1
|
Su R, Tao X, Yan L, Liu Y, Chen CC, Li P, Li J, Miao J, Liu F, Kuai W, Hou J, Liu M, Mi Y, Xu L. Early screening, diagnosis and recurrence monitoring of hepatocellular carcinoma in patients with chronic hepatitis B based on serum N-glycomics analysis: A cohort study. Hepatology 2025:01515467-990000000-01210. [PMID: 40117651 DOI: 10.1097/hep.0000000000001316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND AND AIMS HCC poses a significant global health burden, with HBV being the predominant etiology in China. However, current diagnostic markers lack the requisite sensitivity and specificity. This study aims to develop and validate serum N-glycomics-based models for the diagnosis and prognosis of HCC in patients with chronic hepatitis B-related cirrhosis. APPROACH AND RESULTS This study enrolled a total of 397 patients with chronic hepatitis B-related cirrhosis and HCC for clinical management. N-glycomics profiling was conducted on all participants, and clinical data were collected. First, machine learning-based models, Hepatocellular Carcinoma Glycomics Random Forest model and Hepatocellular Carcinoma Glycomics Support Vector Machine model, were established for early screening and diagnosis of HCC using N-glycomics. The AUC values in the validation set were 0.967 (95% CI: 0.930-1.000) and 0.908 (0.840-0.976) for Hepatocellular Carcinoma Glycomics Random Forest model and Hepatocellular Carcinoma Glycomics Support Vector Machine model, respectively, outperforming AFP (0.687 [0.575-0.765]) and Protein Induced by Vitamin K Absence or Antagonist-II (PIVKA-II) (0.665 [0.507-0.823]). It also showed superiority in subgroup analysis and external validation. Calibration and decision curve analysis also showed good predictive performance. Additionally, we developed a prognostic model, the prog-G model, based on N-glycans to monitor recurrence in patients with HCC after curative treatment. During the follow-up period, it was observed that this model correlated with the clinical condition of the patients and could identify all recurrent HCC cases (n=12) prior to imaging findings, outperforming AFP (n=7) and PIVKA-II (n=9), while also detecting recurrent lesions earlier than imaging. CONCLUSIONS N-glycomics models can effectively predict the occurrence and recurrence of HCC to improving the efficiency of clinical decision-making and promoting the precision treatment of HCC.
Collapse
Affiliation(s)
- Rui Su
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Department of Hepatology, Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
- Department of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Xuemei Tao
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Infectious and Liver Diseases, Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lihua Yan
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Department of Hepatology, Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yonggang Liu
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Second People's Hospital, Tianjin, China
| | - Cuiying Chitty Chen
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co. Ltd, Nanjing, Jiangsu Province, China
| | - Ping Li
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Jia Li
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Jing Miao
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Traditional Chinese Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Feng Liu
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Wentao Kuai
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology & Oncology, Tianjin Second People's Hospital, Tianjin, China
| | - Jiancun Hou
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Department of Surgery, Tianjin Second People's Hospital, Tianjin, China
| | - Mei Liu
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yuqiang Mi
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Department of Hepatology, Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin, China
| | - Liang Xu
- Clinical School of the Second People' s Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Department of Hepatology, Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
- Department of Hepatology & Oncology, Tianjin Second People's Hospital, Tianjin, China
| |
Collapse
|
2
|
Koreeda T, Honda H. Identification of drug responsible glycogene signature in liver carcinoma from meta-analysis using RNA-seq data. Glycoconj J 2024; 41:133-149. [PMID: 38656600 DOI: 10.1007/s10719-024-10153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Glycans have attracted much attention in cancer therapeutic strategies, and cell surface proteins and lipids with glycans are known to be altered during the carcinogenic process. However, our understanding of how the glycogenes profile responds to drug stimulation remains incomplete. In this study, we search public databases for Sequence Read Archive data on drug-treated liver cancer cells, with the aim to comprehensively analyze the drug responses of glycogenes via bioinformatic meta-analysis. The study comprised 86 datasets, encompassing eight distinct liver cancer cell lines and 13 different drugs. Differentially expressed genes were quantified, and 399 glycogenes were identified. The glycogenes signature was then analyzed using bioinformatics methodologies. In the Protein-protein interaction network analysis, we identified drug-responsive glycogenes such as Beta-1,4-Galactosyltransferase 1, GDP-Mannose 4,6-Dehydratase, UDP-Glucose Ceramide Glucosyltransferase, and Solute Carrier Family 2 Member 4 as key glycan biomarkers. In the enrichment analysis using the pathway list of glycogenes, the results also demonstrated that drug stimulation resulted in alterations to glycopathway-related genes involved in several processes, namely O-Mannosylation, POMGNT2 Type, Capping, Heparan Sulfate Sulfation, and Glucuronidation pathways. These genes and pathways commonly exhibit variable expression across multiple liver cancer cells in response to the same drug, making them potential targets for new cancer therapies. In addition to their primary roles, drugs may also participate in the regulation of glycans. The insights from this study could pave the way for the development of liver cancer therapies that target the regulation of gene profiles involved in the biosynthesis of glycans.
Collapse
Affiliation(s)
- Tatsuya Koreeda
- Independent Researcher, Ikawadani-cho, 651-2113, Kobe-shi, Hyogo, Japan.
| | - Hiroshi Honda
- Honda Biotech. Laboratory, Shimookamoto-cho, 329-1104, Utsunomiya-shi, Tochigi, Japan
| |
Collapse
|
3
|
Aguilar Díaz de León JS, Cruz Villarreal J, Kapuruge EP, Borges CR. Glycan node profiling of soluble and membrane glycoproteins in whole cell lysates. Anal Biochem 2023; 680:115317. [PMID: 37699507 DOI: 10.1016/j.ab.2023.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Glycan node analysis (GNA) is a molecularly bottom-up glycomics technique based on the relative quantification of glycan linkage-specific monosaccharide units ("glycan nodes"). It was originally applied to blood plasma/serum, where it detected and predicted progression, reoccurrence, and survival in different types of cancer. Here, we have adapted this technology to previously inaccessible membrane glycoproteins from cultured cells. The approach is facilitated by methanol/chloroform precipitation of cell lysates and a "liquid phase permethylation" (LPP) procedure. LPP gave better signal-to-noise, yield and precision for most of the glycan nodes from membrane glycoproteins/glycolipids than the conventional solid phase permethylation approach. This GNA approach in cell lysates revealed that specific glycan features such as antennary fucosylation, N-glycan branching, and α2,6-sialylation were elevated in hepatocellular carcinoma (HepG2) cells relative to leukemia cells (THP-1 and K562) and normal donor PBMCs. Additional nodes commonly associated with glycolipids were elevated in the leukemia cells relative to HepG2 cells and PBMCs. Exposure of HepG2 cells to a fucosyltransferase inhibitor resulted in a significant reduction in the relative abundance of 3,4-substituted GlcNAc, which represents antennary fucosylation-providing further proof-of-concept that downregulation of glycosyltransferase activity is detected by shifts in glycan node expression-now detectable in membrane glycoproteins.
Collapse
Affiliation(s)
- Jesús S Aguilar Díaz de León
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA
| | - Erandi P Kapuruge
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA
| | - Chad R Borges
- School of Molecular Sciences and the Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ, 85287, USA.
| |
Collapse
|
4
|
Yang D, Han F, Cai J, Sun H, Wang F, Jiang M, Zhang M, Yuan M, Zhou W, Li H, Yang L, Bai Y, Xiao L, Dong H, Cheng Q, Mao H, Zhou L, Wang R, Li Y, Nie H. N-glycosylation by N-acetylglucosaminyltransferase IVa enhances the interaction of integrin β1 with vimentin and promotes hepatocellular carcinoma cell motility. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119513. [PMID: 37295747 DOI: 10.1016/j.bbamcr.2023.119513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
N-glycosylation has been revealed to be tightly associated with cancer metastasis. As a key transferase that catalyzes the formation of β1,4 N-acetylglucosamine (β1,4GlcNAc) branches on the mannose core of N-glycans, N-acetylglucosaminyltransferase IVa (GnT-IVa) has been reported to be involved in hepatocellular carcinoma (HCC) metastasis by forming N-glycans; however, the underlying mechanisms are largely unknown. In the current study, we found that GnT-IVa was upregulated in HCC tissues and positively correlated with worse outcomes in HCC patients. We found that GnT-IVa could promote tumor growth in mice; notably, this effect was attenuated after mutating the enzymatic site (D445A) of GnT-IVa, suggesting that GnT-IVa regulated HCC progression by forming β1,4GlcNAc branches. To mechanistically investigate the role of GnT-IVa in HCC, we conducted GSEA and GO functional analysis as well as in vitro experiments. The results showed that GnT-IVa could enhance HCC cell migration, invasion and adhesion ability and increase β1,4GlcNAc branch glycans on integrin β1 (ITGB1), a tumor-associated glycoprotein that is closely involved in cell motility by interacting with vimentin. Interruption of β1,4GlcNAc branch glycan modification on ITGB1 could suppress the interaction of ITGB1 with vimentin and inhibit cell motility. These results revealed that GnT-IVa could promote HCC cell motility by affecting the biological functions of ITGB1 through N-glycosylation. In summary, our results revealed that GnT-IVa is highly expressed in HCC and can form β1,4GlcNAc branches on ITGB1, which are essential for interactions with vimentin to promote HCC cell motility. These findings not only proposed a novel mechanism for GnT-IVa in HCC progression but also revealed the significance of N-glycosylation on ITGB1 during the process, which may provide a novel target for future HCC therapy.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Handi Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fengyou Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Meiyi Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengmeng Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengfan Yuan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qixiang Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haoyu Mao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lu Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ruonan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
5
|
Wang Y, Chen H. Protein glycosylation alterations in hepatocellular carcinoma: function and clinical implications. Oncogene 2023:10.1038/s41388-023-02702-w. [PMID: 37193819 DOI: 10.1038/s41388-023-02702-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Understanding the cancer mechanisms provides novel diagnostic, prognostic, and therapeutic markers for the management of HCC disease. In addition to genomic and epigenomic regulation, post-translational modification exerts a profound influence on protein functions and plays a critical role in regulating various biological processes. Protein glycosylation is one of the most common and complex post-translational modifications of newly synthesized proteins and acts as an important regulatory mechanism that is implicated in fundamental molecular and cell biology processes. Recent studies in glycobiology suggest that aberrant protein glycosylation in hepatocytes contributes to the malignant transformation to HCC by modulating a wide range of pro-tumorigenic signaling pathways. The dysregulated protein glycosylation regulates cancer growth, metastasis, stemness, immune evasion, and therapy resistance, and is regarded as a hallmark of HCC. Changes in protein glycosylation could serve as potential diagnostic, prognostic, and therapeutic factors in HCC. In this review, we summarize the functional importance, molecular mechanism, and clinical application of protein glycosylation alterations in HCC.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Tamadonfar KO, Di Venanzio G, Pinkner JS, Dodson KW, Kalas V, Zimmerman MI, Bazan Villicana J, Bowman GR, Feldman MF, Hultgren SJ. Structure-function correlates of fibrinogen binding by Acinetobacter adhesins critical in catheter-associated urinary tract infections. Proc Natl Acad Sci U S A 2023; 120:e2212694120. [PMID: 36652481 PMCID: PMC9942807 DOI: 10.1073/pnas.2212694120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.
Collapse
Affiliation(s)
- Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Vasilios Kalas
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL60611
| | - Maxwell I. Zimmerman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Jesus Bazan Villicana
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University School of Medicine, St. Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| |
Collapse
|
7
|
Zhang J, Lai Z, Ding R, Zhou J, Yuan Z, Li D, Qin X, Zhou J, Li Z. Diagnostic potential of site-specific serotransferrin N-glycosylation in discriminating different liver diseases. Clin Chim Acta 2023; 539:175-183. [PMID: 36543268 DOI: 10.1016/j.cca.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered glycosylation modulates the structure and function of disease-related proteins. The associations between serotransferrin (STF) N-glycosylation and liver diseases (LDs) have been revealed. However, how intact N-glycopeptides vary among different types of liver diseases remains unclear. METHODS Intact STF N-glycopeptides from patients with chronic liver disease (CLD, n = 92), primary liver cancer (PLC, n = 123), metastatic liver cancer (MLC, n = 57), and healthy controls (HCs, n = 59) were determined using high-resolution mass spectrometry. RESULTS Significant changes were displayed in STF glycosylation among 4 groups. The LD screening model, including Asn432 G1S/G2S, Asn432 G2S/G2S2, and Asn630 G2NS2/G2FNS2, was constructed to differentiate LDs from HCs, with a AUC of 0.92. The liver cancer (LC) diagnostic model, a combination of Asn432 G1-N/G1S-N, Asn432 G1/G2, Asn432 G2FS/G2FS2, and Asn630 G1S-N /G1S, showed good performance in discriminating LC from CLD (AUC = 0.93). Moreover, AFP-negative LC patients (93 %) were successfully predicted by the LC diagnostic model. Furthermore, the MLC triage model, composed of Asn432 G1/G2, Asn432 G3F/G3FS, Asn630 G2/G2S, Asn630 G2S2/G2NS2, and Asn630 G3FS/G3FS2, yielded an AUC of 0.98 between PLC and MLC. CONCLUSIONS STF N-glycosylation is a potential biomarker for the accurate classification of different LDs.
Collapse
Affiliation(s)
- Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Rui Ding
- Department of Laboratory Medical, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100730, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Xuzhen Qin
- Department of Laboratory Medical, Peking Union Medical College Hospital & Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100730, China.
| | - Jiang Zhou
- Department of Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
8
|
Mechref Y, Peng W, Gautam S, Ahmadi P, Lin Y, Zhu J, Zhang J, Liu S, Singal AG, Parikh ND, Lubman DM. Mass spectrometry based biomarkers for early detection of HCC using a glycoproteomic approach. Adv Cancer Res 2022; 157:23-56. [PMID: 36725111 PMCID: PMC10014290 DOI: 10.1016/bs.acr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related mortality worldwide and 80%-90% of HCC develops in patients that have underlying cirrhosis. Better methods of surveillance are needed to increase early detection of HCC and the proportion of patients that can be offered curative therapies. Recent work in novel mass spec-based methods for glycomic and glycopeptide analysis for discovery and confirmation of markers for early detection of HCC versus cirrhosis is reviewed in this chapter. Results from recent work in these fields by several groups and the progress made in developing markers of early HCC which can outperform the current serum-based markers are described and discussed. Also, recent developments in isoform analysis of glycans and glycopeptides and in various mass spec fragmentation methods will be described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Liu W, Li X, Wang Y, Xu R, Ying H, Wang L, Cheng Z, Hao Y, Chen S. Direct growth of hBN/Graphene heterostructure via surface deposition and segregation for independent thickness regulation. NANOTECHNOLOGY 2022; 33:475601. [PMID: 35970145 DOI: 10.1088/1361-6528/ac8994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Hexagonal boron nitride/graphene (hBN/G) vertical heterostructures have attracted extensive attention, owing to the unusual physical properties for basic research and electronic device applications. Here we report a facile deposition-segregation technique to synthesize hBN/G heterostructures on recyclable platinum (Pt) foil via low pressure chemical vapor deposition. The growth mechanism of the vertical hBN/G is demonstrated to be the surface deposition of hBN on top of the graphene segregated from the Pt foil with pre-dissolved carbon. The thickness of hBN and graphene can be controlled separately from sub-monolayer to multilayer through the fine control of the growth parameters. Further investigations by Raman, scanning Kelvin probe microscopy and transmission electron microscope show that the hBN/G inclines to form a heterostructure with strong interlayer coupling and with interlayer twist angle smaller than 1.5°. This deposition-segregation approach paves a new pathway for large-scale production of hBN/G heterostructures and could be applied to synthesize of other van der Waals heterostructures.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiuting Li
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People's Republic of China
| | - Yushu Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Rui Xu
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | - Hao Ying
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | - Le Wang
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zhihai Cheng
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yufeng Hao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shanshan Chen
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
10
|
Lyman DF, Bell A, Black A, Dingerdissen H, Cauley E, Gogate N, Liu D, Joseph A, Kahsay R, Crichton DJ, Mehta A, Mazumder R. Modeling and integration of N-glycan biomarkers in a comprehensive biomarker data model. Glycobiology 2022; 32:855-870. [PMID: 35925813 PMCID: PMC9487899 DOI: 10.1093/glycob/cwac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hampers their use in research and clinical application. Mass spectrometry measures of fifty N-glycans, on seven serum proteins in liver disease, were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized FDA-supported BioCompute Object. Using the biomarker data model allows capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers, can integrate N-glycan biomarker data with multi-source biomedical data, and can foster discovery and insight within a unified data framework for glycan biomarker representation thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/).
Collapse
Affiliation(s)
- Daniel F Lyman
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Amanda Bell
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Alyson Black
- The Department of Cell & Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29403, United States of America
| | - Hayley Dingerdissen
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Edmund Cauley
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| | - Nikhita Gogate
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - David Liu
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States of America
| | - Ashia Joseph
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Robel Kahsay
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Daniel J Crichton
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States of America
| | - Anand Mehta
- The Department of Cell & Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29403, United States of America
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| |
Collapse
|
11
|
Discovery of a lectin domain that regulates enzyme activity in mouse N-acetylglucosaminyltransferase-IVa (MGAT4A). Commun Biol 2022; 5:695. [PMID: 35854001 PMCID: PMC9296478 DOI: 10.1038/s42003-022-03661-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 01/30/2023] Open
Abstract
N-Glycosylation is a common post-translational modification, and the number of GlcNAc branches in N-glycans impacts glycoprotein functions. N-Acetylglucosaminyltransferase-IVa (GnT-IVa, also designated as MGAT4A) forms a β1-4 GlcNAc branch on the α1-3 mannose arm in N-glycans. Downregulation or loss of GnT-IVa causes diabetic phenotypes by dysregulating glucose transporter-2 in pancreatic β-cells. Despite the physiological importance of GnT-IVa, its structure and catalytic mechanism are poorly understood. Here, we identify the lectin domain in mouse GnT-IVa's C-terminal region. The crystal structure of the lectin domain shows structural similarity to a bacterial GlcNAc-binding lectin. Comprehensive glycan binding assay using 157 glycans and solution NMR reveal that the GnT-IVa lectin domain selectively interacts with the product N-glycans having a β1-4 GlcNAc branch. Point mutation of the residue critical to sugar recognition impairs the enzymatic activity, suggesting that the lectin domain is a regulatory subunit for efficient catalytic reaction. Our findings provide insights into how branching structures of N-glycans are biosynthesized.
Collapse
|
12
|
Ochoa-Rios S, O'Connor IP, Kent LN, Clouse JM, Hadjiyannis Y, Koivisto C, Pecot T, Angel PM, Drake RR, Leone G, Mehta AS, Rockey DC. Imaging Mass Spectrometry Reveals Alterations in N-Linked Glycosylation That Are Associated With Histopathological Changes in Nonalcoholic Steatohepatitis in Mouse and Human. Mol Cell Proteomics 2022; 21:100225. [PMID: 35331917 PMCID: PMC9092512 DOI: 10.1016/j.mcpro.2022.100225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/20/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is characterized by inflammation, hepatocyte injury, and fibrosis. Further, NASH is a risk factor for cirrhosis and hepatocellular carcinoma. Previous research demonstrated that serum N-glycan profiles can be altered in NASH patients. Here, we hypothesized that these N-glycan modifications may be associated with specific liver damage in NAFLD and NASH. To investigate the N-glycome profile in tissue, imaging mass spectrometry was used for a qualitative and quantitative in situ N-linked glycan analysis of mouse and human NAFLD/NASH tissue. A murine model was used to induce NAFLD and NASH through ad libitum feeding with either a high-fat diet or a Western diet, respectively. Mice fed a high-fat diet or Western diet developed inflammation, steatosis, and fibrosis, consistent with NAFLD/NASH phenotypes. Induction of NAFLD/NASH for 18 months using high caloric diets resulted in increased expression of mannose, complex/fucosylated, and hybrid N-glycan structures compared to control mouse livers. To validate the animal results, liver biopsy specimens from 51 human NAFLD/NASH patients representing the full range of NASH Clinical Research Network fibrosis stages were analyzed. Importantly, the same glycan alterations observed in mouse models were observed in human NASH biopsies and correlated with the degree of fibrosis. In addition, spatial glycan alterations were localized specifically to histopathological changes in tissue like fibrotic and fatty areas. We demonstrate that the use of standard staining's combined with imaging mass spectrometry provide a full profile of the origin of N-glycan modifications within the tissue. These results indicate that the spatial distribution of abundances of released N-glycans correlate with regions of tissue steatosis associated with NAFLD/NASH.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Ian P O'Connor
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University in St Louis Center for Reproductive Health Sciences, St Louis, Missouri, USA
| | - Julian M Clouse
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yannis Hadjiyannis
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Christopher Koivisto
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Biochemistry, Medical College of Wisconsin, MCW Cancer Center, Milwaukee, Wisconsin, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Pandey VK, Sharma R, Prajapati GK, Mohanta TK, Mishra AK. N-glycosylation, a leading role in viral infection and immunity development. Mol Biol Rep 2022; 49:8109-8120. [PMID: 35364718 PMCID: PMC8974804 DOI: 10.1007/s11033-022-07359-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
N-linked protein glycosylation is an essential co-and posttranslational protein modification that occurs in all three domains of life; the assembly of N-glycans follows a complex sequence of events spanning the (Endoplasmic Reticulum) ER and the Golgi apparatus. It has a significant impact on both physicochemical properties and biological functions. It plays a significant role in protein folding and quality control, glycoprotein interaction, signal transduction, viral attachment, and immune response to infection. Glycoengineering of protein employed for improving protein properties and plays a vital role in the production of recombinant glycoproteins and struggles to humanize recombinant therapeutic proteins. It considers an alternative platform for biopharmaceuticals production. Many immune proteins and antibodies are glycosylated. Pathogen’s glycoproteins play vital roles during the infection cycle and their expression of specific oligosaccharides via the N-glycosylation pathway to evade detection by the host immune system. This review focuses on the aspects of N-glycosylation processing, glycoengineering approaches, their role in viral attachment, and immune responses to infection.
Collapse
Affiliation(s)
- Vijay Kant Pandey
- Department of Agriculture, Netaji Subhas University, Jamshedpur, Jharkhand, India
| | - Rajani Sharma
- Department of Biotechnology, Amity University Jharkhand, Niwaranpur, Ranchi, 834002, India.
| | | | | | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
14
|
Guo L, Wan L, Hu Y, Huang H, He B, Wen Z. Serum N-glycan profiling as a diagnostic biomarker for the identification of hepatitis B virus-associated hepatocellular carcinoma. J Gastrointest Oncol 2022; 13:344-354. [PMID: 35284106 PMCID: PMC8899740 DOI: 10.21037/jgo-22-93] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Changes in N-glycosylation of proteins are thought to play a key role in cancer. This study aims to investigate the changes in the serum N-glycan profiles of patients with hepatitis B virus (HBV)-related liver disease, and to evaluate the role of N-glycan markers in the noninvasive diagnosis of hepatocellular carcinoma (HCC). METHODS Serum samples were available for 21 patients with HCC, 20 patients with liver cirrhosis (LC), 20 patients with chronic hepatitis B (CHB), and 20 healthy subjects. Serum N-glycans were released and analyzed using DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). Serum AFP was determined by electrochemiluminescence (ECL) (AFP reference value range: <10 ng/mL). RESULTS There were characteristic changes in the serum N-glycan profiles of patients with HBV-related liver disease, including NA2FB, NA3, and NA3Fb. NA2FB was the most abundant in LC patients, while NA3Fb abundance was the highest in HCC patients. For HCC screening in patients, especially in patients with LC, the sensitive of Log peak 9 (94.4%) and Log (peak 9/peak 7) (88.9%) were better than alpha-fetoprotein (AFP) (33.3-61.1%), and their specificity was similar to that of AFP. The receiver operating characteristic (ROC) curve showed that the accuracy of Log peak 9 (AUC: 0.81±0.07) and Log (peak 9/peak 7) (AUC: 0.87±0.06) was better than that of AFP (AUC: 0.72±0.09), while the accuracy of AFP combined with the above 2 indexes was better than that of a single index. Moreover, Log (peak 9/peak 7) combined with AFP (AUC: 0.89±0.06) had the best accuracy in the diagnosis of HCC. CONCLUSIONS Our research indicates that N-glycan may serve a new, valuable, and noninvasive alternative method for diagnosing HCC, and it may be a supplement to AFP in the diagnosis of HCC in patients with HBV-related liver disease.
Collapse
|
15
|
Conroy LR, Chang JE, Sun Q, Clarke HA, Buoncristiani MD, Young LEA, McDonald RJ, Liu J, Gentry MS, Allison DB, Sun RC. High-dimensionality reduction clustering of complex carbohydrates to study lung cancer metabolic heterogeneity. Adv Cancer Res 2022; 154:227-251. [PMID: 35459471 PMCID: PMC9273336 DOI: 10.1016/bs.acr.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tumor microenvironment contains a heterogeneous population of stromal and cancer cells that engage in metabolic crosstalk to ultimately promote tumor growth and contribute to progression. Due to heterogeneity within solid tumors, pooled mass spectrometry workflows are less sensitive at delineating unique metabolic perturbations between stromal and immune cell populations. Two critical, but understudied, facets of glucose metabolism are anabolic pathways for glycogen and N-linked glycan biosynthesis. Together, these complex carbohydrates modulate bioenergetics and protein-structure function, and create functional microanatomy in distinct cell populations within the tumor heterogeneity. Herein, we combine high-dimensionality reduction and clustering (HDRC) analysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and demonstrate its ability for the comprehensive assessment of tissue histopathology and metabolic heterogeneity in human FFPE sections. In human lung adenocarcinoma (LUAD) tumor tissues, HDRC accurately clusters distinct regions and cell populations within the tumor microenvironment, including tumor cells, tumor-infiltrating lymphocytes, cancer-associated fibroblasts, and necrotic regions. In-depth pathway enrichment analyses revealed unique metabolic pathways are associated with each distinct pathological region. Further, we highlight the potential of HDRC analysis to study complex carbohydrate metabolism in a case study of lung cancer disparity. Collectively, our results demonstrate the promising potentials of HDRC of pixel-based carbohydrate analysis to study cell-type and regional-specific stromal signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Markey Cancer Center, Lexington, KY, United States
| | - Josephine E Chang
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qi Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Department of Computer Science, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Buoncristiani
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jinze Liu
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew S Gentry
- Markey Cancer Center, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, Lexington, KY, United States; Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, United States.
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States; Markey Cancer Center, Lexington, KY, United States.
| |
Collapse
|
16
|
Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, Dang L, Ma C, Liu D, Mu F, Hu L, Sun S. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol 2021; 16:2135-2152. [PMID: 34855283 PMCID: PMC9168967 DOI: 10.1002/1878-0261.13147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/09/2022] Open
Abstract
Primary liver cancer, mainly comprising hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), remains a major global health problem. Although ICC is clinically different from HCC, their molecular differences are still largely unclear. In this study, precision N‐glycoproteomic analysis was performed on both ICC and HCC tumors as well as paracancer tissues to investigate their aberrant site‐specific N‐glycosylation. By using our newly developed glycoproteomic methods and novel algorithm, termed ‘StrucGP’, a total of 486 N‐glycan structures attached on 1235 glycosites were identified from 894 glycoproteins in ICC and HCC tumors. Notably, glycans with uncommon LacdiNAc (GalNAcβ1‐4GlcNAc) structures were distinguished from their isomeric glycans. In addition to several bi‐antennary and/or bisecting glycans that were commonly elevated in ICC and HCC, a number of LacdiNAc‐containing, tri‐antennary, and core‐fucosylated glycans were uniquely increased in ICC. More interestingly, almost all LacdiNAc‐containing N‐glycopeptides were enhanced in ICC tumor but not in HCC tumor, and this phenomenon was further confirmed by lectin histochemistry and the high expression of β1‐4 GalNAc transferases in ICC at both mRNA and protein expression levels. The novel N‐glycan alterations uniquely detected in ICC provide a valuable resource for future studies regarding to the discovery of ICC diagnostic biomarkers, therapeutic targets, and mechanism investigations.
Collapse
Affiliation(s)
- Jun Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Ting Zhao
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jing Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiechen Shen
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Li Jia
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Bojing Zhu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Liuyi Dang
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Chen Ma
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Didi Liu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Fan Mu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Liangshuo Hu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Shisheng Sun
- College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|
17
|
Chatterjee S, Ugonotti J, Lee LY, Everest-Dass A, Kawahara R, Thaysen-Andersen M. Trends in oligomannosylation and α1,2-mannosidase expression in human cancers. Oncotarget 2021; 12:2188-2205. [PMID: 34676051 PMCID: PMC8522845 DOI: 10.18632/oncotarget.28064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrant protein glycosylation is a prominent cancer feature. While many tumour-associated glycoepitopes have been reported, advances in glycoanalytics continue to uncover new associations between glycosylation and cancer. Guided by a comprehensive literature survey suggesting that oligomannosylation (Man5–9 GlcNAc2) is a widespread and often regulated glycosignature in human cancers, we here revisit a valuable compilation of nearly 500 porous graphitized carbon LC-MS/MS N-glycomics datasets acquired across 11 human cancer types to systematically test for oligomannose-cancer associations. Firstly, the quantitative glycomics data obtained across 34 cancerous cell lines demonstrated that oligomannosylation is a pan-cancer feature spanning in a wide abundance range. In keeping with literature, our quantitative glycomics data of tumour and matching control tissues and new MALDI-MS imaging data of tissue microarrays showed a strong cancer-associated elevation of oligomannosylation in both basal cell (p = 1.78 × 10–12) and squamous cell (p = 1.23 × 10–11) skin cancer and colorectal cancer (p = 8.0 × 10–4). The glycomics data also indicated that some cancer types including gastric and liver cancer exhibit unchanged or reduced oligomannose levels, observations also supported by literature and MALDI-MS imaging data. Finally, expression data from public cancer repositories indicated that several α1,2-mannosidases are regulated in tumour tissues suggesting that these glycan-processing enzymes may contribute to the cancer-associated modulation of oligomannosylation. This omics-centric study has compiled robust glycomics and enzyme expression data revealing interesting molecular trends that open avenues to better understand the role of oligomannosylation in human cancers.
Collapse
Affiliation(s)
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ling Y Lee
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Joint senior authors
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre (BDRC), Macquarie University, Sydney, Australia.,Joint senior authors
| |
Collapse
|
18
|
Jang H, Lee DH, Kang HG, Lee SJ. Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Trans 2021; 49:13538-13543. [PMID: 33001090 DOI: 10.1039/d0dt02932g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lectins, which exhibit viral-interaction abilities, have garnered attention in the current pandemic era as potential neutralizing agents and vaccine candidates. Viral invasion through envelope proteins is modulated by N-linked glycosylation in the spike (S) protein. This study demonstrates the biophysical aspects between lectins and high-mannose and -galactose N-glycans to provide insights into binding events.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Dong-Heon Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Hyun Goo Kang
- Department of Neurology and Biomedical Research Institute, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
19
|
Conroy LR, Stanback AE, Young LEA, Clarke HA, Austin GL, Liu J, Allison DB, Sun RC. In Situ Analysis of N-Linked Glycans as Potential Biomarkers of Clinical Course in Human Prostate Cancer. Mol Cancer Res 2021; 19:1727-1738. [PMID: 34131069 DOI: 10.1158/1541-7786.mcr-20-0967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most common cancer in men worldwide. Despite its prevalence, there is a critical knowledge gap in understanding factors driving disparities in survival among different cohorts of patients with prostate cancer. Identifying molecular features separating disparate populations is an important first step in prostate cancer research that could lead to fundamental hypotheses in prostate biology, predictive biomarker discovery, and personalized therapy. N-linked glycosylation is a cotranslational event during protein folding that modulates a myriad of cellular processes. Recently, aberrant N-linked glycosylation has been reported in prostate cancers. However, the full clinical implications of dysregulated glycosylation in prostate cancer has yet to be explored. Herein, we performed direct on-tissue analysis of N-linked glycans using matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) from tissue microarrays of over 100 patient tumors with over 10 years of follow-up metadata. We successfully identified a panel of N-glycans that are unique between benign and prostate tumor tissue. Specifically, high-mannose as well as tri-and tetra-antennary N-glycans were more abundant in tumor tissue and increase proportionally with tumor grade. Further, we expanded our analyses to examine the N-glycan profiles of Black and Appalachian patients and have identified unique glycan signatures that correlate with recurrence in each population. Our study highlights the potential applications of MALDI-MSI for digital pathology and biomarker discovery for prostate cancer. IMPLICATIONS: MALDI-MSI identifies N-glycan perturbations in prostate tumors compared with benign tissue. This method can be utilized to predict prostate cancer recurrence and study prostate cancer disparities.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky.,Markey Cancer Center, Lexington, Kentucky
| | - Alexandra E Stanback
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Lyndsay E A Young
- Markey Cancer Center, Lexington, Kentucky.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Harrison A Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,Massey Cancer Center, Richmond, Virginia
| | - Derek B Allison
- Markey Cancer Center, Lexington, Kentucky.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Ramon C Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky. .,Markey Cancer Center, Lexington, Kentucky
| |
Collapse
|
20
|
Liang C, Fukuda T, Isaji T, Duan C, Song W, Wang Y, Gu J. α1,6-Fucosyltransferase contributes to cell migration and proliferation as well as to cancer stemness features in pancreatic carcinoma. Biochim Biophys Acta Gen Subj 2021; 1865:129870. [PMID: 33571582 DOI: 10.1016/j.bbagen.2021.129870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic carcinoma is one of the deadliest malignant diseases, in which the increased expression of α1,6-fucosyltransferase (FUT8), a sole enzyme responsible for catalyzing core fucosylation, has been reported. However, its pathological roles and regulatory mechanisms remain largely unknown. Here, we use two pancreatic adenocarcinoma cell lines, MIA PaCa-2 and PANC-1 cells, as cell models, to explore the relationship of FUT8 with the malignant transformation of PDAC. METHODS FUT8 knockout (FUT8-KO) cells were established by the CRISPR/Cas9 system. Cell migration was analyzed by transwell and wound-healing assays. Cell proliferation was examined by MTT and colony-formation assays. Cancer stemness markers and spheroid formations were used to analyzed cancer stemness features. RESULTS Deficiency of FUT8 inhibited cell migration and proliferation in both MIA PaCa-2 and PANC-1 cells compared with wild-type cells. Moreover, the expression levels of cancer stemness markers such as EpCAM, CXCR4, c-Met, and CD133 were decreased in the FUT8-KO cells compared with wild-type cells. Also, the spheroid formations in the KO cells were loose and unstable, which could be reversed by restoration with FUT8 gene in the KO cells. Additionally, FUT8-KO increased the chemosensitivity to gemcitabine, which is the first-line therapy for advanced pancreatic cancer. CONCLUSIONS FUT8-KO reduced the cell proliferation and migration. Our results are the first to suggest that the expression of FUT8 is involved in regulating the stemness features of pancreatic cancer cells. GENERAL SIGNIFICANCE FUT8 could provide novel insights for the treatment of pancreatic carcinoma.
Collapse
Affiliation(s)
- Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
21
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
22
|
Bastian K, Scott E, Elliott DJ, Munkley J. FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. Int J Mol Sci 2021; 22:E455. [PMID: 33466384 PMCID: PMC7795606 DOI: 10.3390/ijms22010455] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aberrant glycosylation is a universal feature of cancer cells that can impact all steps in tumour progression from malignant transformation to metastasis and immune evasion. One key change in tumour glycosylation is altered core fucosylation. Core fucosylation is driven by fucosyltransferase 8 (FUT8), which catalyses the addition of α1,6-fucose to the innermost GlcNAc residue of N-glycans. FUT8 is frequently upregulated in cancer, and plays a critical role in immune evasion, antibody-dependent cellular cytotoxicity (ADCC), and the regulation of TGF-β, EGF, α3β1 integrin and E-Cadherin. Here, we summarise the role of FUT8 in various cancers (including lung, liver, colorectal, ovarian, prostate, breast, melanoma, thyroid, and pancreatic), discuss the potential mechanisms involved, and outline opportunities to exploit FUT8 as a critical factor in cancer therapeutics in the future.
Collapse
Affiliation(s)
- Kayla Bastian
- Institute of Biosciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; (E.S.); (D.J.E.); (J.M.)
| | | | | | | |
Collapse
|
23
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Li W, Ma Y, Guo Z, Xing R, Liu Z. Efficient Screening of Glycan-Specific Aptamers Using a Glycosylated Peptide as a Scaffold. Anal Chem 2020; 93:956-963. [PMID: 33300777 DOI: 10.1021/acs.analchem.0c03675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal glycan structures are valuable biomarkers for disease states; the development of glycan-specific binders is thereby significantly important. However, the structural homology and weak immunogenicity of glycans pose major hurdles in the evolution of antibodies, while the poor availability of complex glycans also has extremely hindered the selection of anti-glycan aptamers. Herein, we present a new approach to efficiently screen aptamers toward specific glycans with a complex structure, using a glycosylated peptide as a scaffold. In this method, using peptide-imprinted magnetic nanoparticles (MNPs) as a versatile platform, a glycopeptide tryptically digested from a native glycoprotein was selectively entrapped for positive selection, while a nonglycosylated analogue with an identical peptide sequence was synthesized for negative selection. Alternating positive and negative selection steps were carried out to guide the directed evolution of glycan-binding aptamers. As proof of the principle, the biantennary digalactosylated disialylated N-glycan A2G2S2, against which there have been no antibodies and lectins so far, was employed as the target. With the glycoprotein transferrin as a source of target glycan, two satisfied anti-A2G2S2 aptamers were selected within seven rounds. Since A2G2S2 is upregulated in cancerous liver cells, carboxyfluorescein (FAM)-labeled aptamers were prepared as fluorescent imaging reagents, and successful differentiation of cancerous liver cells over normal liver cells was achieved, which demonstrated the application feasibility of the selected aptamers. This approach obviated a tedious glycan preparation process and allowed favorable expose of the intrinsic flexible conformation of natural glycans. Therefore, it holds great promise for developing glycan-specific aptamers for challenging applications such as cancer targeting.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Li Q, Xie Y, Wong M, Barboza M, Lebrilla CB. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat Protoc 2020; 15:2668-2704. [PMID: 32681150 PMCID: PMC11790333 DOI: 10.1038/s41596-020-0350-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023]
Abstract
The glycocalyx comprises glycosylated proteins and lipids and fcorms the outermost layer of cells. It is involved in fundamental inter- and intracellular processes, including non-self-cell and self-cell recognition, cell signaling, cellular structure maintenance, and immune protection. Characterization of the glycocalyx is thus essential to understanding cell physiology and elucidating its role in promoting health and disease. This protocol describes how to comprehensively characterize the glycocalyx N-glycans and O-glycans of glycoproteins, as well as intact glycolipids in parallel, using the same enriched membrane fraction. Profiling of the glycans and the glycolipids is performed using nanoflow liquid chromatography-mass spectrometry (nanoLC-MS). Sample preparation, quantitative LC-tandem MS (LC-MS/MS) analysis, and data processing methods are provided. In addition, we discuss glycoproteomic analysis that yields the site-specific glycosylation of membrane proteins. To reduce the amount of sample needed, N-glycan, O-glycan, and glycolipid analyses are performed on the same enriched fraction, whereas glycoproteomic analysis is performed on a separate enriched fraction. The sample preparation process takes 2-3 d, whereas the time spent on instrumental and data analyses could vary from 1 to 5 d for different sample sizes. This workflow is applicable to both cell and tissue samples. Systematic changes in the glycocalyx associated with specific glycoforms and glycoconjugates can be monitored with quantitation using this protocol. The ability to quantitate individual glycoforms and glycoconjugates will find utility in a broad range of fundamental and applied clinical studies, including glycan-based biomarker discovery and therapeutics.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Mariana Barboza
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, California, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA.
| |
Collapse
|
26
|
Cheng PW, Davidson S, Bhat G. Markers of malignant prostate cancer cells: Golgi localization of α-mannosidase 1A at GM130-GRASP65 site and appearance of high mannose N-glycans on cell surface. Biochem Biophys Res Commun 2020; 527:406-410. [PMID: 32331836 DOI: 10.1016/j.bbrc.2020.03.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/01/2023]
Abstract
The ability to distinguish malignant from indolent prostate cancer cells is critically important for identification of clinically significant prostate cancer to minimize unnecessary overtreatment and sufferings endured by patients who have indolent cancer. Recently, we discovered that loss of giantin function as the primary Golgi targeting site for endoplasmic reticulum-derived transport vesicles in aggressive prostate cancer cells caused a shift of the Golgi localization site of α-mannosidase 1A to 130 KDa Golgi matrix protein (GM130)-65 KDa Golgi reassembly-stacking protein (GRASP65) site resulting in emergence of high mannose N-glycans on trans-Golgi enzymes and cell surface glycoproteins. To extend this observation, we isolated two cell clones (Clone 1 and Clone 2) from high passage LNCaP cells, which exhibited androgen refractory property missing in low passage LNCaP cells, and characterized their malignant property. We have found that comparing to Clone 2, which does not have cell surface high mannose N-glycans and exhibits localization of α-mannosidase 1A at giantin site, Clone 1 displays cell surface high mannose N-glycans, exhibits localization of α-mannosidase 1A at GM130-GRASP65 site, and shows a faster rate of closing the wound in a wound healing assay. The results indicate that Golgi localization of α-mannosidase 1A at GM130-GRASP65 site and appearance of cell surface high mannose N-glycans may serve as markers of malignant prostate cancer cells.
Collapse
Affiliation(s)
- Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; College of Medicine, and, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute of Research on Cancer and Allied Diseases, Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Samuel Davidson
- College of Medicine, and, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Loss of core fucosylation in both ST6GAL1 and its substrate enhances glycoprotein sialylation in mice. Biochem J 2020; 477:1179-1201. [DOI: 10.1042/bcj20190789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/16/2023]
Abstract
Fucosyltransferase 8 (FUT8) and β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) are glycosyltransferases that catalyze α1,6-fucosylation and α2,6-sialylation, respectively, in the mammalian N-glycosylation pathway. They are aberrantly expressed in various human diseases. FUT8 is non-glycosylated but is responsible for the fucosylation of ST6GAL1. However, the mechanism for the interaction between these two enzymes is unknown. In this study, we show that serum levels of α2,6-sialylated N-glycans are increased in Fut8−/− mice, whereas the mRNA and protein levels of ST6GAL1 are unchanged in mouse live tissues. The level of α2,6-sialylation on IgG was also enhanced in Fut8−/− mice along with ST6GAL1 catalytic activity increase in both serum and liver. Moreover, it was observed that ST6GAL1 prefers non-fucosylated substrates. Interestingly, increased core fucosylation accompanied by a reduction in α2,6-sialylation, was detected in rheumatoid arthritis patient serum. These findings provide new insight into the interactions between FUT8 and ST6GAL1.
Collapse
|
28
|
Jia L, Ma T, Liang Y, Du H, Shu J, Liu X, Zhang Z, Yu H, Chen M, Li Z. Alterations in serum protein glycopatterns related to small cell lung cancer, adenocarcinoma and squamous carcinoma of the lung. RSC Adv 2020; 10:7181-7193. [PMID: 35493902 PMCID: PMC9049724 DOI: 10.1039/c9ra10077f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The main reason why lung cancer has maintained a high rate of morbidity and mortality is that its early diagnosis is difficult. No current lung cancer screening is recommended by any major medical organization due to the lack of sensitive and specific screening technologies. Thus, this study aimed to systematically investigate the correlation between the alterations in serum glycosylation and three main types of lung cancers (SCLC, ADC and SqCC). Materials and methods: We investigated the protein glycopatterns in sera from 333 subjects (65 healthy volunteers, 38 benign lung disease patients, 49 small cell lung cancer patients, and 181 NSCLC patients) using a lectin microarray. A serum microarray was produced to evaluate and verify the terminal carbohydrate moieties of the glycoproteins in individual serum samples from 30 cases simultaneously. Results: There were 16 lectins (e.g., RCA120, BS-I, and UEA-I), 24 lectins (e.g., HHL, PTL-I, and MAL-II), and 18 lectins (e.g., GSL-I, LEL, and ACA) that exhibited significant differences in serum protein glycopatterns in the patients with SCLC, ADC and SqCC compared with the controls (HV and BPD). There were 6 lectins (e.g., EEL, NPA, and LEL) that exhibited significantly increased NFIs in ADC and SqCC compared with SCLC. Also, there were 5 lectins (e.g., Jacalin, BS-I, and UEA-I) that exhibited significantly decreased NFIs in ADC compared with SCLC and SqCC. Conclusions: This study can facilitate the discovery of potential biomarkers for the differential diagnosis of lung cancer based on the precise alteration in serum protein glycopatterns.
Collapse
Affiliation(s)
- Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Yiqian Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine of Xi'an, Jiaotong University Xi'an 710061 China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Zhiwei Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine of Xi'an, Jiaotong University Xi'an 710061 China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
29
|
Wang W, Xie G, Ren Z, Xie T, Li J. Gene Selection for the Discrimination of Colorectal Cancer. Curr Mol Med 2019; 20:415-428. [PMID: 31746296 DOI: 10.2174/1566524019666191119105209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Cancer discrimination is a typical application of gene expression analysis using a microarray technique. However, microarray data suffer from the curse of dimensionality and usual imbalanced class distribution between the majority (tumor samples) and minority (normal samples) classes. Feature gene selection is necessary and important for cancer discrimination. OBJECTIVES To select feature genes for the discrimination of CRC. METHODS We improve the feature selection algorithm based on differential evolution, DEFSw by using RUSBoost classifier and weight accuracy instead of the common classifier and evaluation measure for selecting feature genes from imbalance data. We firstly extract differently expressed genes (DEGs) from the CRC dataset of the TCGA and then select the feature genes from the DEGs using the improved DEFSw algorithm. Finally, we validate the selected feature gene sets using independent datasets and retrieve the cancer related information for these genes based on text mining through the Coremine Medical online database. RESULTS We select out 16 single-gene feature sets for colorectal cancer discrimination and 19 single-gene feature sets only for colon cancer discrimination. CONCLUSIONS In summary, we find a series of high potential candidate biomarkers or signatures, which can discriminate either or both of colon cancer and rectal cancer with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wenhui Wang
- Network Information Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanglei Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhonglu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tingyan Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Norton PA, Mehta AS. Expression of genes that control core fucosylation in hepatocellular carcinoma: Systematic review. World J Gastroenterol 2019; 25:2947-2960. [PMID: 31249452 PMCID: PMC6589740 DOI: 10.3748/wjg.v25.i23.2947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Changes in N-linked glycosylation have been observed in the circulation of individuals with hepatocellular carcinoma. In particular, an elevation in the level of core fucosylation has been observed. However, the mechanisms through which core fucose is increased are not well understood. We hypothesized that a review of the literature and related bioinformatic review regarding six genes known to be involved in the attachment of core fucosylation, the synthesis of the fucosylation substrate guanosine diphosphate (GDP)-fucose, or the transport of the substrate into the Golgi might offer mechanistic insight into the regulation of core fucose levels.
AIM To survey the literature to capture the involvement of genes regulating core N-linked fucosylation in hepatocellular carcinoma
METHODS The PubMed biomedical literature database was searched for the association of hepatocellular carcinoma and each of the core fucose-related genes and their protein products. We also queried The Cancer Genome Atlas Liver hepatocellular carcinoma (LIHC) dataset for genetic, epigenetic and gene expression changes for the set of six genes using the tools at cBioportal.
RESULTS A total of 27 citations involving one or more of the core fucosylation-related genes (FPGT, FUK, FUT8, GMDS, SLC35C1, TSTA3) and hepatocellular carcinoma were identified. The same set of gene symbols was used to query the 371 patients with liver cancer in the LIHC dataset to identify the frequency of mRNA over or under expression, as well as non-synonymous mutations, copy number variation and methylation level. Although all six genes trended to more samples displaying over expression relative to under-expression, it was noted that a number of tumor samples had undergone amplification of the genes of the de novo synthesis pathway, GMDS (27 samples) and TSTA3 (78 samples). In contrast, the other four genes had undergone amplification in 2 or fewer samples.
CONCLUSION Amplification of genes involved in the de novo pathway for generation of GDP-fucose, GMDS and TSTA3, likely contributes to the elevated core fucose observed in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pamela A Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
32
|
Han Y, Xiao K, Tian Z. Comparative Glycomics Study of Cell-Surface N-Glycomes of HepG2 versus LO2 Cell Lines. J Proteome Res 2019; 18:372-379. [PMID: 30343578 DOI: 10.1021/acs.jproteome.8b00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-surface N-glycans play important roles in both inter- and intracellular processes, including cell adhesion and development, cell recognition, as well as cancer development and metastasis; detailed structural characterization of these N-glycans is thus paramount. Here we report our comparative N-glycomics study of cell-surface N-glycans of the hepatocellular carcinoma (HCC) HepG2 cells vs the normal liver LO2 cells. With sequential trypsin digestion of proteins, C18 depletion of peptides without glycosylation, PNGase F digestion of N-glycopeptides, PGC enrichment of N-glycans, CH3I permethylation of the enriched N-glycans, cell-surface N-glycomes of the HepG2 and LO2 cells were analyzed using C18-RPLC-MS/MS (HCD). With spectrum-level FDR no bigger than 1%, 351 and 310 N-glycans were identified for HepG2 and LO2, respectively, with comprehensive structural information (not only monosaccharide composition, but also sequence and linkage) by N-glycan database search engine GlySeeker. The percentage of hybrid N-glycans with tetra-antennary structures was substantially increased in the HepG2 cells. This comprehensive discovery study of differentially expressed cell-surface N-glycans in HepG2 vs LO2 serves as a solid reference for future validation study of glycosylation markers in HCC.
Collapse
Affiliation(s)
- Yuyin Han
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Kaijie Xiao
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| |
Collapse
|
33
|
Xu Y, Wang H, Zeng Y, Tian Y, Shen Z, Xie Z, Chen F, Sun L, Shu R, Li PP, Chen C, Yu J, Wang K, Luo H. Overexpression of CLN3 contributes to tumour progression and predicts poor prognosis in hepatocellular carcinoma. Surg Oncol 2018; 28:180-189. [PMID: 30851897 DOI: 10.1016/j.suronc.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/16/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
The aberrant expression of ceroid-lipofuscinosis 3 (CLN3) has been reported in a variety of human malignancies. However, the role of CLN3 in the progression and prognosis of hepatocellular carcinoma (HCC) remains unknown. In this study, we found that CLN3 was frequently upregulated in HCC clinical samples and HCC-derived cell lines and was significantly correlated with an APF serum level ≥20 μg/L, a tumour size ≥5 cm, multiple tumours, and the absence of encapsulation. Kaplan-Meier showed that CLN3 upregulation predicted shorter recurrence-free survival (RFS) and overall survival (OS) time in HCC patients. Cox regression analysis revealed that CLN3 upregulation was an independent risk factor for RFS and OS. A functional study demonstrated that the knockdown of CLN3 expression profoundly suppressed the growth and metastasis of HCC cells both in vitro and in vivo. Mechanistic investigation revealed that the EGFR/PI3K/AKT pathway was essential for mediating CLN3 function. In conclusion, our results provide the first evidence that CLN3 contributes to tumour progression and metastasis and offer a potential prognostic predictor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Huawei Wang
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Yujian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Zongwen Shen
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Zhenrong Xie
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Fengrong Chen
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Liang Sun
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Peng Peng Li
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Cheng Chen
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Juehua Yu
- Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China.
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China.
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, PR China; Yunnan Clinical Center for General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China; Yunnan Engineering Technology Centre for Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, PR China.
| |
Collapse
|
34
|
Profiling of N-linked glycans from 100 cells by capillary electrophoresis with large-volume dual preconcentration by isotachophoresis and stacking. J Chromatogr A 2018; 1565:138-144. [DOI: 10.1016/j.chroma.2018.06.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
|
35
|
Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. Oncotarget 2018; 7:61199-61214. [PMID: 27533464 PMCID: PMC5308645 DOI: 10.18632/oncotarget.11284] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/09/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylation has significant effects on cancer progression. Fucosylation is one of the most important glycosylation events involved in hepatocellular carcinoma (HCC). Here, we compared N-glycan profiles of liver tumor tissues and adjacent tissues of 27 HCC patients to reveal the association between fucosylation and HCC progression, as well as verified the potential role of miRNA in regulating fucosylation. Mass spectrometry (MS) analysis showed pronounced differences of the N-glycosylation patterns and fucosylated N-glycans between the adjacent and tumor tissues. Different fucosyltransferase (FUT) genes were also identified in adjacent and tumor tissues, and two HCC cell lines with different metastatic potential. High-level expression of FUT8 was detected in tumor tissues and highly metastatic HCC cells. Altered levels of FUT8 in HCC cell lines significantly linked to the malignant behaviors of proliferation and invasion in vitro. Furthermore, using microRNA array, we identified FUT8 as one of the miR-26a, miR-34a and miR-146a-targeted genes. An inverse correlation was revealed between the expression levels of FUT8 and these miRNAs. Luciferase reporter assay demonstrated these miRNAs specifically interacted with the 3′UTR of FUT8 and subsequently down-regulated FUT8 expression-level. The forced expression of these miRNAs was able to induce a decrease in FUT8 levels and thereby to suppress HCC cells progression. Altogether, our results indicate that fucosylated N-glycan and FUT8 levels can be used as markers for evaluating HCC progression, as well as miRNAs may be involved in inhibition of fucosylation machinery through targeting FUT8.
Collapse
|
36
|
de Oliveira RM, Ornelas Ricart CA, Araujo Martins AM. Use of Mass Spectrometry to Screen Glycan Early Markers in Hepatocellular Carcinoma. Front Oncol 2018; 7:328. [PMID: 29379771 PMCID: PMC5775512 DOI: 10.3389/fonc.2017.00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Association between altered glycosylation patterns and poor prognosis in cancer points glycans as potential specific tumor markers. Most proteins are glycosylated and functionally arranged on cell surface and extracellular matrix, mediating interactions and cellular signaling. Thereby, aberrant glycans may be considered a pathological phenotype at least as important as changes in protein expression for cancer and other complex diseases. As most serum glycoproteins have hepatic origin, liver disease phenotypes, such as hepatocellular carcinoma (HCC), may present altered glycan profile and display important modifications. One of the prominent obstacles in HCC is the diagnostic in advanced stages when patients have several liver dysfunctions, limiting treatment options and life expectancy. The characterization of glycomic profiles in pathological conditions by means of mass spectrometry (MS) may lead to the discovery of early diagnostic markers using non-invasive approaches. MS is a powerful analytical technique capable of elucidating many glycobiological issues and overcome limitations of the serological markers currently applied in clinical practice. Therefore, MS-based glycomics of tumor biomarkers is a promising tool to increase early detection and monitoring of disease.
Collapse
Affiliation(s)
- Raphaela Menezes de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Carlos Andre Ornelas Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aline Maria Araujo Martins
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,University Hospital Walter Cantídeo, Surgery Department, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
37
|
Zhang S, Cao X, Gao Q, Liu Y. Protein glycosylation in viral hepatitis-related HCC: Characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 2017; 406:64-70. [PMID: 28789967 DOI: 10.1016/j.canlet.2017.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
|
38
|
Zhou Y, Fukuda T, Hang Q, Hou S, Isaji T, Kameyama A, Gu J. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep 2017; 7:11563. [PMID: 28912543 PMCID: PMC5599613 DOI: 10.1038/s41598-017-11911-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Core fucosylation is one of the most important glycosylation events in the progression of liver cancer. For this study, we used an easily handled L-fucose analog, 2-fluoro-L-fucose (2FF), which interferes with the normal synthesis of GDP-fucose, and verified its potential roles in regulating core fucosylation and cell behavior in the HepG2 liver cancer cell line. Results obtained from lectin blot and flow cytometry analysis clearly showed that 2FF treatment dramatically inhibited core fucosylation, which was also confirmed via mass spectrometry analysis. Cell proliferation and integrin-mediated cell migration were significantly suppressed in cells treated with 2FF. We further analyzed cell colony formation in soft agar and tumor xenograft efficacy, and found that both were greatly suppressed in the 2FF-treated cells, compared with the control cells. Moreover, the treatment with 2FF decreased the core fucosylation levels of membrane glycoproteins such as EGF receptor and integrin β1, which in turn suppressed downstream signals that included phospho-EGFR, -AKT, -ERK, and -FAK. These results clearly described the roles of 2FF and the importance of core fucosylation in liver cancer progression, suggesting 2FF shows promise for use in the treatment of hepatoma.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Akihiko Kameyama
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
39
|
Synthesis of hydrazide-functionalized hydrophilic polymer hybrid graphene oxide for highly efficient N -glycopeptide enrichment and identification by mass spectrometry. Talanta 2017; 171:124-131. [DOI: 10.1016/j.talanta.2017.04.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 01/01/2023]
|
40
|
Lee SH, Jeong S, Lee J, Yeo IS, Oh MJ, Kim U, Kim S, Kim SH, Park SY, Kim JH, Park SH, Kim JH, An HJ. Glycomic profiling of targeted serum haptoglobin for gastric cancer using nano LC/MS and LC/MS/MS. MOLECULAR BIOSYSTEMS 2017; 12:3611-3621. [PMID: 27722599 DOI: 10.1039/c6mb00559d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gastric cancer has one of the highest cancer mortality rates worldwide, largely because of difficulties in early-stage detection. Aberrant glycosylation in serum proteins is associated with many human diseases including inflammation and various types of cancer. Serum-based global glycan profiling using mass spectrometry has been explored and has already led to several potential glycan markers for several disease states. However, localization of the aberrant glycosylation is desirable in order to improve the specificity and sensitivity for clinical use. Here, we combined protein-specific immunoaffinity purification, glycan release, and MS analysis to examine haptoglobin glycosylation of gastric cancer patients for glyco-markers. Age- and sex-matched 60 serum samples (30 cancer patients and 30 healthy controls) were used to profile and quantify haptoglobin N-glycans. A T-test based statistical analysis was performed to identify potential glyco-markers for gastric cancer. Interestingly, abundances of several tri- and tetra-antennary fucosylated N-glycans were increased in gastric cancer patients. Additionally, structural analysis via LC/MS/MS indicated that the fucosylated complex type N-glycans were primarily decorated with antenna fucose, which can be categorized as sialyl-Lea or sialyl-Lex type structures. This platform demonstrates quantitative, structure-specific profiling of haptoglobin glycosylation for the purposes of biomarker discovery for gastric cancer.
Collapse
Affiliation(s)
- Sung Hyeon Lee
- GLYCAN Co., Ltd., Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Seongnam 13605, Korea
| | - Seunghyup Jeong
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Jua Lee
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - In Seok Yeo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Myung Jin Oh
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Unyong Kim
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Sumin Kim
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Su Hee Kim
- GLYCAN Co., Ltd., Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Seongnam 13605, Korea
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University Samsung Medical Center, Seoul, Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Hyun Joo An
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
41
|
Abstract
Hepatitis B virus (HBV) is the smallest partially double-stranded DNA virus known to infect humans. Worldwide, more than 50% of hepatocellular carcinoma (HCC) cases are related to chronic Hepatitis B. Development of HCC from normal liver cells is characterized by changes in cell surface N-glycans, which can promote the invasive behavior of tumor cells, leading ultimately to the progression of cancer. However, little is understood about the cell surface N-glycans of HBV-infected liver cells. We try to address this by taking advantage of the HepAD38 cell line, which can replicate HBV in the absence of tetracycline [tet(-)] in growth medium. In the presence of tetracycline [tet(+)], this cell line is free from the virus due to the repression of pregenomic (pg) RNA synthesis. In culture medium without tetracycline, cells express viral pgRNA and start to secrete virions into the supernatant. Here we studied the expression of glycosyltransferases and the cell surface N-glycan composition of tet(+) and tet(-) HepAD38. Among the glycosyltransferases upregulated by the expression of HBV were GnT-II, GnT-IVa, ST6Gal1, and GnT-V, whereas GnT-I, GnT-III, β4GalT1, and FUT8 were downregulated. About one-third of the total cell surface N-glycans found on tet(-)HepAD38 were sialylated. As for tet(+)HepAD38, sialylation was 6% lower compared to the tet(-) cells. Neither treatment changed the cell surface N-glycans expression of the total complex type or the total fucosylated type, which were about 50% or 60%, respectively. Our results showed that the expression of HBV triggers higher sialylation in HepAD38 cells. Altogether, the results show that HBV expression triggered the alteration of the cell surface N-glycosylation pattern and the expression levels of glycosyltransferases of HepAD38 cells.
Collapse
|
42
|
Sharma M, Hotpet V, B R S, A S K, Swamy BM, Inamdar SR. Purification, characterization and biological significance of mannose binding lectin from Dioscorea bulbifera bulbils. Int J Biol Macromol 2017; 102:1146-1155. [PMID: 28472687 DOI: 10.1016/j.ijbiomac.2017.04.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Dioscorea bulbifera or air potato has been used as a folk remedy to treat cancer. A mannose binding lectin from bulbils of D. bulbifera was purified in a single step by affinity chromatography on mucin coupled Sepharose 4B column, determined by its fine sugar specificity by glycan array analysis and studied for its clinical potential in cancer and HIV research. SDS-PAGE showed that lectin is a monomer of Mr 24kDa. DBL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, fetuin, asialofetuin and transferrin but not by any monosaccharides. Glycan array analysis of DBL revealed its affinity toward high mannose N-linked glycans with enhanced affinity for terminal mannose including N-linked glycans of HIV envelope glycoprotein gp120 and has strong anti-reverse transcriptase activity. DBL showed strong binding to non-metastatic human colon epithelial cancer HT 29, metastatic SW 620 and hepatocellular HepG2 cell lines. DBL showed dose and time dependent growth inhibitory effects on all the three cell lines HT 29, SW 620 and HepG2 with IC50 of 110μg, 9.8μg, 40μg respectively at 72h. Inhibitory effect of DBL was effectively blocked in presence of competing glycans like mucin. DBL has promising clinical potential both in cancer and HIV research.
Collapse
Affiliation(s)
- Mamta Sharma
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | | | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Kamalanathan A S
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
43
|
Zhong Y, Guo Y, Liu X, Zhang J, Ma T, Shu J, Yang J, Zhang J, Jia Z, Li Z. Serum Glycopatterns as Novel Potential Biomarkers for Diagnosis of Acute-on-Chronic Hepatitis B Liver Failure. Sci Rep 2017; 7:45957. [PMID: 28383031 PMCID: PMC5382696 DOI: 10.1038/srep45957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic hepatitis B liver failure (ACHBLF) is an increasingly recognized distinct disease entity encompassing an acute deterioration of liver function in patients with cirrhosis, so little is known about the alterations of protein glycopatterns in serum with its development. We aimed to identify the alterations of serum glycopatterns in ACHBLF and probe the possibility of them as novel potential biomarkers for diagnosis of ACHBLF. As a result, there were 18 lectins (e.g., WFA, GSL-II, and PNA) to give significantly alterations of serum glycopatterns in ACHBLF compared with healthy controls (HC) (all p ≤ 0.0386). Meanwhile, among these lectins, there were 12 lectins (e.g., WFA, GAL-II, and EEL) also exhibited significantly alterations of serum glycopatterns in ACHBLF compared with HBV-infected chronic hepatitis (cHB) (all p ≤ 0.0252). The receiver-operating characteristic (ROC) curve analysis indicated there were 5 lectins (PHA-E + L, BS-I, ECA, ACA, and BPL) had the greatest discriminatory power for distinguishing ACHBLF and HC or cHB, respectively (all p ≤ 0.00136). We provided a new basic insight into serum glycopatterns in ACHBLF and investigated the correlation of alterations in serum glycopatterns as novel potential biomarkers for diagnosis of ACHBLF.
Collapse
Affiliation(s)
- Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Yonghong Guo
- Department of infectious diseases, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, P. R. China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jing Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Zhansheng Jia
- Center of infectious diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, P. R. China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| |
Collapse
|
44
|
Shen L, Luo Z, Wu J, Qiu L, Luo M, Ke Q, Dong X. Enhanced expression of α2,3-linked sialic acids promotes gastric cancer cell metastasis and correlates with poor prognosis. Int J Oncol 2017; 50:1201-1210. [PMID: 28259967 DOI: 10.3892/ijo.2017.3882] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is a highly metastatic disease and one of the leading causes of cancer death in the world. Aberrant glycosylation is one of many molecular changes that accompany malignant transformation. This study was aimed at identification of glycan profiling changes in GC progression and its potential mechanisms. We employed a microarray with 91 lectins to compare the differential glycans in the three human GC cell lines, SGC-7901, BGC-823 and MGC-803. According to glycan-binding specificities of lectins, all GC cell lines expressed common sugar structures, such as mannose, galactose and fucose. Importantly, we found that the binding of Maackia amurensis lectin-I (MAL-I) to GC cells was proportional to their metastatic capacity. Further analysis revealed that the level of α2,3-linked sialic acids (α2-3Sia), which can be recognized by MAL-I, was significantly overexpressed in MGC-803 cells, while low expression was detected in SGC-7901 cells. In addition, the mRNA and protein expression levels of β-galactoside α2,3-sialyltransferase IV (ST3Gal-IV), which was related to the synthesis of α2-3Sia, were substantially increased in MGC-803 cells. Knockdown of ST3Gal-IV in MGC-803 cells led to a decreased level of α2-3Sia and decreased ability of invasion and migration. Exogenous expression of ST3Gal-IV in SGC-7901 cells enhanced cell migration, invasion and the content of α2-3Sia. Furthermore, the staining of MAL-I in GC tissues showed that high expression of α2-3Sia was closely correlated with lymph node metastasis, TNM stage and poor overall survival. These findings lead to better understanding of the function of α2-3Sia in the progression and metastasis of GC. This property may be important for developing new therapeutic approaches for GC.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Junbo Wu
- Center for Evidence-based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ming Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoxia Dong
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
45
|
Hinneburg H, Korać P, Schirmeister F, Gasparov S, Seeberger PH, Zoldoš V, Kolarich D. Unlocking Cancer Glycomes from Histopathological Formalin-fixed and Paraffin-embedded (FFPE) Tissue Microdissections. Mol Cell Proteomics 2017; 16:524-536. [PMID: 28122943 DOI: 10.1074/mcp.m116.062414] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/22/2017] [Indexed: 12/22/2022] Open
Abstract
N- and O-glycans are attractive clinical biomarkers as glycosylation changes in response to diseases. The limited availability of defined clinical specimens impedes glyco-biomarker identification and validation in large patient cohorts. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are the common form of sample preservation in clinical pathology, but qualitative and quantitative N- and O-glycomics of such samples has not been feasible to date. Here, we report a highly sensitive and glycan isomer selective method for simultaneous N- and O-glycomics from histopathological slides. As few as 2000 cells isolated from FFPE tissue sections by laser capture microdissection were sufficient for in-depth histopathology-glycomics using porous graphitized carbon nanoLC ESI-MS/MS. N- and O-glycan profiles were similar between unstained and hematoxylin and eosin stained FFPE samples but differed slightly compared with fresh tissue. This method provides the key to unlock glyco-biomarker information from FFPE histopathological tissues archived in pathology laboratories worldwide.
Collapse
Affiliation(s)
- Hannes Hinneburg
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Petra Korać
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Falko Schirmeister
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Slavko Gasparov
- ‖Institute for Pathology and Cytology, University Hospital Merkur, Zagreb, Croatia.,**Department of Pathology, Medical School Zagreb, University of Zagreb, Zagreb, Croatia
| | - Peter H Seeberger
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Vlatka Zoldoš
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Daniel Kolarich
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany;
| |
Collapse
|
46
|
Wang Z, Qu L, Deng B, Sun X, Wu S, Liao J, Fan J, Peng Z. STYK1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through MEK/ERK and PI3K/AKT signaling. Sci Rep 2016; 6:33205. [PMID: 27628214 PMCID: PMC5024114 DOI: 10.1038/srep33205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
Serine/threonine/tyrosine kinase 1 (STYK1) is known to be involved in tumor progression. However, its molecular role and mechanism in hepatocellular carcinoma (HCC) remains unknown. We evaluated the effect of STYK1 expression in HCC tissues and investigated the underlying mechanisms associated with progression. HCC tissues expressed greater levels of STYK1 than paired non-tumor tissues. Patients with HCC expressing low levels of STYK1 showed both, greater disease-free (p < 0.0001) and overall (p = 0.0004) survival than those expressing high levels of STYK1. Decreased expression of STYK1 was significantly associated with decreased cell proliferation, reduced migratory capability, and reduced invasive capability. Overexpression of STYK1 was significantly associated with increased cell proliferation, migratory capability, and invasive capability in vitro, as well as increased volume of tumor, weight of tumor, and number of pulmonary metastases in vivo. Furthermore, STYK1's mechanism of promoting cancer cell mobility and epithelial-mesenchymal transition (EMT) was found to be via the MEK/ERK and PI3K/AKT pathways, resulting in increased expression of mesenchymal protein markers: snail, fibronectin, and vimentin, and decreased E-cadherin expression. Our results suggest that STYK1 acts as an oncogene by inducing cell invasion and EMT via the MEK/ERK and PI3K/AKT signaling pathways and it therefore may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Qu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Biao Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Shaohan Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Jianhua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|