inhibition of eNOS is a good approach to preventing tumor cell adhesion to intact microvessels under physiological flows.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Min Zeng
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| |
Collapse
|